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Abstract: In the chemical industry, organizational and operational human factors significantly con-
tribute to accidents. Chemical accidents occur in various operations of the industry due to a range of
factors. Understanding the relationship between these factors and the accidents that happen is crucial
in preventing similar accidents from happening repeatedly and promoting sustainability. Therefore,
this study was divided into five operations: maintenance repair, process, loading unloading, storage,
and shutdown startup of the chemical industry, to provide a more concrete, intuitive explanation
of the interplay between causes and illustrate the routes to failure. The data were collected from
251 accident reports from various online data. The study was analyzed using the Human Factors
Analysis and Classification System (HFACS) method as a conceptual framework. Each level’s fre-
quency variables were obtained to define nominal and ordinal data. The chi-square test and Fisher’s
exact test were used in the difference analysis of data in the model. The results show that the
high-frequency accidents caused under the HFACS framework were organizational processes in the
process (63.73%), in the storage (70.58%), and in the shutdown startup (91.66%), and skill-based errors
in the maintenance repair (81.81%) and in the loading unloading (66.03%). Furthermore, resource
management, technological environment, and personal readiness were significantly correlated with
the operations. Human factors have differences in different operations in the chemical industry.

Keywords: human factor; human error; chemical accident; HFACS; accident analysis

1. Introduction

Human error is one of the most critical contributory factors in various accidents in dif-
ferent industries, including aviation, healthcare, transportation, and manufacturing. Many
studies have pointed out the fundamental role of human errors in accident occurrence, with
them being involved in 70–80% of aviation accidents [1], 60% of petrochemical accidents,
90% of road traffic accidents, 90% of steel and iron metallurgy accidents [2], over 90% of
nuclear accidents, over 75–96% of marine accidents, and over 80% of chemical process
accidents [3,4]. For this reason, deaths and injuries or health problems, financial losses,
non-financial losses, and environmental damages happen due to human errors [5].

The Bhopal gas tragedy occurred in 1984 in India. The tragedy was caused by a gas
leak from a pesticide plant, which released a toxic cloud of methyl isocyanate (MIC) gas into
the surrounding area. The gas spill resulted in thousands of deaths. In addition, it affected
about 300,000 people’s genetic factors and caused many other long-term health problems [6].
A combination of operator errors, poor maintenance, inadequate use of an early warning
system, poor risk perception, and poor safety management led to this accident [7]. The Piper
Alpha disaster was a catastrophic oil rig explosion. It happened in 1988 in the North Sea off
the coast of Scotland. Being one of the deadliest industrial accidents in history, the incident
caused 167 deaths. Poor communication between operators, insufficient training, lack of
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safety procedures, improper installation of pressure safety valves, work permit system in
work shifts, and inadequate maintenance procedures all contributed to the incident [7,8].
The Chernobyl nuclear power plant catastrophe in 1986 in Ukraine, the Texaco Refinery
explosion in 1994 in Wales, and the BP Deepwater Horizon Oil Spill disaster in 2010 in
the Gulf of Mexico were all significant industrial accidents that were directly or indirectly
linked to human error [8–10].

Human-caused accidents in the chemical industry have caused significant harm to the
environment, society, and the economy [11]. As a result, safe production has become the
primary principle for sustainable development in chemical enterprises [12]. A recent study
by Nawaz et al. [13] found that safety and sustainability are closely related, with security
providing an operational command of sustainability. Because the two disciplines share
the same pillars, including the economy, environment, and society, improving workplace
safety and health management is essential to achieving sustainable development goals [14].
By prioritizing workplace safety and health, the chemical industry can create safe and
healthy work environments, reduce the risk of accidents and environmental pollution, and
contribute to sustainable development goals related to the economy, environment, and
society. However, one of the most critical steps in achieving sustainability, increasing safety,
and maintaining low incident rates is to perform a comprehensive, accurate, and detailed
analysis of an organization’s accidents and incidents [15].

The chemical industry is one of the sectors with the highest risk due to the catastrophic
effects and outcomes caused by toxic, explosive, or flammable hazardous chemicals [7].
Chemical accidents may occur, releasing large amounts of dangerous chemicals in a plant
during manufacturing, storage, utilization, and elimination or transportation [16]. Human
and organizational factors, complex systems, process conditions, and improper manage-
ment may lead to chemical accidents [7]. Although many regulations, standards, and
policies apply in the chemical industries, accidents still happen [17]. Therefore, it is nec-
essary to analyze the causes of chemical accidents to prevent incidents involving death
or personal injury, provide safety, and reduce environmental and economic losses in the
chemical industries [16]. Many studies have shown that human error is a significant factor
in chemical accidents. For example, Dakkoune et al. [18] analyzed 169 events between 1974
and 2014 selected from a French database. The study shows that the causes were mainly
related to human errors. Jung et al. [19] researched numerous chemical accidents in South
Korea between 2008 and 2018, and human error was the reason for 76.1% of all chemical
accidents. Zhang and Zheng [20] examined 1632 hazardous chemical accidents in China
during 2006–2010 for statistical characteristics. The findings showed that human factors
contributed to the most dangerous chemical accidents. According to another study, human
factors were the leading cause of process accidents’ unsafe behavior [4].

