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Abstract: Accurately mapping and monitoring the urban impervious surface area (ISA) is crucial for
understanding the impact of urbanization on heat islands and sustainable development. However,
less is known about ISA spectra heterogeneity and their similarity to bare land, wetland, and high-rise-
building shadows. This study proposes a feature-based approach using decision tree classification
(FDTC) to map ISAs and their spatio-temporal changes in a coastal city in southeast China using
Landsat 5 TM, Landsat 8 OLI/TIRS, and Sentinel-2 images from 2009 to 2021. Atmospheric correction
using simplified dark object subtraction (DOS) was applied to Landsat imagery, which enabled faster
computation. FDTC’s performance was evaluated with three sensors with different spectral and
spatial resolutions, with parameter thresholds held constant across remote-sensing images. FDTC
produces a high average overall accuracy (OA) of 94.53%, a kappa coefficient (KC) of 0.855, and a
map-level image classification efficacy (MICE) of 0.851 for ISA mapping over the studied period. In
comparison with other indices such as BCI (biophysical composition index), PISI (automated built-up
extraction index), and ABEI (perpendicular impervious surface index), the FDTC demonstrated
higher accuracy and separability for extracting ISA and bare land as well as wetland and high-rise
buildings. The results of FDTC were also consistent with those of two open-source ISA products and
other remote sensing indices. The study found that the ISA in Xiamen City increased from 16.33%
to 26.17% over the past 13 years due to vegetation occupation, encroachment onto bare land, and
reclamation of coastal areas. While the expansion significantly reduced urban vegetation in rapidly
urbanizing areas of Xiamen, ambitious park greening programs and massive redevelopment of urban
villages resulted in a modest but continuous increase in urban green space.

Keywords: urban impervious surface area; coastal city; decision tree classification; land cover;
modeling; remote sensing; urbanization

1. Introduction

The past 40 years have witnessed significant changes in land use and land cover [1],
the most significant of which are characterized by an expansion of impervious surface
area (ISA) that replaces the natural vegetation-dominated landscapes [2]. ISA refers to the
various impermeable man-made surfaces, such as buildings, roofs, roads, squares, and
parking lots, which are mainly constructed from concrete, asphalt, metal, and glass [3].
Given the increasingly concentrated population and high level of economic activity, ISA has
emerged as a major indicator of urbanization [4]. Moreover, ISA is an important indicator
of environmental quality [5]. In recent years, the worldwide expansion of urban ISAs at
an unprecedented rate has resulted in serious urban environmental problems, such as the
exacerbation of urban heat islands [6,7], urban heat waves and their related adverse impact
on human health [8], increased risk of urban floods [9], and worsening urban water quality
including extreme thermal pollution of water bodies [10], all of which combine to alter
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biological evolution on a global scale [11]. Consequently, timely and accurate monitoring
of ISAs is critical to combat climate change and hydrological cycles and to optimize urban
planning, environmental protection, and sustainable urban development [12–14].

Remote-sensing technology offers the advantages of rapidity, accuracy, a synoptic
view, repeatable coverage, and a real-time view of large-scale geographic areas, allowing
extensive mapping of ISAs and the comparison of multiple, long-term temporal and spatial
variations with satellite data [1,3]. Three principal methods exist for estimating ISA: ma-
chine learning algorithms, spectral mixture analysis, and spectral index methods. The first
group involves machine-learning-based methods, which include decision tree classification
(DTC) [15], classification and regression tree [16], support vector machine [17], artificial
neural networks [18], deep learning [19], random forest [20], etc. The first group requires
high-quality training data, and the second group involves spectral mixture analysis and
determines empirical relationships between various spectral and spatial characteristics.
The second group also includes linear spectral mixture analysis [21] and multiple end-
member spectral mixture analysis [22] and relies heavily on the quality of the endmember,
which can be acquired through a complicated process. The last group extracts information
from various images based on spectral indices. Numerous ISA spectral indices have been
constructed to quantify the biophysical characteristics of the earth’s surface, including
the normalized difference built-up index [23], the index-based built-up index [24], the
urban index [25], the biophysical composition index (BCI) [26], the combinational built-up
index [27], perpendicular impervious surface index (PISI) [4], the automated built-up extrac-
tion index (ABEI) [28], the normalized difference impervious surface index (NDISI) [29], the
normalized built-up area index (NBAI) [30], the built-up area extraction index (BAEI) [31],
the enhanced built-up and bareness index (EBBI) [32], the built-up index (BUI) [33], and
built-up land features extraction index (BLFEI) [34]. Index-based methods are easy to
implement and have acceptable accuracy for many applications [4].

