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Abstract: Frequent M. aeruginosa outbreaks pose a major risk to public health and have a detrimental
effect on aquatic ecosystems. Researchers are looking into ways to stop and control M. aeruginosa
blooms, a problem that affects both the aquatic environment and human health significantly. It is
important to develop proper monitoring methods to identify M. aeruginosa blooms. However, the
existing control and monitoring techniques have some drawbacks that limit the field’s applicability.
Therefore, we must improve current methods for effectively monitoring and controlling M. aeruginosa
blooms. Mitigation strategies should be customized for particular bodies of water utilizing techniques
that are fast, economical, and field-applicable. This review critically identifies and evaluates green
technologies, especially those focused on the presence of M. aeruginosa in freshwater, and compares
and discusses problems with these green technologies. Furthermore, they were characterized and
ranked according to their cost, effectiveness, and field applicability. A few suggestions for improve-
ments were provided, along with ideas for future research projects that would take anticipated
environmental changes into account.

Keywords: eutrophication; harmful algal blooms; physical chemical and biological cyanobacteria
control; anti-cyanobacterial allelochemicals; comparative insights

1. Introduction

Microcystis aeruginosa has been identified as one of the major bloom-forming cyanobac-
teria expanding globally as a result of intensifying eutrophication [1]. In May 2007, exces-
sive nutrient concentrations and extremely warm temperatures led to a major hazardous
Microcystis bloom in Lake Taihu, China, raising concerns across the globe [2]. Winnipeg
lake has been declared “the threatened lake of the year” by the Global Nature Fund due to
increased phosphorus concentrations [3]. The frequency and severity of severe summer–fall
cyanobacterial harmful algal blooms (cHABs) have increased, according to satellite imagery
and measurements of the lake’s biomass [4]. Microcystin concentrations can reach high
levels during cyanobacterial blooms in Lake Erie’s western basin [5]. The city of Toledo,
Ohio, received a “do not drink” warning in August 2014 after microcystin levels in the
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water exceeded the recommended limit of 1 g/L set by the World Health Organization [6].
In several regions of the Laurentian Great Lakes, the poisonous cyanobacterium Microcystis
aeruginosa has developed into a regular summertime occurrence, raising public concerns [7].
Numerous reports of cyanobacterial blooms in the Guadiana River along its downstream
course through Portuguese territory have been produced. These blooms are typically domi-
nated by the potentially toxic Microcystis spp. [8]. Problematic cyanobacterial blooms have
also affected the Murray River in New South Wales (NSW). Their concentrations exceeded
4 mm3 L−1. The National Health and Medical Research Council (2008) established this
as the red alert threshold for recreational water consumption in Australia, at which point
New South Wales begins to take bloom management measures [9]. From the 1980s to 2022,
Microcystis aeruginosa dramatically increased in frequency and abundance throughout the
world, causing high levels of water contamination and affecting human health [10,11].

Reducing pollution from both point and nonpoint sources is vital to controlling eu-
trophication via regulation of nitrogen (N) and phosphorus (P) inputs [12]. Nitrogen (N)
and phosphorus (P) are the principal nutrients of concern because their supply frequently
affects aquatic life [13]. Effective treatments and preventive measures, along with their
detailed mechanisms (Figure 1), must be developed to control M. aeruginosa blooms, which
have constituted a significant threat to the security of the aquatic environment [14].
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Figure 1. Green technologies and associated mechanism to control M. aeruginosa.

To reduce M. aeruginosa abundance and eliminate toxins from freshwater, the purpose
of this narrative review is to focus on current green physical, chemical, and biological
technologies. However, it is true that the deployment of most chemical and physical
techniques is constrained due to negative ecological impacts, expensive costs, or low field
operability. Since few techniques for addressing the harmful M. aeruginosa blooms can
be applied on a wide scale in the field, it is necessary to consider a variety of strategies,
including microorganisms, aquatic animals, plant allelopathy, and clay applications. We
systematically compared and analyzed the development status, advantages and disad-
vantages, applicable conditions, and future development trends of green technologies for
monitoring and controlling M. aeruginosa blooms.
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2. Green Technologies to Control Microcystis aeruginosa

The three main options available to date for treating and controlling the growth of M.
aeruginosa are:

1. Physical methods
2. Chemical methods
3. Biological methods.

2.1. Phyical Control

Freshwater treatment frequently involves physical methods and water quality stan-
dards are constantly being improved in many countries [15]. It is considered as an emer-
gency preventive measure rather than a control method [16]. Physical preventive measures
include: harvesting of M. aeruginosa [17], air flotation [18], magnetic flocculation [19],
hydrodynamic cavitation [20], light shading [21], dredging sediments [22], ultrasound
technology [23], flocculants [24], etc.

Toxic algal blooms can be removed by air extraction by using tiny bubbles to attach
to the algae. Through the action of the minute oxygen bubbles, fish are protected from
hypoxia and harmful algal blooms. There may be restrictions on the use of large mechanical
bubblers in areas where toxic algal blooms are a problem [25].

Ultrasonic treatment has been suggested as a major control measure that can destroy
algal cells on a local scale [26]. It is useful to control M. aeruginosa blooms due to the
chemical and physical effects of sonication [27].

Disadvantages of Physical Control

Large blooms represent a challenge for the majority of physical strategies because
they are generally expensive and slow [28]. Physical approaches are mainly utilized as
emergency measures for algal blooms rather than as a control strategy, as they are not
always practical [29]. The cost and impact of physical measures for reducing dangerous
algal blooms are poorly understood due to a lack of field experience [30]. Ultrasound
technology is highly unlikely to have any control impact on harmful algal blooms in natural
systems, except for extremely high-intensity ultrasound used within an extremely small
body of water. Such intense ultrasound has been shown to destroy zooplankton grazers
and may have an impact on fish behavior and population [31–33].