There are many human factors analysis models and theories to study the causation of
accidents from the view of human behaviors or human errors. For example, Jens Rasmussen
described human behavior in conformity with the levels of cognitive behavior in 1982 [21],
and he suggested as based on skill, rule, and knowledge (SRK model) a model to describe
the process of human cognitive behavior [22]. According to this theory, there are three levels
of cognitive behavior: skill-based, rule-based, and knowledge-based. The skill-based level
refers to automatic, unconscious actions without conscious thought or decision-making.
The rule-based level involves conscious decision-making based on pre-learned rules and
procedures. Finally, the knowledge-based level involves conscious decision-making based
on understanding and problem-solving, requiring higher expertise [23,24].

One particularly revolutionary approach to the development of human error is the
one proposed by James Reason [25]. It is called the “Swiss Cheese” model and is a widely
used accident causation model. Reason identifies four levels of human failure, each influ-
encing the next. Every level has a defect, and when unsafe factors pass through the holes
represented in the cheese, they finally lead to accidents [26]. The model divided accident
causes into two categories: active factors and latent factors, inclusive of organizational
influences (latent), unsafe supervision (latent), preconditions for unsafe acts (latent), and
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unsafe acts (active). Active factors are those in which the impact is felt instantly. Latent
factors tend to be inactive in the system, largely unnoticed until they combine with other
factors and an accident occurs. The model provides a practical and valuable approach
toward comprehending the causes of accidents and safety measures. The model empha-
sizes the significance of having several layers of defense to safeguard against accidents and
recognizing potential weaknesses in each layer to prevent accidents [27,28]. The model is
described diagrammatically in Figure 1. Due to the need to extend accident investigation
beyond the scope of direct personnel action or inaction, Shappell and Wiegmann [26] devel-
oped the Human Factors Analysis and Classification System (HFACS) model in the aviation
industry, based on Reason’s Swiss cheese model. The HFACS model was designed to
identify the underlying human factors contributing to accidents and provide a framework
for understanding the root causes of accidents. Thus, active and latent categorizations
of accidents helped in focusing more on a systemic approach to underlying contributing
causes [28]. The HFACS is considered to be a comprehensive analysis model of human
error that considers multiple causes of human failure [29].
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Figure 1. Reason’s Swiss cheese model [25].

The HFACS model is a widely used and accepted method as a valid and reliable tool
in accident research [7]. From this point of view, the HFACS model has been successfully
extended to analyze and investigate the human error framework [30]. It is used in different
industries such as maritime, mining, railway, construction, healthcare, nuclear power,
chemical, and other industries [28,31]. For example, Xia et al. [32] used the HFACS model
to conduct a statistical analysis of 120 fatal accidents involving confined space operations
in China from 2008 to 2018. The results indicate that the causes of the accidents include
inadequate safety culture, organizational process vulnerability, inadequate supervision, su-
pervisory violations, decision errors, and operational violations. Liu et al. [33] developed a
human factor analysis and classification system (HFACS-CM) for China’s mines using data
from 362 significant coal mine incidents between 2000 and 2016. Kandemir and Celik [34]
defined the HFACS-MMO for marine engineering operations. Akyuz [35] introduced a
novel hybrid approach for assessing potential operations whereby the hybrid accident
analysis model integrates an analytical network process (ANP) method with the HFACS in
the maritime transportation industry. With the aid of the HFACS, Zhou and Lei [36] inves-
tigated 611 accident/incident reports during the railway driving process. In the healthcare
field, Cohen et al. [37] used the HFACS to classify 592 near-surgical near-misses reported
via a hospital’s incident reporting system over one year. As a result of the identification of
726 causal factors, most of the issues (n = 436, 60.00%) contained preconditions for unsafe
actions. Karthick et al. [38] employed the fuzzy analytic hierarchy process (FAHP) in the
HFACS framework to analyze and determine the critical human factors contributing to



Sustainability 2023, 15, 8129 4 of 16

human errors in the nuclear control room application. In the chemical industry, Wang
et al. [39] studied 101 accidents occurring in small and medium-sized enterprises from
2012 to 2016 using the HFACS framework. Li et al. [40] introduced the method of HFACS
based on the Bayesian network to systematically investigate the factors influencing unsafe
behavior according to the 39 investigation reports of hazardous chemical accidents in
China. Theophilus et al. [41] proposed a new HFACS called the HFACS-OGI for the oil
and gas industry and applied it by analyzing 11 accident reports from the US Chemical
Safety Board.