Atmospheric correction strives to obtain precise surface reflectance values by eliminat-
ing the influences of the atmosphere, such as scattering and absorption, on remotely sensed
imagery. By applying atmospheric correction techniques, these effects can be accounted
for, resulting in corrected images that more accurately depict the characteristics and cir-
cumstances of the earth’s surface. Therefore, this correction is an essential preprocessing
step in many remote-sensing applications [35,36]. Atmospheric correction methods can be
grouped into three types, i.e., physically based, image-based, and relative calibration meth-
ods [34]. The physically based models, such as 6S, LOWTRAN, and MODTRAN, produce
very high surface reflectance accuracy. However, the models are highly complicated and
require many input parameters obtained from the in situ field atmospheric data received
at the time of remote sensing data collection. Image-based models, such as dark object
subtraction (DOS) [35] and COST (a particular DOS approach that calculates atmospheric
transmittance using the cosine of the solar zenith angle), are implemented through image
acquisition and the related header-file information, unlike in situ atmospheric models. The
relative correction methods can involve histogram adjustment and dark-pixel subtraction
for a single image and image normalization for multi-date images. The third method may
be too coarse for applications that require relatively accurate surface reflectance. Therefore,
in many remotely sensed applications, DOS is a suitable method to apply, especially when
atmospheric data are not readily available for historical image data. However, the origi-
nal DOS method consists of a series of relatively complex formulas, so simplifying these
formulas to one that is easier to apply is highly desirable.

ISA is a typical land cover in cities, and new techniques for mapping ISA have emerged
in recent years. Xu [29] used NDISI from Landsat ETM+ images to extract ISAs from the
urban area of Fuzhou City, China. Waqar et al. [30] designed NBAI to extract bare soil
and built-up area from Landsat 5 TM imagery. Bouzekri et al. [31] applied the built-up
area extraction index (BAEI) to extract ISA from Landsat 8 OLI images of Djelfa, Algeria.
As-syakur et al. [32] applied EBBI from Landsat ETM+ images to map built-up and bare
land areas in Denpasar on Bali Island, Indonesia. To delineate the ISA in Thessaloniki
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City, Greece, Kaimaris et al. [33] developed the BUI, which combines the RED, SWIR1, and
SWIR2 bands of Landsat ETM+. Bouhennache et al. [34] introduced a built-up land features
extraction index (BLFEI) to extract ISA from Landsat 8 imagery in Algiers City, Algeria.
Kebede et al. [37] found that NBAI was more accurate than other indices for extracting
ISAs from Sentinel-2A data in Addis Ababa, Ethiopia. Finally, Deliry et al. [38] evaluated
the supervised object-based nearest neighbor (OB-NN) classification method for extracting
urban ISAs from Sentinel-2A data.

Previous studies indicate that the majority of the developed indices can be beneficial
for mapping both bare land and ISAs. Nevertheless, some problems remain. For instance,
some indices, such as the NDISI and EBBI, require thermal bands, so they are limited to
these bands. In addition, it remains difficult in image classification to distinguish between
ISAs with spectra that are similar to those of foreign objects (i.e., “salt and pepper”) [19,39]
due to the spectral diversity and complexity of urban spatial structures [28]. Some high-
albedo objects, such as bare land, and low-albedo objects, such as wetlands and high-rise
building shadows in cities, are easily confused with ISA, which reduces the accuracy of
ISA extraction [27]. Especially for coastal cities in rapid urbanization, wetlands and high
buildings significantly hinder the accurate extraction of ISAs. Therefore, the objective of this
study is to (1) simplify the original DOS model for Landsat-5 TM and Landsat-8 OLI images;
(2) design an ISA mapping feature approach based on decision tree classification (FDTC)
and that integrated multi-feature indices to reduce bare land, vegetation, high-rise building
shadows, and wetland interference; (3) explore whether, in a coastal city of China, FDTC
can be used with various remotely sensed images with different spatial resolutions and
acquired at different seasons; (4) assess the accuracy of the proposed method vis-à-vis other
related methods and open-source ISA products (OSPs); and (5) analyze the spatiotemporal
variations in ISA and land cover.

2. Study Area

Figure 1 shows that Xiamen City is located in the Fujian Province of China between
117◦53′ and 118◦26′ East and 24◦23′ and 24◦54′ North. It is one of the first four special
economic zones established in China and obtained many honors, such as “the Habitat
Scroll of Honor Award of the United Nations” and “the International Awards for Livable
Communities “. It covers a land area of 1700.61 km2. The region has a humid subtropical
maritime climate characterized by warm temperatures and high humidity throughout the
year. The average annual temperature in the area is around 21 ◦C, providing a comfortable
environment for visitors and locals alike. Precipitation levels are also relatively high, with
an average of around 1200 mm per year.

