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Abstract: Energy management strategy (EMS) is critical for improving the economy of hybrid
powertrains and the durability of energy sources. In this paper, a novel EMS based on a twin
delayed deep deterministic policy gradient algorithm (TD3) is proposed for a fuel cell hybrid electric
bus (FCHEB) to optimize the driving cost of the vehicle. First, a TD3-based energy management
strategy is established to embed the limits of battery aging and fuel cell power variation into the
strategic framework to fully exploit the economic potential of FCHEB. Second, the TD3-based EMS
is compared and analyzed with the deep deterministic policy gradient algorithm (DDPG)-based
EMS using real-world collected driving conditions as training data. The results show that the TD3-
based EMS has 54.69% higher training efficiency, 36.82% higher learning ability, and 2.45% lower
overall vehicle operating cost compared to the DDPG-based EMS, validating the effectiveness of the
proposed strategy.

Keywords: fuel cell; energy management strategy; hybrid electric bus; TD3; battery degradation

1. Introduction

In response to the energy scarcity crisis and climate warming, clean energy represented
by hydrogen has received widespread attention [1,2]. The proton exchange membrane
fuel cell (PEMFC) is a power generation system that converts the chemical energy in
hydrogen into electrical energy [3,4]. Compared with internal combustion engines, proton
exchange membrane fuel cells have the advantages of no pollution, high energy density
and efficiency, and low noise [2,5]. PEMFCs and power batteries together constitute fuel
cell hybrid electric vehicles (FCHEV) [6], which are able to overcome the problem of soft
output voltage of PEMFC systems and have the characteristics of fast refueling and zero
emissions [7,8]. Energy management strategy determines the power distribution between
the fuel cell and the power battery [9], which has a significant impact on the economy and
performance of the FCHEB. EMSs can be categorized into three groups: rule-based [10],
optimization-based [11], and learning-based [12].

Rule-based EMSs distribute energy demand by fixed rules or fuzzy rules based on the
existing engineering experience [13]. Examples include the logic threshold control strategy,
thermostat strategy, and power follower strategy [14,15]. Zhang et al. [16] proposed a
control strategy based on the state of charge (SOC) logic threshold. When the battery SOC is
in a high state, the battery discharges, and the number of fuel cell stack operations decrease;
when the battery SOC is in a low state, the number of fuel cell stack operations increases,
and the battery is charged. Alexandre et al. [17] proposed a fuzzy logic controller for fuel
cell hybrid electric vehicles, compared it with a dynamic programming (DP) algorithm-
based control method, and improved the proposed fuzzy strategy using a genetic algorithm.
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These methods require little computing power, but they have the problem of poor energy-
saving performance and lack adaptability to different working conditions [18].

The optimization-based strategies convert the energy allocation problem to a mathe-
matical optimization problem and solve the optimal or suboptimal solution by means of
optimization algorithms [19,20]. The optimization-based EMS can be subdivided according
to whether or not it can be applied in real time. The global optimization strategy is able
to obtain the optimal control sequence based on known global working conditions, such
as dynamic programming and Pontryagin’s minimum principle [21,22]. Xu et al. [23]
proposed a power allocation strategy based on a dynamic programming algorithm to
allocate power between fuel cell engine and lithium-ion battery system to reduce operating
costs. However, global optimization strategies require either a priori knowledge or high
computational costs, resulting in this type of strategy being implemented only offline
and, therefore, generally used only as a benchmark for comparison [24,25]. The real-time
optimization strategies approach the energy management effect of the optimal solution
by meeting real-time requirements. The most typical of these strategies are the equiv-
alent consumption minimization strategy (ECMS) and model predictive control (MPC).
Zeng et al. [26] proposed an adaptive ECMS that periodically updates the equivalence
factor based on the predicted power through a local optimization process to converge the
battery SOC and ensure fuel economy. Chen et al. [27] proposed a model predictive control-
based optimization strategy for fuel cell hybrid vehicle energy management considering
the variation rate of fuel cell current to improve the durability and performance of PEMFC.
However, the control effectiveness of EMS based on real-time optimization is limited by
low adaptability to operating conditions or high model accuracy requirements.