2.2. Chemical Control

Recently, there has been much discussion concerning the use of clay additions to
suppress hazardous algal species, a strategy that has been utilized successfully in several
aquaculture operations worldwide [34]. Clays, the primary component of soil, have many
advantages over other materials, including the fact that they are cheap, easy to use in the
field, and non-polluting [35]. As a result, it is considered the most promising mitigation
strategy against harmful algal blooms [36].

2.2.1. Natural and Modified Clays

A very viable and ecologically sustainable method is to use natural, nontoxic, and
inexpensive clays to remove harmful algal blooms [37,38]. The most efficient flocculants
have been observed to be clays such as montmorillonite, kaolinite, and phosphatic, with the
lowest loading of 0.25 g/L and a removal efficiency of 90% [24,39–42]. The author of [42]
stated that 5720 publications on harmful algal blooms (HABs) were examined throughout
the course of the previous 30 years. While research publications regarding the use of natural
clays to inhibit M. aeruginosa growth have been very limited until now. In two papers [16],
natural clays were used to manage M. aeruginosa in Lake Taihu, China. There are presently
few studies on M. aeruginosa’s reaction to naturally occurring, typical clay particles like
kaolinite and montmorillonite.
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Disadvantages of Natural Clays

The clay technique is still hampered by the following issues: Natural clays have
low flocculating efficiency, which is the most serious drawback and often leads to the
requirement of an exorbitant amount of clays to achieve an effective efficiency in the
field [43]. For example, it was noted that the dosage of clay in aquaculture sites in Japan
ranged from 110 to 400 t/km2 [44], and 384 t/km2 of loess was utilized in Korea to reduce
Cochlodinium polykrikoides blooming [45]. Algae can be eliminated naturally and non-
toxically by clay precipitation and flocculation; however, this process can also bring on
new water blooms [46]. The negative charge of natural clays prevents them from being
an ideal flocculant. Clays have not yet been given a standard definition. Since antiquity,
these materials have been used and studied from a variety of angles, giving rise to various
conflicting terminology [16]. Therefore, when using the clay method in the field, the barrier
is caused by low removal efficiency, a high dose, and substantial deposition loads on the
sediments [47,48]. Unclear mechanisms and a lack of systematic kinetic studies of clay–cell
flocculation in fresh and seawaters are other reported issues of natural clays [24].

2.2.2. Modified Clays

Another control method is the application of modified clays to treat M. aeruginosa
blooms. Currently, common flocculants (such as sediments [49], modified clay [50], iron
salts [51], aluminum salts [50], etc.) are frequently employed to control M. aeruginosa
blooms in freshwaters. Organic polymer chitosan is also combined with soil or other ballast
component to treat M. aeruginosa blooms [52].

In several works, a number of modified clays have been assayed with M. aeruginosa.
Two phosphate fixatives i.e., Phoslock®, Europe GmbH (Zug, Switzerland)and Aqual-PTM,
(Tokoroa, New Zealand) have been revealed to have marginal impact on M. aeruginosa and
reduce its growth rates by reducing phosphate [50]. They were used in conjunction with
eight other compounds to combat M. aeruginosa. Montmorillonite modified lime-ceramic
sand-lake sediments [49], hexadecyl trimethyl ammonium bromide (CTAB) modified
clays [53], modified attapulgite [54], modified vermiculite [55], amphoteric starch-based
bicomponent modified soil [56], cationic starch modified soils etc. are some recent modified
clays used to inhibit M. aeruginosa. Table 1 shows the removal efficiency of modified clays
and their applicability at lab and field scale.

Table 1. Removal efficiency of modified clays and their applicability at lab and field scale.

Name Species Dosage R
%

Field
app.

Lab.
app. Ref.

poslock®

aqual-PTM
M. aeruginosa

PCC 7820)

0, 50, 100, 300,
600, 1000 mg

/L

42.6%
28.4% 8 3 [50]

mmt modified lime-ceramic
sand-lake sediments

M. aeruginosa
469 0.7 g/L 88 % 8 3 [57]

ctab M. aeruginosa 0.3 g/L 92% 8 3 [53]
modified attapulgite M. aeruginosa

(FACHB 905) 0.37 g/L 95% 8 3 [54]

SnO2-montmorillonite M. aeruginosa
(FACHB-942)

0.3
g/L 95% 8 3 [58]

montmorillonite–Cu
(II)/Fe(III) oxides magnetic
material

M. aeruginosa 1 g/L 92% 8 3 [59]

chitosan/montmorillonite
nanocomposite

M. aeruginosa
(FACHB-905) 100–500 mg/L 94.7% 8 3 [60]

chitosan modified kaolinite
(CMK)

M. aeruginosa
(NIES-843)

0, 40, 80 and
160 mg/L NA 8 3 [60]

mmt = modified montmorillonite. ctab = hexadecyltrimethylammonium bromide. NA = not available. 8 = No
field application. 3 = Only lab applicability. R = removal efficiency. Field app = field application. Lab app =lab
application. Ref. = references.
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Disadvantages of Modified Clays

It was noted that stirring operations might be one of the modified clay’s biggest
drawbacks in real-world applications [61]. Moreover, they also affect benthic flora and
fauna. According to a study by [52], the effect of sediment loading on phytoplankton
communities was studied and it was observed that dinoflagellates switched to heterotrophy
in numerous degrees, and some dinoflagellates shaped impermanent cysts. In terms of
practical applicability, flocs settling on surfaces is another of the biggest drawbacks [55].
According to [43], the majority of research on the eco-environmental effects of clay or
modified clay (MC) has focused mostly on describing phenomena and findings, whereas
mechanistic analysis of modified clay (MC) effects is rather weak. As a result, mechanistic
research that necessitates both more in-depth examinations of mechanisms and theoretical
knowledge must be reinforced.