Although some research has been performed on the effect of chemical accident preven-
tion, there need to be more studies on which human factors are more effective in chemical
operations and that examine the relationship between the causes. Therefore, this study
aims to investigate the human factors in the five operations of accidents in the chemical
industry: maintenance repair, process, loading unloading, storage, and shutdown startup.
In the study, the following research hypotheses were established:

H1. The HFACS framework levels differ in five operations (maintenance repair, process, loading
unloading, storage, and shutdown startup).

H2. In chemical accidents, there is a significant relationship between the five operations and
organizational influences, unsafe supervision, preconditions for unsafe acts, and unsafe acts.

H3. The significantly correlated factors of organizational influences, unsafe supervision, precondi-
tions for unsafe acts, and unsafe acts significantly affect chemical accident operations.

Section 2 of the research briefly reviews the test hypothesis tools and describes the
methods applied. Then, in Section 3 are the results of the hypothesis, and in Section 4, there
is a discussion according to the results. Finally, the concluding remarks on the HFACS,
some limitation notes, and suggestions for future research are given.

2. Materials and Methods

This section briefly overviews the study tools and provides a detailed description of
the applied methodology.

2.1. Data Collection Tools

The 251 investigation accident reports were collected from various online data in
the chemical industry. These databases are the European Commission’s Major Accident
Reporting System (MARS) [42], France’s Analysis, Research and Information on Accidents
database (ARIA) [43], The Central Reporting and Evaluation Office for Major Accidents
and Incidents in Process Engineering (ZEMA) [44], Germany’s network of engineering
chemistry and biotechnology expert DECHEMA [45], and Tukes’ VARO registry of chem-
ical accidents in Finland [46]. Industrial accident databases are created and maintained
to achieve some goals; they assist in evaluating safety management and safety policy,
create statistical trends and estimates, and verify probabilistic safety assessment or con-
sequence assessment results, models, and assumptions [47]. Additionally, using incident
databases as a management tool allows a company to evaluate its performance, learn from
its errors, and enhance its risk management [48]. Many studies are carried out using such
databases [18,49,50].

The selected text resources in accident reports include accident records, accident
causes, accident analysis results, and prevention strategies. Unfortunately, the information
offered in some cases is restricted. Due to the difficulties in drawing valid inferences on the
causes or effects of the accidents, some accidents that did not meet the selection criteria
were left out of the analysis. The selected reports contain at least one cause of human error.
In addition, they have one of the five operations of the chemical industry: maintenance
repair (n = 66), process (n = 91), loading unloading (n = 53), storage (n = 17), and shutdown
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startup (n = 24). Understanding the causes of past similar accidents and deficiencies in the
performed processes can help to better understand similar chemical operations [51]. From
this point of view, accidents are divided into five operations. In this study, the causes of
accidents were classified according to the operations, and the error-producing conditions
of accidents were analyzed based on statistical data.

2.2. The HFACS Model

The HFACS is a conceptually clever technique for analyzing how human factors
contribute to accidents. The method’s primary purpose is to give users a conceptual
framework while looking into and analyzing instances of human error in accidents [35].
The combined system investigating active and latent factors has increased the reliability
of the HFACS in accident investigation applications [52]. According to the HFACS model
framework, many deficiencies that lead to accidents are identified within four levels of
human failures: organizational influences, unsafe supervision, preconditions for unsafe
acts, and unsafe acts [26].

(1) The organizational influences level is divided into three categories: resource manage-
ment (contains top management decision-making about the utilization of resources
such as equipment, facilities, money, and personnel), organizational climate (refers
to the factors that affect employee performance, such as organizational structure,
culture, and policies), and organizational process (relates to the decision-making that
determines how an organization conducts its daily business, including its operations,
procedures, and oversight).

(2) The unsafe supervision level, which is divided into four categories, deals with the
actions and decisions of managers and supervisors that may have an impact on the
performance of front-line personnel: Planned inappropriate operations (which involve
circumstances in which managers fail to assess the risk involved in a task, putting
personnel at an unacceptable level of risk. These include insufficient personnel, mis-
sions that do not adhere to norms or regulations, and insufficient opportunities for
personnel rest), failure to correct the problem (refers to situations when inadequate
equipment, training, or behavior is found but is left unchecked, implying that man-
agers are failing to take corrective action or report such unsafe conditions), supervisory
violations (the willful violation of the established laws and regulations by individuals
in positions of authority), and inadequate supervision (involves those instances where
supervision either fails to give advice, oversight, or training or does it incorrectly
or improperly).

(3) The preconditions for unsafe acts level is divided into three categories: Environmental
factors are the physical and technological factors that impact people’s behaviors, con-
ditions, and activities that can lead to harmful situations or human error. Condition of
operators refers to the adverse mental state, physiological state, and physical/mental
limitation factors that impact individual actions, needs, or behaviors and cause harm-
ful situations or human error. Finally, personnel factors include personal readiness
and crew resource management factors that affect behaviors, conditions, or individual
decisions that cause a situation to be unsafe or lead to human error.