With the emergence of artificial intelligence algorithms, learning-based EMS is gaining
more and more attention and can avoid the shortcomings of rule-based and optimization-
based energy management strategies. Learning-based strategies use trial-and-error mech-
anisms to gradually evaluate the strategy based on interaction information and reward
feedback between the strategy and the vehicle system so that the agent can eventually
learn the optimized control strategy. Li et al. [28] proposed an EMS for FCHEV based
on speedy Q-learning, which pre-initializes the Q-table of the RL algorithm by power
distribution-related rules to improve the convergence speed. Hsu et al. [29] proposed an
energy management strategy based on a reinforcement learning approach for fuel cell and
battery hybrid vehicles and compared the battery SOC maintenance and fuel consumption
with a fuzzy logic-based approach. Yang et al. [30] proposed a power allocation method
based on Q-learning, which considers system safety, economy, and fuel cell durability
to design a real-time reference path for power allocation. These studies have explored
the application of reinforcement learning for energy management problems. However,
deep reinforcement learning methods are introduced because, although these Q-learning-
based strategies achieve some results, they fall into the dimensionality catastrophe problem
when the dimensionality increases. Zheng et al. [31] proposed a deep Q-network-based
power allocation method for FCHEV which considers hydrogen consumption and fuel cell
degradation. Guo et al. [32] proposed an advanced dueling-double-deep Q-network-based
energy management strategy to achieve a reasonable balance between system degradation
and hydrogen consumption at a low economic cost. The deep Q learning (DQL) algorithm
effectively solves the dimensional explosion problem. However, the discrete nature of the
actions of the DQL algorithm limits the effectiveness of the control due to the continuity
of energy management. Huang et al. [33] proposed an EMS based on DDPG algorithm
for a range extend fuel cell hybrid vehicle to achieve optimal power allocation between
fuel cell and power battery in pure electric mode and the range extend mode. DDPG in-
troduces an actor-critical framework based on deep Q-learning compared with other deep
reinforcement learning methods [34]. Zheng et al. [35] proposed a DDPG-based energy
management strategy, improved the efficiency of the algorithm by prioritizing experience
replay techniques, and verified the effectiveness of the proposed strategy in comparison
with DP. DDPG maintains continuous states and actions and is therefore better adapted
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to the continuous control problem of energy management [36,37]. DDPG is now widely
used in energy management problems and has achieved good performance, but DDPG
overestimates Q -value, which makes it difficult to achieve optimal control [38].

Given these inherent problems, this paper proposes an EMS for FCHEBs on the basis
of TD3 algorithm to reduce hydrogen costs and battery aging while considering the SOC
maintenance of the lithium-ion battery and fuel cell durability. This paper contributes to
related research in the following two aspects:

(1) The TD3 algorithm is used to solve the Q-value overestimation problem in the
DDPG algorithm, and the proposed strategy uses real collected bus driving conditions as
the training set, thus improving training efficiency and optimization.

(2) Battery aging and fuel cell power variation limits are embedded in the strategy
framework to reduce hydrogen consumption and extend energy source life, thereby achiev-
ing coordination of overall vehicle operating costs and energy source durability.

The remainder of this paper is organized as follows: Section 2 presents the power sys-
tem model of FCHEB. In Section 3, the TD3-based FCHEB energy management strategy is
established. Section 4 compares and analyzes the proposed strategy with other benchmark
strategies. Section 5 is the conclusion of this paper.

2. Configuration and Modeling

This section shows the configuration of FCHEB and describes the powertrain model,
PEMFC model, battery model, and motor model of the FCHEB.