2.2.3. Eco-Friendly Chemicals

Some copper-related compounds, chlorine, and oxidizing agents like H2O2 have
historically been widely used to control M. aeruginosa blooms. They are considered to be
relatively safe materials [62]. A novel environmentally safe and selective algaecide called
2-((1,3,4-thiadiazol-2-yl)thio)-N-(4-chlorophenyl) acetamide (Q2) was created to suppress
M. aeruginosa blooms [10]. It was different from the impact on ecosystem functioning of the
traditionally used harmful algaecide diuron. Their findings demonstrated that Q2 might
be beneficial to the aquatic environment and offered a novel approach to the management
of harmful cyanobacterial blooms (HCBs) in the future. Additionally, chitosan’s anionic
characteristics have been shown to make it an effective flocculant for removing cyano-
HABs from water resources [63]. Ferric or aluminum salts are also extensively studied for
controlling cyanobaterial blooms [64]. Some surfactants and engineered nanoparticles like
titanium dioxide, silver nanoparticles, zinc oxide, and yttrium(III) oxide are also used to
improve algae removal efficiency [65]. The results of recent studies on compounds that
are eco friendly, their applicability at lab and field scales, and the factors examined are
compiled in Table 2.

Table 2. Recent studies conducted on the application of eco-friendly chemicals to manage M. aerugi-
nosa blooms.

Name Field
app.

Lab.
app. Parameters Studied Ref.

copper ethanolamine
complex, CuSO4·5H2O,
CuSO4

8 3

chlorophyll-a, photosystem II efficiency (PSII), soluble reactive
phosphorus (SRP) and intracellular and extracellular
microcystin (MC) concentrations, total organic carbon content
(TOC), membrane integrity

[50,66]

CoCl2·6H2O,
FeCl3·6H2O,
FeCl3·6H2O and
Na2EDTA·2H2O
MnCl2·4H2O
Na2MoO4·2H2O

8 3 growth, toxin production, cell morphology, iron accumulation [67]

benzalkonium chloride
(BAC-14) 8 3

growth inhibition, photosynthesis endpoints, microcystin,
multi-platform metabolomics [68]

copper sulfate pentahydrate,
thanolamine-chelated copper
compound

8 3 ell density, total microcystins, cell membrane integrity [69]

copper sulfate 8 3 cell counting, Fv: Fm, TTC, SOD, and MDA, microcystin-LR, [70,71]

copper sulfate 8 3

superoxide dismutase, catalase, and peroxidase, Fv/Fm
chlorophyll fluorescence value and chlorophyll a content,
transcriptome analysis,

[60,72]
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Table 2. Cont.

Name Field
app.

Lab.
app. Parameters Studied Ref.

H2O2 8 3

cell density, chlorophyll, phycocyanin, organic matter, true color,
intracellular microcystin, geosmin, total pheophytin, ROS, CAT
and SOD, chlorophyll a, carotenoid, TDN, TDP, dissolved
organic matter, phytoplankton community analysis, cell lysis,
caspase-3 activity, terminal deoxynucleotidyl transferase
labeling (TUNEL) assay, RNA analysis

[60,73,74]

novel H2O2 pre-oxidation 8 3
chlorophyll a, turbidity, algal removal efficiency, TOC, TN, TP,
cell membrane assay, SOD, CAT, microcystin, [75,76]

combined process of
nanoscale zero-valent iron
(NZVI) and H2O2

8 3
chl a, phycocyanobilin (PC), allophycocyanin, phycoerythrin,
zeta potential, MDA, SOD, CAT, POD, total organic carbon, [77]

N-acetyl-5-
methoxytryptamine 8 3

cell density, chl a, SOD, CAT, MDA, MC-LR, mcyB and mcyD
genes [78]

H2O2 and copper sulfate 8 3 cell density, MC-LR, inhibition of Bacillus sp. [79]
H2O2 8 3 effects of EPS on the killing activity of H2O2 [59]
H2O2H2O2 under light
H2O2 and ultrasound 8 3 cell count, cell integrity, microcystins, chlorophyll [80–82]

Ozone 8 3 algae removal, microcystins, cell morphology, DOC [63,83–86]
chitosan-modified
nanobubbles
Chitosan fiber
Chitosan
chitosan quaternary
ammonium salt
chitosan fiber
chitosan-zinc oxide hydrogel
film
chitosan-aluminum chloride
combined coagulants

8 3

cell intact rate, cell lysis rate, cell inactivation rate, OH radical
production, ROS, MC-LR, cell density, phosphorus, chlorophyll
a, carotenoids, phycocyanin, allophycocyanin, phycoerythrin,
total protein content

[56,63,87–90]

8 = No field application. 3 = Only lab applicability.

Disadvantages of Eco-Friendly Chemicals

Copper addition to lakes and reservoirs raises concerns about heavy metal accumu-
lation and toxicity [85]. H2O2 is widely used in water treatment and in the aquaculture
industry [91]. However, different types of water bodies react differently and different
amounts of H2O2 are required to control cyanoHABs, ranging from 2 to 20 mg L−1 [83–86].
Varying background stressors in freshwater ecosystems may interact with H2O2, altering
its efficacy in controlling cyanoHABs. Co-occurring stressors can have complex impacts on
organisms and communities as stressors in combination can either amplify (synergistic) or
attenuate (antagonistic) effects [92–94]. The variation of the dose of H2O2 required might
therefore be linked to the growing number of background stressors faced by aquatic ecosys-
tems. These background stressors include a temperature increase, an elevated level of CO2,
anthropogenic inputs such as pharmaceuticals, personal care products, pesticides, and,
relevant to this study, tiny plastic fragments [58]. Chitosan is a non-toxic and biodegradable
material, but the acidic condition of a chitosan solution sprayed over a water body for the
control of M. aeruginosa can negatively influence water quality. Tiny chitosan particles (i.e.,
chitosan nanoparticles) can also cause physiological stress in aquatic biota [63].