(4) The unsafe acts level is divided into two categories: errors and violations. Errors
(decision, skill-based, perceptual errors) are unintentional behaviors and operator
activities that fail to provide the desired results. Violations (routine violations, excep-
tional violations) are a deliberate disregard for the regulations. Skill-based errors are
described as skills that occur without considerable conscious thought. Decision errors
are intentional actions that go as planned, but the strategy is ineffective or wrong for
the situation. Perceptual errors can often occur when one’s perception of the world
differs from reality. Routine violations tend to be habitual and usually tolerated by
the leading authority. Exceptional violations are departures from a rule that is neither
indicative of a person’s usual behavior pattern nor approved by management [26]. In
this context, the HFACS model framework is shown in Figure 2.
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2.3. Statistical Methods

The accident reasons were categorized and statistically examined after the analysis.
Under the HFACS framework, the frequency of each accident caused was determined.
Frequency analysis was used to describe the nominal and ordinal parameters in the study.
The chi-square test and Fisher’s exact test were utilized in difference analysis. Spearman’s
rho analysis was used in relational scanning analysis. Spearman’s rho test was chosen
because the accident operations act as the dependent variables and the presence of accidents
are the categorical variables. Generalized linear model (logit model) analyses were used
in causality analysis. In this method, the significant parameters in the correlation analysis
were converted into dummy variables, and therefore the ordinal logit method was used.
All analyses were performed in SPSS 25.0 of the Windows program at a 95% confidence
interval and 0.05 significance level.

The Fisher exact test is one of modern data analysis’s most widely utilized techniques.
It examines contingency tables with small sample sizes where the predicted frequency in
one or more cells is less than five. Contingency tables are used to summarize the relationship
between two categorical variables. If the p-value obtained from the test is below a pre-
determined significance level, it is concluded that there is a significant difference between
the variables [53]. Fisher’s exact test uses the following formula [54]:

Pr
({

xij
})

=

(
m1
x11

)(
m2

n1 − x11

)
(

N
n1

)
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Here, x states cell counts, m1 and m2 are row totals, n1 and n2 are column totals, and
N states the table total [54].

Spearman’s rho correlation coefficient expresses the strength and direction of the
association between two variables. The relationship will be weak or strong on one side
and negative or positive on the other. For example, if we suppose that the variables A and
B have ranks of (RA) and (RB), respectively, and that (d) reflects the difference between
the two ranks, then (d = RA − RB), and Spearman’s is used to determine the correlation
of ranks. Spearman’s rho correlation analysis coefficient is calculated as follows. Here, d
states two rank differences, and n displays the number of ordered pairs [55].

rs = 1 − 6 ∑ d2/n
(

n2 − 1
)

The generalized linear model (GLM) is an extension of the linear regression model
that allows it to handle a variety of response variables, including binary and categorical
variables. The logit model is a type of GLM that is a valuable tool for modeling binary
response variables. The generalized linear (logit) model formula is given below [56].

P(Y = y; π) =

(
n

yn

)
πny(1 − π)n(1−y)

where

π =
eα+β1x1+...+βnxn

1 + eα+β1x1+...+βnxn

Here, β is the regression coefficient, X is the independent parameter, Y is the dependent
parameter, and n is a number of independent parameters [56].

3. Results

The results of the causation analysis show that 66 maintenance repair accidents re-
sulted in a total of 289 accident manifestations, 91 process accidents resulted in a total of
341 accident manifestations, 17 storage accidents resulted in a total of 67 accident manifesta-
tions, 24 shutdown startup accidents resulted in a total of 109 accident manifestations, and
53 loading unloading accidents resulted in a total of 190 accident manifestations. Finally,
996 accident manifestations were gathered as a result for this study. When calculating the
percentage rates, the frequencies were divided by the number of accidents in operations in
the chemical industry. Thus, the percentage weight of the number of causes per accident
was found. Table 1 displays the frequency sequences of images in each level in the HFACS.
The percentages show the proportion of manifestations for each accident number.

Among the causes of the maintenance repair accidents, technic errors (55.55%) are
the most frequent manifestations within skill-based errors. Among the organizational
process errors that depend on process accidents, the most common are errors related to
the lack of procedures (51.72%). Similarly, the lack of procedures in organizational process
accidents is one of the most common errors in storage (58.33%) and in shutdown startup
(36.36%). Finally, attention failures (60%) are the most common in loading unloading due
to skill-based errors.

According to the analysis, the six manifestations of the HFACS framework levels
differed in accident operations (maintenance repair, process, loading unloading, storage,
and shutdown startup). The details of these differences are presented in Tables 2–5. Addi-
tionally, after mapping the manifestations to the causes in the HFACS, the percentage of
the failure paths consisting of each cause by chemical operations was acquired.
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Table 1. The HFACS model’s frequency statistics for chemical operations.