2.1. FCHEB Configuration

Figure 1 illustrates the FCHEB structure of this study. The fuel cell system transmits
electricity to the DC/DC converter, and the electricity is transmitted to the DC bus after
being boosted while the battery is connected directly to the DC bus. The PEMFC system
consumes hydrogen to generate energy, while the battery receives electrical power from the
fuel cell or brake energy recovery and discharges it when the system needs it. The PEMFC
system and the power battery work together to transfer energy to the drive motor to meet
the vehicle’s operating requirements when the vehicle is in motion. The main parameters
of the FCHEB are listed in Table 1.
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Table 1. Main parameters of the FCHEB.

Components Parameters Values

Vehicle

Weight 12,000 kg
Front area 8.16 m2

Rolling radius 0.466 m
Rolling resistance

coefficient 0.0085

PEMFC System Rated power 60 kW

Battery Nominal energy 47.3 kWh
Battery capacity 90 Ah

Motor
Maximum torque 1800 Nm
Maximum speed 5000 rpm

Transmission System Main reduction ratio 6.2
DC/DC converter Efficiency 0.9
DC/AC inverter Efficiency 0.95

2.2. Powertrain Model

The vehicle is subject to rolling resistance, air resistance, acceleration resistance,
and gradient resistance during the driving process. The total demand power of the
vehicle can be obtained by overcoming these resistances, which can be calculated by
Equations (1) and (2) [39]. The vehicle interior is powered by the power battery and fuel
cell working together, so the vehicle power balance equation is formulated as Equation (3).

Ptol =
1
ηt
(mg f cos α +

1
2

CD Aρv2 + mg sin α + δma) · v (1)

ηt = ηDC/AC · ηEM · ηtra (2)

Ptol = PFC · ηDC/DC + Pbat (3)

where the Ptol represents the total power; ηt represents the efficiency of FCHEB; m represents
the weight of FCHEB; g represents the gravitational constant; f represents the rolling
resistance coefficient; CD represents the aerodynamic coefficient; A represents the front
area; ρ represents air density; δ represents the correlation coefficient of rotating mass; a is
the acceleration; v represents the vehicle velocity; α represents the road grade; ηDC/AC, ηEM,
ηtra, ηDC/DC is the efficiency of DC-AC converter, electric machine, driveline, and DC-DC
converter. PFC and Pbat are the power of PEMFC system and power battery, respectively.

2.3. PEMFC Model

This study uses a 60 kW fuel cell system as the power unit. The fuel cell hydrogen
consumption and fuel cell efficiency at the corresponding fuel cell power were measured
experimentally, and the fuel cell efficiency-power data were fitted by quintic curve fitting.
The characteristic curve of the fuel cell is shown in Figure 2. Hydrogen mass consumption
mH2 of the system can be calculated as the following:

mH2 =
∫ t

0

PFC
ηFC · ρH2

dt (4)

ηFC =
PFC
PH2

(5)

where ρH2 represents the chemical energy density of H2; ηFC represents the efficiency of
the PEMFC system; and PH2 is the lower heating value of H2.
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Figure 2. The efficiency and hydrogen consumption curve of the PEMFC system.

2.4. Battery Model

This research adopts an equivalent circuit consisting of a voltage source and a resistor
connected in series with the voltage source to simulate a lithium-ion battery pack, which is
formulated as Equations (6)–(8) [40]. The battery charging/discharging resistance and open
circuit voltage data were measured experimentally for the corresponding battery SOC, and
the characteristic curves of the battery are shown in Figure 3.

Pbat = Vocv Ibat − I2
batR0 (6)

Ibat =
Vocv −

√
V2

ocv − 4R0Pbat
2R0

(7)

SoC(t + 1) = SoC(t)− Ibat(t)∆t
Qbat

(8)

where Vocv is the open-circuit voltage; Ibat is the current; R0 is the internal resistance; SoC is
the state of charge; Qbat is the nominal battery capacity.
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In this study, a semi-empirical model is used to describe the capacity loss of the
battery. The relationship between the capacity loss of the battery and Ah-throughput A(c)
at constant operating conditions can be formulated as follows:

Qloss = B(c) · exp(
−Ea(c)

R · T ) · A(c)z (9)

where Qloss is the capacity loss; it is generally believed that the automotive battery pack
reaches the end of life at 20% capacity loss, so it takes 20; c is the C-rate; R is the ideal
gas constant; T is the absolute temperature inside the battery, which is taken as 303 K; z
represents the power law factor which is taken as 0.55; B(c) is the pre-exponential factor;
and Ea is the activation energy, which can be obtained by [41].