2.3. Biological Control

One alternative approach to the control of algal blooms involves the use of biological
control (biocontrol) agents [95]. Biological control includes the use of microorganisms [96],
plants [97] and biomanipulation approach [98] to control M. aeruginosa blooms. Compounds
such as biochar [99] are also in use to control M. aeruginosa.
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2.3.1. Microorganisms Control

Microorganisms such as viruses, bacteria, actinomycetes, fungi, amoebae, and
cyanophages have been shown to kill cyanobacteria.

Bacteria

Among these, antagonistic bacteria have the potential to become useful agents for
algal control, as they are simple to culture and manipulate [100]. Bacteria, being one of
the most common and varied species in the aquatic environment, form complex ecological
interactions with cyanobacteria, including predation, competition, mutualism, commen-
salism, and amensalism [101]. Those bacteria that display obviously adverse effects on
cyanobacterial growth are recognized as cyanobactericidal bacteria [102].

Against pathogenic M. aeruginosa, recently discovered algicidal bacteria A. bestiarum
HYD0802-MK36 and P. syringae KACC10292T have been found to be effective [103]. The
growth of M. aeruginosa can be hampered by a number of bacteria from the genera
Aeromonas [104] and Pseudomonas [105]. These bacteria affect the growth of M. aeruginosa by
two modes (Figure 2): direct attack and indirect attack [106].
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Figure 2. Attacking modes of cyanobactericidal bacteria against M. aeruginosa.

Direct attack mode requires physical contact between predatory bacteria and cyanobac-
teria [107]. The Bdellovibrio-like bacteria lysed M. aeruginosa by breaking down cell struc-
tures after penetrating the host cell [108]. Indirect attack mode occurs when bacteria
suppress or kill cyanobacteria without physically contacting them. Indirect assault meth-
ods include:

1. Releasing cyanobactericidal substances, such as extracellular enzymes [105]
2. Release of metabolites (e.g., indole, 3-oxo-α-ionone) [109]
3. Deteriorating algal survival environment, e.g., by competing nutrients [110]
4. Flocculating algae cells [111,112]

Cyanobactericidal bacteria affecting M. aeruginosa are listed in Table 3, according to
the published literature.

Table 3. Recent studies conducted on application of bacteria to manage M. aeruginosa blooms,
Removal efficiency: RE, References: Ref.

Strain Name Species Mode of Action RE
% Ref.

Bacillus
mycoides

M. aerugi-
nosaPCC7806

shadowing and
photo-inhibition NA [113]

Brevibacillus
laterosporus

M. aeruginosa
FACHB 905

efflux pump transporters,
hydrolytic enzymes, antibiotics,
proteases,
and other secondary
metabolites

92.30% [114]
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Table 3. Cont.

Strain Name Species Mode of Action RE
% Ref.

Ochrobactrum sp.
FDT5 M. aeruginosa active cellular Components 34–58.6% [115,116]

Alcaligenes
aquatilis
F8

M. aeruginosa
FACHB-905

cell membrane damage,
disappearance of
photosynthetic lamellae,
cyanelles disorder

88.45% [117]

Bacillus
sp.
AF-1

M. aeruginosa
NIES-843,
NIES-90,
NIES-44

increased intracellular ROS
buildup, cell death, and
intracellular
component efflux

93% [118]

Arthrobacter
sp.443 and UN
383

M. aeruginosa
BCPUSP232

antimicrobial agents
Production

24.87 and
23.85% [119]

Shewanella
maltophilia

M. aeruginosa
FACHB-905

hexahydropyrrolo [1,2-a]
pyrazine-1,4-dione,
2,3-indolinedione Secretion

NA [120]

Pseudomonas
putida

M. aeruginosa
FACHB 905

extracellular antialgal
chemicals are secreted,
characterized as anti-heat
shock.

98.8% [121]

Streptomyces
globisporus

M. aeruginosa
NIES-843,
NIES-44,
NIES-90

cell-to-cell contact 96.7% [122]

Rhizobium
AQ_MP M. aeruginosa 100% [123]

Alcaligenes
Denitrificans

M. aeruginosa
NIES 298 cell lysis 96.4% [124]

Streptomyces
neyagawaensis

M. aeruginosa
NIES-298

secretion of extracellular
antialgal substances 84.5% [100]

Xanthobacter
autotrophicus
HYS0201-SM02
(SM02)

M. aeruginosa
NIER-100001 algicidal substance secretion 95.6% [96]

Stenotrophomonas
F6

M. aeruginosa
9110

excretion of extracellular
algicidal
compounds (Cyclo-(Gly-Pro)

50% [17]

Serratia
marcescens

M. aeruginosa
TH1, TH2, and
FACHB 905

secretion of a red pigment
identified as
prodigiosin (C20H25N3O)

87.7% [125]

Salvia
miltiorrhiza

M. aeruginosa
FACHB-905

neo-przewaquinone A
oxidative stress,
inhibition of three genes
involved in photosynthesis
(psaB, psbD, and rbcL).

74.08% [121,126]

Pedobacter sp. M. aeruginosa
NIES-843 algicidal activity 50–80% [125]

Acinetobacter sp.
J25 M. aeruginosa lysing and denitrification 100%

87.7% [127]

Paucibacter
aquatile
DH15

M. aeruginosa
KW

oxidative stress, alteration of
fatty acid profile, damage to
photosynthetic system,
carbohydrate, and protein
metabolism

94.9% [128]
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Table 3. Cont.