Categories in the HFACS Framework
Maintenance

Repair Process Storage Shutdown
Startup

Loading
Unloading

n * (%) n * (%) n * (%) n * (%) n * (%)

Organizational
Influences

Resource Management 2 3.03 20 21.97 4 23.52 5 20.83 11 20.75

Organizational Climate 3 4.54 11 12.08 2 11.76 2 8.33 3 5.66

Organizational Process 46 69.69 58 63.73 12 70.58 22 91.66 26 49.05

Unsafe
Supervision

Planned Inappropriate
Operations 4 6.06 5 5.49 0 0 2 8.33 5 9.43

Failure to Correct Problem 3 4.54 2 2.19 0 0 2 8.33 2 3.77

Supervisory Violations 15 22.72 4 4.39 5 29.41 1 4.16 4 7.54

Inadequate Supervision 24 36.36 41 45.05 7 41.17 11 45.83 27 50.94

Preconditions for
Unsafe Acts

Environmental Factors

Physical
Environment 14 21.21 11 12.08 6 35.29 3 12.50 4 7.54

Technological
Environment 26 39.39 49 53.84 5 29.41 19 79.16 18 33.96

Condition of
Operators

Adverse
Mental States 6 9.09 13 14.28 1 5.88 1 4.16 3 5.66

Physical-
Mental

Limitations
1 1.51 0 0 0 0 0 0 0 0

Personnel Factors

Personal
Readiness 12 18.18 5 5.49 0 0 0 0 5 9.43

Crew
Resource

Management
9 13.63 12 13.18 2 11.76 3 12.50 6 11.32

Unsafe Acts

Errors

Decision
Errors 20 30.30 4 4.39 1 5.88 5 20.83 5 9.43

Skill-Based
Errors 54 81.81 55 60.43 11 64.70 14 58.33 35 66.03

Perceptual
Errors 14 21.21 16 17.58 8 47.05 4 16.66 11 20.75

Violations
Routine 28 42.42 19 46.34 1 5.88 10 41.66 16 30.18

Exceptional 8 12.12 16 17.58 2 11.76 5 20.83 9 16.98

* The total percentages of accident causes under the HFACS framework are higher than 100% because there are
several reasons for one accident.

Table 2. Difference in of organizational influence levels in operations.

Resource Management Organizational Climate Organizational Process

n % n % n %

Maintenance repair 2 4.8 3 14.3 46 28.0
Process 20 47.6 11 52.4 58 35.4
Loading unloading 11 26.2 3 14.3 26 15.9
Storage 4 9.5 2 9.5 12 7.3
Shutdown startup 5 11.9 2 9.5 22 13.4
Test value 12.231 1.980 13.149
p value 0.013 0.746 0.010
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Table 3. Difference in unsafe supervision levels in operations.

Planned Inappropriate
Operations

Failure to Correct
Problem

Supervisory
Violations

Inadequate
Supervision

n % n % n % n %

Maintenance repair 4 25.0 3 33.4 15 51.7 24 21.8

Process 5 31.3 2 22.2 4 13.8 41 37.3

Loading unloading 5 31.3 2 22.2 4 13.8 27 24.5

Storage - - - - 5 17.2 7 6.4

Shutdown startup 2 12.4 2 22.2 1 3.4 11 10.0

Test value 1.759 2.336 16.542 8.552

p value 0.810 0.673 0.001 0.070

Table 4. Difference in preconditions for unsafe act levels in operations.

Physical
Environment

Technological
Environment

Adverse Mental
States

Personal
Readiness

Crew Resource
Management

n % n % n % n % n %

Maintenance repair 14 36.8 26 22.2 6 25.0 12 54.6 9 28.1

Process 11 28.9 49 41.9 13 54.2 5 22.7 12 37.5

Loading unloading 4 10.5 18 15.4 3 12.5 5 22.7 6 18.8

Storage 6 15.8 5 4.3 1 4.2 - - 2 6.3

Shutdown startup 3 7.9 19 16.2 1 4.2 - - 3 9.4

Test value 8.876 11.157 2.655 10.700 0.590

p value 0.055 0.025 0.615 0.019 0.975

Table 5. Difference in unsafe act levels in operations.

Decision Errors Skill-Based Errors Perceptual Errors Routine Violations Exceptional
Violations

n % n % n % n % n %

Maintenance repair 20 57.1 54 32.0 14 26.4 28 37.8 8 20.0
Process 4 11.4 55 32.5 16 30.2 19 25.7 16 40.0
Loading unloading 5 14.3 35 20.7 11 20.8 16 21.6 9 22.5
Storage 1 2.9 11 6.5 8 15.1 1 1.4 2 5.0
Shutdown startup 5 14.3 14 8.3 4 7.5 10 13.5 5 12.5
Test value 12.304 2.296 7.772 5.849 4.680
p value 0.011 0.681 0.093 0.207 0.308

The difference in the organizational influence levels in the five operations is shown
in Table 2. The results indicate that resource management, organizational climate, and
organizational-process-related accidents are the most common areas for process operation.
According to the results of the differences, the resource management (p < 0.05) and organi-
zational process (p < 0.05) levels differ in operations (maintenance repair, process, loading
unloading, storage, and shutdown startup). On the other hand, there is no difference in the
organizational climate level (p > 0.05) in operations.