The Ah-throughput A(c) can be derived from Equation (9), and the equivalent number
of cycles N(c) can be formulated as the following:

A(c) =

[
Qloss

B(c) · exp(−Ea(c)
R·T )

] 1
z

(10)

N(c) =
3600A(c)

Qbat
(11)

Hence, the governing equation of the state-of-health (SOH) can be expressed as:

dSOH(t)
dt

= − |Ibat|
2N(c)Qbat

(12)

2.5. Motor Model

The motor converts electrical energy into mechanical energy when the vehicle needs
power and converts mechanical energy into electrical energy for energy recovery when the
vehicle is braking. The efficiency map of the motor is illustrated in Figure 4. The efficiency
of the motor can be formulated as follows:

ηmotor = f (ωmotor, Tmotor) (13)

where ηmotor is the efficiency of the motor; ωmotor is the rotational speed of the motor; Tmotor
is the torque of the motor. After obtaining the speed and torque of the motor, we can
determine the motor efficiency by means of a two-dimensional look-up table.
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3. TD3-Based Energy Management Strategy

In this section, the TD3 algorithm and its advantages are described in detail, and the
TD3-based FCHEB energy management strategy is established.

3.1. TD3 Algorithm

The TD3 algorithm is an efficient algorithm that improves on the deep deterministic
policy gradient algorithm. It combines the actor-critic framework with the addition of
two types of deep neural networks: the critic network Q with parameters θQ, and the
actor network µ with parameters θµ. The actor network is responsible for outputting
actions a based on the input state s. The critic network obtains the current state s and
the actions a output by the actor network and evaluates the actions accordingly to help
the actor network to update. To improve the stability, the algorithm builds the target
networks Q′ with parameters θQ′ and the target networks µ′ with parameters θµ′ for
the actor network and the critic network, respectively. Compared to DDPG, TD3 has
two critic networks, Q1(s, a

∣∣θQ1) and Q2(s, a
∣∣θQ2) , each of which corresponds to a target

network, Q′1(s, a
∣∣θQ1) and Q′2(s, a

∣∣θQ2) , respectively. In addition, the target network
parameters and actor network parameters are updated relatively slowly and only when
the critic network updates a certain number of steps, which can improve the stability of
strategy learning.

In reinforcement learning, the Temporal Difference (td) update method is usually
used to accelerate the learning process of Q-value estimation, where the td error can be
calculated as Equations (14) and (15). In the calculation, the smaller action value of these
two is chosen to calculate the Q-value:

ytarget(t) = r(st, at) + γmin
i=1,2

Q′i(st+1, ât+1|θQ′i ) (14)

δ(t) = ytarget(t)−Qi(st, at|θQi ) (15)

where ytarget(t) represents the target Q network under the corresponding state st and action
at; r represents the instant reward; γ represents the discount factor to control future rewards;
θQi and θQ′i are the parameters of Qi and target Q′i network, respectively.

The control actions a are obtained from the target actor network µ′ while adding
clipped normal distribution noise based on the idea of smoothing. This process can be
formulated as follows:

ât+1 = µ′(st+1|θµ′) + ξ, ξ ∼ clip(N (0, σ2),−c, c) (16)

The loss function is minimized by training the critic network to approximate the
Q-value to the target Q-value. The loss function L(θQ) and its gradient can be expressed
as follows:

L(θQi ) = E[ (ytarget(t)−Qi(st, at|θQi ))
2
] (17)

∇
θQi L(θQi ) = E

[
(ytarget −Qi(st, at|θQi ))∇

θQi Qi(st, at|θQi )
]

(18)

where E(·) represents the mathematical expectation.
The Q-value can be maximized by training the actor network. The objective function