Strain Name Species Mode of Action RE
% Ref.

Pseudomonas
aeruginosa
UCBPP-PA14

M. aeruginosa
NIES 298,44 lysis and toxin Degradation 92% [50,129]

Acinetobacter
guillouiae
A2

M. aeruginosa
FACHB-905

algicidal compound
4-hydroxyphenethyl-
amine secretion

91.6% [130]

Paucibacter
toxinivorans
2C20

M. aeruginosa toxin degradation 90% [131]

Achromobacter
spp.

M. aeruginosa
CAAT 2005-3 lysis activity 79.5% [132]

Pseudomonas
grimontii

M. aeruginosa
FACHB-905 oxidative stress 91.81% [32]

Bdellovibrio
species

M. aeruginosa
Kützing lysis activity NA [108]

Exiguobacterium
A27

M. aeruginosa
PCC7806

production of
extracellular algicidal
compounds

64.4% [133]

Bacillus sp.
B50

M. aeruginosa
FACHB905,
FACHB1023
PCC 7806,
M. NIES-843,
CHAB440,
CHAB109,
CHAB456,
CHAB587,
CHAB439,
CHAB2162,
CHAB2170,
CHAB724,
CHAB4370

algicidal activity 15–71.8% [134]

Aeromonas
bestiarum
HYD0802-MK36
and
Pseudomonas
syringae
KACC10292T

M. aeruginosa direct attack and cell-to-cell
contact 100% [103]

Raoultella
ornithinolytica

M. aeruginosa
FACHB-905

low-molecular-weight
organic acids 96.2% [75]

Raoultella sp.
R11

M. aeruginosa
FACHB 905 oxidative stress 94.28%. [127]

Raoultella
planticola and
Aeromonas sp.

M. aeruginosa
FACHB-905 algae lysis 90% [135,136]

Halobacillus sp.
H9

M. aeruginosa
PCC7806 and
TAIHU98

secretion of active
flocculating substance 95%. [111,112]

Shewanella sp.
Lzh-2

M. aeruginosa
9110

hexahydropyrrolo [1,2-a]
pyrazine-1,4-dione
and 2, 3-indolinedione
(isatin) secretion

92.3% [20]

Hahella sp.
KA22

M. aeruginosa
TAIHU98 prodigiosin secretion 71–88% [118]
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Table 3. Cont.

Strain Name Species Mode of Action RE
% Ref.

Citrobacter
sp.
R1

M. aeruginosa
FACHB-905 glycogen synthase gene glgA 81.6% [137]

Stenotrophomonas
sp.
KT48

M. aeruginosa
PCC7820 oxidative stress 88.47% [138]

Enterobacter
hormaechei
F2

M. aeruginosa
FACHB-315

prodigiosin and PQS
Secretion 84.2% [114,139]

Enterobacter sp.
NP23 M. aeruginosa algicidal activity 70 % [140]

Shigella sp. H3,
Alcaligenes sp. H5 M. aeruginosa

cells-to-cells direct
contact and secretion of
algicidal metabolites

96% and
74% [141]

Aquimarina
salinaria sp.
Nov

M. aeruginosa
MTY01

phosphatidylethanol-
amine,
diphosphatidylglycerol

100% [142]

Chryseobacterium
species

M. aeruginosa
FACHB 905 algicidal activity 80% [111]

Chryseobacterium
sp.
GLY-1106

M. aeruginosa
9110.

1106-A (cyclo(4-OH-Pro-Leu)),
1106-B (cyclo(Pro-Leu)) 90% [143]

Aureispira sp.
CCB-QB1

M. aeruginosa
NISE 102 strain floculation 75.39% [144]

Streptomyces
rameus

M. aeruginosa
KKU-13 cell lysis 82% to

95% [145]

Streptomyces
aurantiogriseus

M. aeruginosa
KKU-13

production of
metabolites 83.3% [146]

Streptomyces
amritsarensis
strain HG-16

M. aeruginosa
FACHB-905

secretion of active
Substances 91.2%. [147]

Streptomyces
jiujiangensis
JXJ 0074T

M. aeruginosa
FACHB-905

antialgal amino acid:
L-Valine
2′-deoxyadenosine

80% [126,148]

Rhodococcus sp.
p52

M. aeruginosa
FACHB927,
FACHB
975

trans-3-indoleacrylic
acid, DL-pipecolic acid, and
L-pyroglutamic acid secretion

93.5% [149]

Aeromonas
veronii

M. aeruginosa
PCC7806
and MGK
M. aeruginosa

lumichrome production NA [150]

Bacillus
fusiformis M. aeruginosa secretion of metabolites 90% [151]

Bacillus
licheniformis
Sp34

M. aeruginosa
DCM3, DCM4

oxidative stress, lipid
Peroxidation, DNA damage,
and a malfunction in the
DNA-repair system

75.6% [152]

Bacillus
methylotrophicus
ZJU

M. aeruginosa algicidal effect 89% [153]

Deinococcus
metallilatus
MA1002

M. aeruginosa
PCC7806

deinoxanthin
Production 100% [154]

NA = not available.
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(1) Disadvantages of Bacteria

Several cyanobactericidal bacteria or their released chemicals have proven useful in
reducing cyanobacterial blooms in the environment. There are many uncertainties when it
comes to using cyanobactericidal bacteria or compounds to effectively control or eliminate
cyanobacterial blooms in natural waters. Cyanobacteria in natural water tend to have
stronger resistance than laboratory culture due to the colonial form of algal cells [155,156]
and that the single- or two-celled Microcystis used in cyanobactericidal research is less
resilient than the colon [157]. The financial expenses of using cyanobactericidal bacteria
or allelopathic chemicals for bloom-control on a wide scale should be a concern. Simply
put, the size of their contribution must be sufficient to overcome the relevant cutoff. If the
channels for agent generation (i.e., bacterial culture) are not cost-effective, the application
will be constrained. Before using cyanobactericidal bacterial agents, it is important to weigh
the potential consequences for the environment [152].