In the case of accidents caused by unsafe supervision levels in Table 3, planned inap-
propriate operations-related accidents are the most common area for process and loading
unloading operations; failure to correct problems and supervisory violations-related ac-
cidents are the most common area for maintenance repair operations; and inadequate
supervision-related accidents are the most common in process operations. The result of
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the difference analysis revealed that the supervisory violations level differs in operations
(p < 0.05). The other three manifestations of unsafe supervision, planned inappropriate
operation (p > 0.05) level, failure to correct the problem (p > 0.05) level, and inadequate
supervision (p > 0.05) level, showed no difference in the accident operations.

As seen in Table 4, accidents due to physical environment and personal readiness occur
mainly in maintenance repair operations, while technological environment, adverse mental
state, personal readiness, and crew resource management-related accidents are primarily
seen in the process operations. Levels of preconditions for unsafe acts indicated that the
two differed in operations (p < 0.05), technological environment, and personal readiness.
The other three manifestations in this level, physical environment, adverse mental states,
and crew resource management, showed no difference in operations (p > 0.05). Finally, the
other two manifestations in this level were not analyzed because of images being 0 and 1.

Decision errors and routine violations in the maintenance repair operations and skill-
based errors, perceptual errors, and exceptional violations in the process operation are
more common in terms of the probability of an accident, as seen in Table 5. In the level
of the unsafe acts, the decision error (p < 0.05) level differs in operations. The other four
manifestations in the group, skill-based errors (p > 0.05), perceptual errors (p > 0.05),
routine violations (p > 0.05), and exceptional violations (p > 0.05), showed no difference
in operations.

The results of Spearman’s rho correlation analysis for the relationship between the
operations and organizational influences, unsafe supervision, preconditions for unsafe acts,
and unsafe acts are shown in Table 6. According to this, there is a significant relationship
between the five operations and the resource management factors of organizational in-
fluences (p < 0.05), the technological environment factor of preconditions for unsafe acts
(p < 0.05), and the personal readiness factor of preconditions for unsafe acts (p < 0.05).
These results mean that resource management, technological environment, and personal
readiness variables were significantly correlated with the five operations.

Table 6. Spearman’s rho correlation analysis results for the relationship between the operations and
organizational influences, unsafe supervision, preconditions for unsafe acts, and unsafe acts.

The Operations r p

Organizational Influences
Resource Management 0.139 * 0.036
Organizational Climate 0.006 0.923
Organizational Process −0.125 0.060

Unsafe Supervision
Planned Inappropriate Operations 0.017 0.833
Failure to Correct Problem 0.012 0.876
Supervisory Violations −0.144 0.066
Inadequate Supervision 0.100 0.202

Preconditions for Unsafe Acts
Physical Environment −0.028 0.674
Technological Environment 0.146 * 0.025
Adverse Mental States −0.040 0.539
Physical Mental Limitations −0.084 0.199
Adverse Physiological States - -
Personal Readiness −0.164 * 0.012
Crew Resource Management 0.008 0.909

Unsafe Acts
Decision Errors −0.098 0.059
Skill-Based Errors −0.009 0.862
Perceptual Errors 0.065 0.210
Routine Violations −0.026 0.618
Exceptional Violations 0.067 0.200

Note: * p < 0.05.
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Finally, the generalized linear model (logit model) was utilized to identify the effects
of resource management, technological environment, and personal readiness variables on
operations at the multivariable level. There were correlations and dependent variables, the
operation was non-parametric, and the logit model was used for analysis. Table 7 reports
the generalized linear model results. Spearman’s rank correlation is used to evaluate a
monotonic association’s direction and strength and is unsuitable for a linear association
interpretation [57]. For the multivariate level and drawing a linear association for non-
parametric variables, generalized linear models are used. Promoting the likelihood func-
tion’s central position in inference is one of the GLM’s most significant achievements [58].
Therefore, the results of correlation analysis and GLM analysis differ. While correlation
analysis examines the relationship between two variables, GLM analysis examines the
effect of more than one variable on the dependent variable. Each significant parameter in
the correlation analysis is included in the GLM analysis. Overall, the “B” results provide
information about the strength and direction of the associations between the predictor
variables and the response variable. According to this, although in univariate analysis
variables of resource management, technological environment, and personal readiness
were effective on operations in the correlation analysis, these effects were not significant in
multivariate analysis because of p > 0.05. These results show that resource management,
technological environment, and personal readiness variables affect operations only at the
univariate level.