J(θµ) and its gradient can be expressed as the following:

J(θµ) = E[Q1(st, µ(st))] (19)

∇θµ J(θµ) = E
[
∇aQ1(st, at|θQ1)∇θµ µ(st|θµ)

]
(20)
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The gradient descent update formula for the actor network and the critic network can
be expressed as follows:

θQi ← θQi + α · ∇
θQi L(θQi ) (21)

θµ ← θµ + β · ∇θµ J(θµ) (22)

where α is the learning rate of the critic-network; and β is the learning rate of the actor-network.
The target networks Q′ i and µ′ are updated through soft updating by the equation,

θQ′i ← τθQi + (1− τ)θQ′i (23)

θµ′ ← τθµ + (1− τ)θµ′ (24)

where τ(τ � 1) is the factor to control updating speed.

3.2. TD3-Based EMS

Considering the operation of the FCHEB and the control objectives of the system, the
state space and action space are set as follows:

s = [v, acc, SOC, SOH] (25)

a = [PFC|PFC ∈ [0, 60kW]] (26)

The optimization objective of this study is to reduce the hydrogen consumption of
FCHEB and the aging of the battery based on the consideration of SOC maintenance and
fuel cell durability. Based on the above requirements, the reward function is set as follows:

r = −
{

CH2 + Cbat + LSOC + LFC
}

(27)

CH2 = ρ1 · [mH2(t)] (28)

Cbat = ρ2 ·Qbat · ∆SOH (29)

LSOC = γ · [SOC(t)− SOCtar]
2 (30)

LFC = δ · |∆PFC/∆PFCmax| (31)

where mH2(t) is the mass of hydrogen consumption; SOCtar is the target SOC value, taken
as 0.6; ∆PFC is the power variation of PEMFC; ∆PFCmax is the maximum power variation of
PEMFC, which is taken as 3000 W; and ρ1 and ρ2 are the unit price of hydrogen and the
battery replacement cost, respectively. The unit price of hydrogen is $4/kg and the battery
replacement price is $178.41/kg in this paper [9]. The corresponding weights are γ and δ,
taken as 1200 and 1, respectively [42].

The architecture of TD3-based strategy is shown as Figure 5, and its pseudocode is
enclosed within Table 2. The TD3 system obtains the current state of the FCHEB system and
the reward since the last action to output the corresponding action. The vehicle controller
unit gets the action output by the TD3 system and controls the vehicle system. The vehicle
system enters a new state based on the action and generates the corresponding reward for
the action.
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19: end for 
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Table 2. Training results of each strategy.

TD3 Algorithm

1: Initialize critic networks Qi and actor network µ with parameters θQi and θµ

2: Initialize target networks θQ′1 ← θQ1 , θQ′2 ← θQ2 , θµ′ ← θµ , Initialize replay buffer β
3: Initialize learning rate τ, a random process N for action exploration
4: for episode = 1: M do
5: Initialize a random noise N (0, λ2) ∼ 1

2λ exp(− |x|λ ) for action exploration
6: Get initial states: v, acc, SOC, SOH
7: for t = 1 : T (time step of driving cycle) do
8: Select action with exploration noise a = µ(st|θµ) +N
9: Execute action a and observe reward r and new state st+1

10: Store transition tuple (st, a, r, st+1) in β
11: Randomly sample mini-batch of N transitions (st, a, r, st+1) from β

12: â← µ′(st+1|θµ′ ) + ξ, ξ ∼ clip(N (0, σ2),−c, c)
13: y← r + γmin

i=1,2
Q′i(st+1, â|θQ′i )

14: Update critics θQi ← minθQi
1
M ∑ (ytarget(t)−Qi(st, at|θQi ))

2

15: if t mod d then

16: Update µ by the deterministic policy gradient:
∇θµ J(θµ) = 1

M ∑
[
∇aQ1(st, at|θQ1 )∇θµ µ(st|θµ)

]
17: Update target networks:

θQ′i ← τθQi + (1− τ)θQ′i

θµ′ ← τθµ + (1− τ)θµ′

18: end if
19: end for
20: End

4. Results and Discussion

This section presents a comprehensive comparative analysis of the TD3-based energy
management strategy, then discusses and evaluates the simulation result and performance.