The use of the cyanobactericidal bacterium Lysobacter enzymogenes subsp. enzy-
mogenes AL-1 to eradicate M. aeruginosa in a microcosm was determined to be of high
ecological concern [158]. A considerable decrease in ciliates, flagellates, and fungi was
seen as a result of the use of cyanobactericidal bacteria. For example, using L-lysine to
reduce Microcystis blooms led to blooms of Euglena sp. and Phormidium sp. in ponds, [159],
suggesting that the removal of certain cyanobacterial blooms with these agents can gen-
erate other unforeseen algal bloom problems. Therefore, in order to achieve an algicidal
effect on target cyanobacteria, the use of cyanobactericidal bacteria and substances in the
control of cyanobacterial blooms in natural waters must overcome biological and abiotic
uncertainties. The widespread use of cyanobactericidal microorganisms or chemicals in
aquatic ecosystems requires first conducting biosafety studies [135,136].

Fungi

Degradation by fungal strains and the elimination of cyanobacterial cells are mainly
unexplored [160]. There are just 15 known fungus species that may inhibit and lyse
cyanobacterial cells. There are several structural similarities between the two fungus groups
to which these species belong: Ascomycetes (nine of the species) and Basidiomycetes (six
of the species). In addition, it has been claimed that fungi play a significant role in water
treatment, with strong data showing that microcystins (MC) breakdown by fungal stains is
faster [155] than that occurring by bacterial strains [156,157]. Some fungi (such as Auroba-
sidium pullulans and Trichoderma citrinoviride) have been shown to restrict the development
of cyanobacteria while leaving the growth of more beneficial algae alone [155,161]. As an
interesting side note, certain fungal strains (Trichaptum abietinum, Trichoderma citrinoviride)
showed a dual-functional feature, efficiently lysing cyanobacteria and decomposing MCs
produced by the decaying cells [162]. In Table 4, we have a brief overview of several
recently discovered algicidal fungi that are effective against Microcystis aeruginosa.

Table 4. Summary of some recent algicidal fungi active against Microcystis aeruginosa.

Strain Name Species Mode of Action RE
%eff. Ref.

Aureobasidium
pullulans
KKUY070

M. aeruginosa
DRCK1 N-β-acetylglucos-aminidase. 100% [155]

Bjerkandera
adusta
T1

M. aeruginosa
PCC7806

Protease, polysaccharide lyases8
(PL8) 98.27% [163]

Irpex
lacteus
T2b

M. aeruginosa
PCC7806 Cell-to-cell contact 99.1% [164]

Lopharia
spadicea

M. aeruginosa
FACH-918 Oxidative stress 100% [165]
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Table 4. Cont.

Strain Name Species Mode of Action RE
%eff. Ref.

Phanerochaete
chrysosporium M. aeruginosa Release of fungal metabolites 88.6% [160]

Trametes
versicolor
F21a

M. aeruginosa
PCC7806

Cellulase, β-glucanase, trypsase,
and pepsin 85% [166]

Trichaptum
abietinum
1302BG

M. aeruginosa
FACH-918

Cell-to-cell contact and lytic
enzymes release 100% [167]

Trichoderma
citrinoviride
kkuf-0955

M. aeruginosa Excretion of algicidal compounds 100%
removal [161]

Aspergillus
niger
7806F3

M. aeruginosa
7820, 7806, 1752 Indirect attack 80% [75]

Penicillium
chrysogenum

Microcystis
aeruginosa Secreting extracellular substances 69.56% [168]

Aureobasidium
pullulans
strain KKUY0701

M. aeruginosa
DRCK1 Cell lysis 84% [155]

(1) Disadvantages of Fungi

Although fungi have been infrequently reported as potential biological controllers,
there are parasitic associations between freshwater microalgae and Chytridiomycetes
fungi [169,170] and with biflagellate fungi belonging to Oomycetes. However, this latter
association occurs to a lesser extent [171]. This fungal infection in planktonic diatoms has
been associated with mortality of host organisms, suppression or retardation of phyto-
plankton blooms, and changes in the size, distribution, and composition of planktonic
populations and communities [172–175]. Moreover, there is scarce information concerning
the relationship between freshwater toxic microalgae and pathogenic fungi [16].

Virus

Viral treatment may be one of the important factors that can control HABs [176]. The
virus typically uses species-specific interaction [177], the bursting of cells, and the viral lytic
cycle. Viral degradation has the advantage of a species-specific attack [178]. Cyanophage
(Ma-LMM01) specifically infects a toxic strain of the bloom-forming cyanobacterium Mi-
crocystis aeruginosa [179,180]. Cyanophage infection may have a significant impact on the
succession of cyanobacteria in the pond. Cyanophage from Myoviridae family isolated
from Chinese freshwater; GenBank, accession number KF356199.1., named MaMV-DC,
was thought to have a half-life of between 24 and 48 h and 80 infectious units per cell
(Microcystic aeruginosa FACHB-524). Cyanophages are found to be effective biocontrol
agents of M. aeruginosa. [181–183].

A novel, wide-ranging freshwater cyanophage called MinS1has the ability to infect
multiple different cyanobacterial orders and could be used as a biological control mea-
sure against cyanobacterial blooms [184]. In host–range experiments, a novel freshwater
cyanophage called Mae-Yong1326-1 was effective in lysing M. aeruginosa FACHB-1326 [181].