Table 7. Effects of resource management, technological environment, and personal readiness variables
on operations.

Parameter Name B Std. Error
95% Wald Confidence Interval Test of Hypothesis

Min. Max. Wald Chi-Square df p

Resource Management 0.248 0.170 −0.085 0.580 2.126 1 0.145
Technological Environment −0.118 0.182 −0.476 0.240 0.417 1 0.518
Personal Readiness 0 a

Dummy −0.284 0.169 −0.615 0.046 2.843 1 0.092
Value = 1.00 0
(Scale) 1

a: Set to zero because this parameter is redundant.

4. Discussion

In this study, the main goal was to research whether accidents caused by human
factors may occur in different operations in the chemical industry. First, the causes were
determined using the HFACS model. Then, the relationships and effects of these parameters
were examined using univariate and multivariate statistical analysis techniques.

The knowledge of the causes of accidents is the most significant material when drawing
lessons from them [51]. The efficiency of accident learning depends on in-depth cause
analysis [17]. A combination of many different causes leads to significant chemical accidents.
For example, in this study, 251 accidents were investigated, and a total of 996 reasons were
obtained, showing an average of 3.96 causes for each accident. For this reason, it is seen
that more than one human factor affects the accidents that occur in the chemical industry.
Therefore, it is important to take a holistic approach to accident prevention and consider all
of the potential factors when developing safety plans and protocols.

Skill-based errors usually consist of attention, memory, and technical errors. Memory
failures frequently appear as omitted items in a checklist or forgotten goals, and attention
failures link to many factors such as the breakdown in visual scan patterns, task fixation,
the accidental activation of controls, the misordering of steps in a procedure, and technical
failures that develop depending on an employee’s training experience, educational back-
ground, perspective, and approach to events [26]. The study revealed that skill-based errors
mainly cause maintenance repair and loading unloading accidents. It has been determined
that technical errors in maintenance repair and attention errors in loading unloading are
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more common and frequent. Similarly, Patterson and Shappell examined 508 coal mine
incidents using the HFACS-mining industry (HFACS-MI) model and found that skill-based
errors constitute the most frequent unsafe acts [59].

According to the study results, the organizational process is the main reason for pro-
cess, storage, and shutdown startup accidents with the highest weight values. Procedural
errors are the most widespread in all three operations. These procedural errors refer to a
lack of procedures, unclear procedures, or an insufficiency of procedures. In such oper-
ational accidents, procedural manifestations such as “emergency operating procedures”,
“operational procedures”, “maintenance procedures”, “training procedures”, “safety proce-
dures”, and “work permit system procedures” are frequently encountered. A lack of or
inadequate safety operation procedures are the important causes of casualty accidents [60].
Similarly, in the shipping industry, the International Safety Management (ISM) Code man-
dates that shipping companies establish procedures that allow seafarers to take part in risk
identification, assessment, and mitigation, and report safety lapses and issues. The Code, in
principle, encourages a safe place strategy [61]. Therefore, the procedures in the chemical
plants should be fit for purpose, written, and up-to-date to prevent errors.

After identifying the order of importance of causes in five operations using HFACS
analysis, the significant relationships between each HFACS level and operations and
HFACS level differences in operations were determined. The results show that resource
management (p < 0.05), organizational process (p < 0.05), and technological environment
(p < 0.05) cause differences in operations. Accordingly, it has been confirmed that forecited
procedural errors, and those exceedingly foreseen in the organizational process, are more
significant in operations. It has been observed that resource management causes, such as
lack of machinery spare parts, alarm systems, or safety equipment, and defective design
of plants are frequently involved in operation accidents. Similarly, Li et al. [40] found
that resource management impacts operation violations in hazardous chemical accidents.
Furthermore, Rostamabadi et al. [7] determined that resource management was one of
the most influential factors contributing to process accidents. The study of [62] showed
that adequate resources were one of the primary safety motivators for employees. The
organizational process describes how chemical operations are standardized and managed
using various procedures and frameworks. Therefore, vulnerabilities in operational man-
agement are likely caused by poor organizational processes. Xia et al. [32] have shown that
one of the factors affecting China’s confined space operation accidents is organizational
process vulnerability. Therefore, it is essential to prioritize resource management issues
and organizational processes in every operation. Poor technological environments include
things such as defective equipment and facilities, a lack of safety precautions, a lack of
electronic monitoring tools, irrational control layouts, etc. As a result, if issues are not
identified or resolved quickly, or risks are not sufficiently addressed, a poor technological
environment can easily increase the risks of accidents.