4.1. Training Validation Condition

The TD3-based EMS is validated using real-world collected driving conditions as
training data. The driving condition data were collected on a typical city bus route in
Zhengzhou, China, and can realistically represent the driving information of the vehicle
during urban road driving, which is important for the development and evaluation of
energy management strategies of FCHEB. The data for real driving conditions vehicle
velocity are shown in Figure 6. The mean value of the training velocity driving condition
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was 5.8117 m/s with a standard deviation of 5.2190. The mean value of the test velocity of
driving conditions was 6.1730 m/s with a standard deviation of 5.2238.
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To fully validate the performance of the proposed strategy, the TD3-based EMS is
compared with the DDPG-based EMS and the DDPG-based EMS without considering the
battery SOH (DDPG-NOSOH-EMS). DDPG-NOSOH-EMS does not consider the battery
life constraint in the setting of the reward function. In order to verify the generality of the
proposed strategy, the proposed strategy is compared with the DDPG-based EMS and the
DDPG-NOSOH EMS under the standard Urban Dynamometer Driving Schedule (UDDS).
Figure 7 shows the UDDS conditions. Meanwhile, in order to guarantee the reliability of
the training and the credibility of the results, we take the results of four training sessions
and take the mean value as the final simulation result. All simulations were performed on
a computer with a processor of i5-7300HQ CPU @ 2.50GHz.
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In order to reasonably compare the hydrogen consumption of each EMS, the power
difference between the terminal SOC and the target SOC of each EMS is involved in
the calculation of hydrogen consumption based on the hydrogen calorific conversion,
considering that the fuel cell provides all the energy:

mequ =
∆SOC ·Qbat · 3600

ηFC · Hheat
(32)

where mequ is the equivalent hydrogen consumption mass which reflects the SOC variation;
∆SOC represents the difference between the final SOC and the target SOC; Qbat is the
capacity of the power battery; Hheat is the is the heating value of hydrogen, which is taken
as 120,000,000 J/kg.

4.2. Training Situation Discussion

The mean reward during training reflects the convergence efficiency and the learning
ability of the algorithm. Specifically, the convergence can be judged by the distance between
the mean reward of two adjacent episodes. Meanwhile, according to the setting of the
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reward function in this study, the closer the mean reward is to zero, the better the strategy
is optimized. Figure 8 compares the mean reward of the proposed strategy and the baseline
strategies, and Table 3 compares the training effects of these three strategies. The results
show that the convergence efficiency of TD3-based EMS is significantly improved, and
the training time is reduced by 54.69% and 56.63% compared with DDPG-based EMS and
DDPG-NOSOH EMS, respectively. This result is due to the addition of a delayed update
mechanism for the target-networks and actor-network, as well as the addition of noise
in the target actions in the TD3 algorithm, which improves the stability of the algorithm
and increases the convergence efficiency. Since battery aging is not considered in the
reward function setting of the DDPG-NOSOH EMS, its mature mean reward is minimal.
Meanwhile, because the TD3 algorithm uses Clipped Double Q-learning, it can effectively
avoid the problem of overestimation of Q values by the DDPG algorithm, The learning
ability of TD3-based EMS is then 36.82% higher than that of DDPG-based EMS.
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Table 3. Training Results of Each Strategy.