(1) Disadvantages of Virus

Many biological phenomena related to viruses are poorly understood because of host
specificity and seasonal issues. For example, several reports suggested that algal viruses
often existed in stable numbers, even when their hosts were absent [185]. Reports claimed
that the summer and spring seasons are showing the highest decay rates of cultivated
viruses after four seasons of analysis [186]. The seasonal study found that the low decay
rates of the algal virus during the winter allowed for the survival of about 126 days under
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the ice cover in a frozen freshwater pond [182]. Another thing is that these agents show
high specificity and efficiency, but they have the limitation of high cost and require upscaled
level experiment confirmation [183].

Phytoplankton and Zooplankton

Recent efforts to control toxic algal blooms have concentrated on isolating anti-algal
active compounds from micro- and macro-algae [187]. Marine macro-algae (seaweed)
extraction has yielded many compounds with the potential to inhibit many other micro-
algae, including red tide dinoflagellates [188]. Micro- and macroalgae are reported as
effective biocontrol agents, but these studies are mainly focused on the removal of red
tides [65]. Research studies regarding the use of algae against M. aeruginosa removal are
limited.

Zooplankton are able to limit the dominance of cyanobacteria in aquatic ecosystems
up to a certain density [189]. The majority of the data on the function of MC comes
from research with generalist grazers (Daphnia), which only occasionally coexist with
cyanobacterial blooms [190,191]. M. aeruginosa physiological and metabolic changes are
affected by Daphnia magna exudates [192]. However, another investigation using copepods
suggested that MC may serve as a warning to avoid Microcystis [193].

(1) Disadvantages of Phytoplankton and Zooplankton

Mechanisms of cyanobacterial metabolites and their impacts in the presence of grazers
are scarce [194]. While some studies demonstrate that the production of MC is induced
by zooplankton [195], other studies contend that the zooplankton may even impede the
formation of MC [196]. Although it has been proposed that zooplankton can affect the
dynamics of cyanobacterial metabolites, their chemical structures are unknown since
detection and isolation of these organisms are difficult [197]. Limitations on the predator’s
potential usage outside the lab result from logistical challenges in applying the predator
and growing the culture to produce enough zooplankton predators [65].

2.3.2. Fish

Due to some fish’s ability to consume and digest the poison directly, fish species have
always employed this technique for bloom clearance. To regulate HABs for the lake ecology,
bio-manipulation is a viable method [198]. There have been numerous attempts to reduce
cyanobacterial blooms in China and other regions by utilizing filter-feeding fish such as
bighead carp and silver carp, which have occasionally proved successful [57,199,200].

Field trials were conducted to eliminate Microcystis blooms by stocking tilapia in
Lake Yuehu and other eutrophic lakes in Ningbo, China, between 2000 and 2003, as well
as feeding studies to evaluate tilapia’s consumption and digestion of M. aeruginosa in a
lab setting [201]. Microcystis could be consumed and digested in significant amounts by
tilapia. At a water temperature of 25 ◦C, the digestion efficiency ranged from 58.6% to
78.1%. Salazar Torres [202] study provides evidence of reducing cyanobaterial biomass
almost 60% in the presence of Oreochromis niloticus in eutrophic reservoirs. Hybrids of
silver carp Hypophthalmichthys molitrix and bighead carp H. nobilis have been reported to
alter phytoplankton species composition [203].

Disadvantages of Fish

Animal growth may be slowed down or impeded because of the potential for poor
digestion of Microcystis species and potential low/imbalanced nutritional values. The di-
gestive proteases trypsin and/or chymotrypsin can be inhibited by the protease inhibitors
produced by Microcystis spp., such as aeruginosins, cyanopeptolins, micropeptins, mi-
croviridins, and microcins [204]. The reallocation of energy to the detoxification of MCs
and other cyanotoxin also resulted in reduced animal growth. This strategy for managing
algal blooms is not highly suggested due to the difficulties (Figure 3) linked with health
hazards for animals from the digestion of Microcystis aeruginosa and the reported enormous
mortality of fish species [32].
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2.3.3. Plants

Allelopathic application is a promising strategy to control HABs. As a method inspired
by natural phenomena, the effectiveness of allelochemicals in inhibiting microalgae cells
has been discovered and confirmed for many years [205]. Both planting macrophytes [142]
and adding extracted allelochemicals [97] were effective for introducing inhibition effects
on microalgae cells. Four main categories of allelochemicals, including polyphenolics [206],
N-containing compounds [207], fatty acids/eaters [208], terpenoids [209], and their deriva-
tives, were proved to be efficient in M. aeruginosa-inhibiting capacities, respectively. Figure 4
shows an overview of allelochemicals and their effects on algae.

Sustainability 2023, 15, 8048 14 of 27 
 

2.3.3. Plants 

Allelopathic application is a promising strategy to control HABs. As a method in-

spired by natural phenomena, the effectiveness of allelochemicals in inhibiting microalgae 

cells has been discovered and confirmed for many years [205]. Both planting macrophytes 

[142] and adding extracted allelochemicals [97] were effective for introducing inhibition 

effects on microalgae cells. Four main categories of allelochemicals, including polyphe-

nolics [206], N-containing compounds [207], fatty acids/eaters [208], terpenoids [209], and 

their derivatives, were proved to be efficient in M. aeruginosa-inhibiting capacities, respec-

tively. Figure 4 shows an overview of allelochemicals and their effects on algae. 

 

Figure 4. An illustration of allelochemicals and their mode of action. 

The sensitivities of microalgal species upon allelochemicals were significantly differ-

ent and M. aeruginosa was widely confirmed as the most sensitive microalgal species to 

allelochemicals [210]. 