The identified manifestations were mainly different in supervisory violations (p < 0.05),
personal readiness (p < 0.05), and decision errors (p < 0.05) in operations. Supervisory
violation is frequently defined as the manager or supervisor disregarding the established
operating procedures. An insufficient safety culture can be regarded as one of the con-
tributing factors to supervisory violations [32]. It has been observed that non-compliance
with actions of permit-to-work, allowing not using personal protective equipment (PPE),
violated procedures, and willful disregard for authority by supervisors would be classified
as supervisory violations in operations. Therefore, it would be beneficial to focus on man-
agement violations in operations to minimize the accidents resulting from management
violations. These consist of personal readiness, not wearing PPE, inadequate training, and
lack of information. It can be inferred that adequate personal readiness influences doing
the job safely. According to a study in the maritime industry [63], safety training was the
second most significant predictor of safety supervision. The same study’s results indicated
that the quality of the safety inspection would be high if crew members were well-trained
in following safety rules and procedures or could use appropriate PPE. The decision errors
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in unsafe acts are wrong judgment and wrong response to an emergency, decisions due to
poor practice, and decisions on using incorrect tools.

Based on the hypotheses, the study’s results suggest that five operations differed
in the six manifestations of the HFACS framework levels (resource management, organi-
zational process, supervisory violations, personal readiness, technological environment,
and decision errors). In addition, the study found a significant relationship between five
operations and three manifestations of the HFACS framework resource management, per-
sonal readiness, and technological environment. Regardless of these factors’ effect, efficient
control can reduce the frequency and severity of accidents in the identified operations.
For example, effective resource management can ensure that the equipment, materials,
and personnel are available to carry out the operations safely and efficiently. In addition,
a favorable technological environment can reduce the likelihood of equipment failures
and malfunctions, leading to accidents. Finally, personal readiness can ensure that the
personnel involved in the operations are adequately trained, experienced, and prepared to
handle any unexpected situations. Overall, identifying these critical factors can provide
valuable insights into the causes of accidents in specified chemical operations and can
serve as a basis for developing effective interventions and strategies to improve safety and
prevent accidents. It can also affect how employees and managers handle potential changes
in the workplace, along with their ability to make decisions based on the risk perception
profile. Where limited resources are involved in an industry, extra attention must be paid
to identified causes of accidents to prevent them from having more severe consequences.
In addition, it will help organizations to better understand the factors contributing to safety
incidents and develop targeted interventions to prevent them from occurring. The study
highlights the importance of considering multiple factors when designing interventions to
improve safety outcomes in chemical operations.

5. Conclusions

Chemical accidents occur from different accident causes in chemical industry oper-
ations. Therefore, clarifying the relationship between the factors affecting the accident
and the accidents occurring in various operations is an effective way to prevent similar
accidents. Thus, this study was divided into five operations: maintenance repair, process,
loading unloading, storage, and shutdown startup of the chemical industry. In this study,
251 accidents in five operations were analyzed. The primary purpose was to commit to
plant safety, to understand hazards and risks, to manage risks, and to learn from experience.

Based on the research results, resource management, technological environment,
and personal readiness are more significant accident causes in operations. This finding
emphasizes the importance of understanding the specific causes of accidents in each type
of operation and tailoring interventions and strategies accordingly. Furthermore, the high-
frequency accident causes under the HFACS framework were identified. This result is
useful for developing targeted interventions and remedial strategies that focus on the most
significant factors contributing to accidents rather than attempting to address the entire
system as a whole.

A detailed analysis of chemical plant accidents from cause to effect was obtained to
better understand and evaluate the root causes of chemical accidents in terms of occupa-
tional health and safety. A reliable result was provided by the ability to thoroughly analyze
the interactions and uncertainties of various accident factors and review them with expert
experience. However, a detailed comparison of the operational levels in chemical industries
within the framework of the HFACS has clearly shown which operations human error will
occur more in.

From this point of view, in chemical plants, the HFACS method provides a valuable
decision support framework to identify and address the human factors that contribute
to incidents and accidents in the plant. To use the HFACS in a chemical plant, a team of
experts should be established including human factor specialists, safety professionals, and
chemical engineers. The team should thoroughly review each of the plant’s five operations.
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The unit can then use the HFACS framework to categorize the human factors contributing
to incidents or accidents in the plant’s operations. By identifying and addressing these
factors, the plant can improve its overall safety performance, prevent future incidents, and
develop strategies to mitigate their effects.

Some limitations should be noted and handled in future research: This study was
based on a limited number of public chemical accident reports suffering from extensive
plant damage or at least one fatality. These were obtained from different accident databases.
The quality of the accident reports significantly impacts the accuracy and integrity of the
accident studies. Even if the data collected provided a thorough account of the accidents,
certain information might still be lacking.

The study focused on only five operations, regardless of the type of chemical industry.
Further research on crashes and near misses related to the industry will help to identify
specific accident causes for that industry. By analyzing and understanding the root causes
of accidents, organizations can develop targeted interventions to improve workplace safety
and health management components. Thus, organizations can create safe and healthy work
environments, reduce the risk of accidents and environmental pollution, and contribute to
sustainable development goals related to the economy, environment, and society.
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