Strategy Episodes before
Convergence

Time Consumption
(min)

Mature Mean
Reward

TD3-based EMS 30 6.67 −0.6741
DDPG-based EMS 51 14.72 −1.0670

DDPG-NOSOH EMS 53 15.38 −0.6476

4.3. Training Situation Discussion

Figure 9a shows the SOC trajectory of each strategy. The SOC of each strategy fluctu-
ates around the target value, indicating that the strategies are able to strictly enforce the
constraint of SOC maintenance in the reward function. Figure 9b–d illustrate the PEMFC
power curves for each strategy. The power curves of the TD3-based EMS and DDPG-
NOSOH EMS showed less fluctuation, while the SOC curves showed more fluctuation,
indicating their tendency to adjust the battery output to meet the vehicle power variation.
The power curve of the DDPG-based EMS is more volatile, while the SOC curve is less
volatile, indicating that it prefers to adjust the PEMFC output power to satisfy the variation
of vehicle power. Additionally, the power variation rate of the fuel cell for each strategy is
less than 3 kW, which satisfies the limit on power variation in the reward function.
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Figure 10 shows the SOH curves for each strategy. The TD3-based EMS achieves the
least capacity degradation, while the DDPG-NOSOH-based EMS has the highest capacity
degradation. These points illustrate the importance of adding a battery life constraint to
the reward function.
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4.4. Verification of Total Cost Optimization

The operating costs for each strategy under a Zhengzhou driving working condition
cycle are shown in shown in Table 4. The total driving costs include hydrogen consumption
cost and battery degradation cost. The hydrogen consumption cost takes into account the
equivalent hydrogen consumption caused by the different terminal SOC of each strategy.
Considering the table data, it can be concluded that for each strategy, the cost of battery
aging is over 75% of the total cost. The results show that, compared with the DDPG-based
EMS and the DDPG-NOSOH-based EMS, the TD3-based EMS indicated a 1.40% and 4.88%
decrease in hydrogen consumption cost, a 2.91% and 4.51% decrease in battery deterioration
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cost, and a 2.45% and 4.60% decrease in total cost, respectively. Table 5 shows the operating
costs for each strategy under a UDDS cycle, where the hydrogen consumption costs are
corrected. The comparison results show that the proposed strategy is optimized in terms of
hydrogen consumption cost and battery deterioration cost.

Table 4. Costs under Zhengzhou working conditions.

Strategy
Hydrogen

Consumption
Cost ($)

Battery
Deterioration

Cost ($)
Total Cost ($)

TD3-based EMS 3.51 10.81 14.32
DDPG-based EMS 3.56 11.12 14.68

DDPG-NOSOH EMS 3.69 11.32 15.01

Table 5. Costs under UDDS working conditions.

Strategy
Hydrogen

Consumption
Cost ($)

Battery
Deterioration

Cost ($)
Total Cost ($)

TD3-based EMS 3.54 9.16 12.70
DDPG-based EMS 3.56 9.70 13.26

DDPG-NOSOH EMS 3.62 9.95 13.57

5. Conclusions

In this paper, a fuel cell hybrid electric bus energy management strategy based on
TD3 algorithm is proposed to optimize the driving cost of fuel cell hybrid electric buses.
Using the real collection data of Zhengzhou buses as training data, the effectiveness of
the TD3-based EMS is verified by comparing it with other strategies in terms of hydrogen
consumption costs, battery degradation costs, and total cost. The major conclusions of this
paper are as follows:

(1) The cost of battery degradation accounts for a large proportion of the vehicle
operating cost, and it is undesirable to neglect the battery degradation.

(2) By adding new mechanisms to the DDPG algorithm, the training effect of TD3-
based EMS is enhanced. Compared with the DDPG-based EMS using the same reward
function, the training efficiency and learning ability of the TD3-based EMS are 54.69% and
36.82% higher, respectively.

(3) Under Zhengzhou bus driving conditions, the overall cost of TD3-based EMS was
decreased by 2.45% and 4.60% compared to DDPG-based EMS and DDPG-NOSOH EMS,
respectively.

In the future, we will consider integrating a cyber physical system (CPS) into the
EMS framework when designing an energy management strategy. Information on vehicle
operation is obtained through cyber physical systems to optimize the controller’s control
decisions. In addition, in terms of overall vehicle operating costs, an analysis of fuel
cell aging costs will be added. Meanwhile, we will actively focus on the latest deep
reinforcement learning algorithms for their application in the field of energy management.
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