Allelochemicals induced damages on multiple levels of microalgal cells, including 

interfering the photosynthesis, generating oxidative stress, triggering programmed cell 

death (PCD), and disturbing other physiological and biochemical processes (Figure 5) 

[211]. 

Figure 4. An illustration of allelochemicals and their mode of action.



Sustainability 2023, 15, 8048 15 of 26

The sensitivities of microalgal species upon allelochemicals were significantly differ-
ent and M. aeruginosa was widely confirmed as the most sensitive microalgal species to
allelochemicals [210].

Allelochemicals induced damages on multiple levels of microalgal cells, including
interfering the photosynthesis, generating oxidative stress, triggering programmed cell
death (PCD), and disturbing other physiological and biochemical processes (Figure 5) [211].
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Disadvantages of Plants

Though many plant derived allelochemicals have been screened, few are feasible
candidates for application in field environments. Few reasons discourage the application
of plant-derived allelochemicals in field environments (Figure 6).
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Some allelochemicals show only weak inhibitory effects on cyanobacteria. For example,
bionone is an antialgal compound that inhibits Microcystis, but the EC50 is 22 mg/L [212].
Cyanobacteria can adapt to the inhibitory effect of some biologically derived substances
(BDS) and become resistant to them. Nonanoic acid was reported as an allelochemical
showing a strong inhibitory effect on M. aeruginosa, with a median effective concentration
(EC50) as low as 0.5 mg/L [208]; however, a following study indicated that, under the
stress of nonanoic acid, cells of M. aeruginosa soon adapt to this environment [213]. Some al-
lelochemicals are difficult to obtain. Even though some natural antialgal chemicals strongly
inhibit cyanobacteria, the supply of these biologically derived chemicals is limited, and
the structures of those antialgal chemicals are very complex, so their chemical synthesis is
difficult or prohibitively expensive. For example, Tellimagrandin II originating from M. spi-
catum shows a strong inhibitory effect on Anabaena [171], but the content of Tellimagrandin
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II in M. spicatum is very low, and the structure of this chemical is too complex for facile
synthesis by chemical engineers. In this way, the extract of plants, such as barley straw,
may be more applicable in algae control since it is cheaper and easier to obtain. Beside
the potential damage of allelochemicals to nontarget aquatic organisms, the health risks of
allelochemicals to humans are also not known. Allelochemicals such as lysine, rice hull,
and wheat bran leachate include N and/or P, which may increase bioavailable N and/or P
in waters where they are applied, thereby exacerbating eutrophication [214].

3. Summary of Limitations of Green Technologies

This review thoroughly explained current and previous green technologies, their
efficiency and problems associated with the success rate of all of these applications which
have been applied over the years to mitigate M. aeruginosa. We noticed the following crucial
aspects (Figure 7).

1. Physical methods are preferred to chemical methods, but they are expensive and are
not easy to adapt in field conditions.

2. Chemical methods are efficient in M. aeruginosa removal, but they are a source of
secondary pollution.

3. For the mitigation of M. aeruginosa, many biological control agents existed that in-
cludes bacteria, fungi, phages, zooplankton, plants, fish, etc. Many reports of labora-
tory success have been reported, but when it comes to field management, the success
rate appears quite low.
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4. Conclusions and Future Solutions

Regular M. aeruginosa outbreaks are harmful to aquatic ecosystems and constitute a
serious risk to the public’s health. Research on M. aeruginosa removal is mainly focused on
physical, chemical, or biological techniques. Each of these techniques has the potential to
be effective in removing algae, there are certain drawbacks, and several techniques differ
significantly from one another. It is important to do in-depth study on the integration of
various approaches when assessing the social, economic, and environmental benefits as
well as other comprehensive variables. Physical methods, i.e., harvesting of M. aeruginosa,
air flotation, magnetic flocculation, hydrodynamic cavitation, light shading, dredging
sediments, ultrasound technology, and flocculants, have promising applications. Physical
method application has two main problems: they are expensive and difficult to implement
at larger scale. Compared to physical control, chemical control—which includes natural,
modified clays, and eco-friendly chemicals—is heavily debated.

However, there are conflicting results regarding the application of clay and the induc-
tion of physiological stress in aquatic biota by eco-friendly chemicals, which restricts the
use of this approach. As an alternative to physical and chemical control, biological control
focuses on the utilization of biological agents, such as bacteria, fungi, viruses, plants, etc.,
their released products (plants + allelochemicals), and biomanipulation (fish) techniques.
Among biological agents, bacterial species have been frequently reported as potential
biological control agents. Parasitic association of fungi, poorly understood mechanisms
of viruses, zooplankton, phytoplankton, and poor digestion of M. aeruginosa still raise
many questions about biological control techniques. In conclusion, we think that some
effective, affordable, and environmentally friendly new algae removal methods and their
combination processes are the future development direction.

Based on this narrative review, the following are some of the proposed solutions
to get rid of M. aeruginosa blooms and combat currently existing problems with green
technologies.

1. There is a need to further explore the use of natural clays because of their abundance,
cost effectiveness, and easy application. The only problem which has been mentioned
in literature is their lower removal efficiency, which has been dealt by using modified
clay but still data regarding the application of natural clays on M. aeruginosa is scarce.

2. Combined application of ecofriendly chemicals and biological agents should be stud-
ied to evaluate their efficiency in M. aeruginosa blooms removal.

3. Effect of physical, ecofriendly chemicals and biological agents on nutrient concentra-
tions is also required to understand control mechanism deeply

4. Further research is required regarding the effects of all these green technologies, i.e.,
physical, ecofriendly chemical, and biological methods on non-target organisms.

Keeping in mind all above proposed solutions, more research is needed to fully imple-
ment any of these methods in the field for the achievement of a sustainable environment.
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