The last 30 years have witnessed the rapid urbanization of Xiamen. According to the
National Bureau of Statistics of China, by the end of 2021, the permanent population in
Xiamen was 5.28 million, which is 4.6 times the population in 1991. Moreover, the gross
domestic product of Xiamen increased from 9.77 billion in 1992 to 703.39 billion in 2021.

The study area has transitioned from being a tiny island city to a huge bay-like
metropolis. The bay-like city features a city core on the island and four new urban clusters
in the bay and plain regions of the mainland [40,41]. Xiamen’s urban spatial pattern
is like a huge “hand”, with the sea as the palm, Xiamen Island as the thumb, and the
other four districts of Haicang, Jimei, Tong’an, and Xiang’an as four fingers. Although
rapid urbanization has brought significant benefits to the residents, it has also caused
various environmental problems, including degraded water quality, loss of farmland,
rising greenhouse gas emissions, eutrophication of offshore seas, increased flood risks, and
enhanced heat-island effects [40,41].
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3. Materials and Methods

Figure 2 shows the research framework, which consists of the following major parts:
(1) simplifying the original DOS model; (2) correction of atmospheric effects by using the
DOS model with Landsat 5 and Landsat 8, the sen2cor model with Sentinel-2 images, and
then creating a remote-sensing database; (3) developing FDTC to mapping ISA and land
cover; (4) evaluating the accuracy and comparing with related methods and OSPs; and
(5) analyzing variations in ISA and land cover.

3.1. Data Collection and Preprocessing

Five scenes of data acquired with three sensors were downloaded from the web-
site of the United States Geological Survey (http://earthexplorer.usgs.gov/ (accessed on
10 March 2022)) and the Chinese Geospatial Data Cloud (http://www.gscloud.cn/
(accessed on 10 March 2022)). The data include one Landsat-5 Thematic Mapper (TM) image,
two Landsat-8 images, and two Sentinel-2 images (Table 1). Landsat 8 satellite carries two
instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS).
It has one band with 15 m spatial resolution; two thermal infrared bands, 10 and 11, with
100 m spatial resolution; and the remaining bands with 30 m spatial resolution. Sentinel-2 is
equipped with a multispectral imager that offers 13 spectral bands with pixel sizes ranging
from 10 to 60 m. Among the 13 bands, bands 2–4 and 8 have a spatial resolution of 10 m;
bands 1, 9, and 10 have a 60 m spatial resolution; and the remaining bands have a 20 m
spatial resolution.

The characteristics of the images utilized in this study are described in Table 1. The
images were acquired over different seasons and sun-elevation angles and under clear
sky conditions. An atmospheric correction procedure based on the simplified DOS model
proposed herein was used to preprocess Landsat-5 and Landsat-8 images.

http://earthexplorer.usgs.gov/
http://www.gscloud.cn/
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Figure 2. Flow chart showing study procedure. Notes: FDTC is a feature-based approach to
decision tree classification; NDWI is the normalized difference water index; MNDWI is the modified
normalized difference water index; MFI is the mangrove forest index; BSI is the bare soil index; BCI is
the biophysical composition index; GI is the greenness index; BI is the brightness index; WI is the
wetness index; TB is the bright temperature. OSPs is open-source ISA products.

Table 1. Description of remote sensing data acquired in Xiamen.

Date Image
Sensor

Sun Azimuth
Angle

Sun-Elevation
Angle

WRS Path-Row/
Orbit-Tile Number

6 June 2009 Landsat 5 TM 89.28 66.34 119-043

11 March 2018 Landsat 8
OLI/TIRS 134.98 52.19 119-043

15 November 2019 Sentinel-2 159.05 42.80 89-T50RPN
15 November 2019 Sentinel-2 157.75 43.14 89-T50RNN

16 December 2021 Landsat 8
OLI/TIRS 154.33 37.61 119-043

Note that the two Sentinel-2 images in Table 1 need be mosaicked to create a complete
image encompassing Xiamen City. Sentinel-2 images were preprocessed by using the
Sen2Cor atmospheric correction model integrated into the Sentinel Application Platform
software (SNAP) [42].
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3.2. Image-Based Atmospheric Correction Method

The image-based atmospheric correction method can be divided into top-of-the-
atmosphere (TOA) reflectance, DOS, and COST [35,43,44]. Table 2 summarizes the three
simplified atmospheric correction methods derived in this study using Landsat 5 and
Landsat 8 images.

Table 2. Summary of three atmospheric correction methods for Landsat images.

Name Landsat 8/Landsat 5 Remark

TOA ρTOA =
(

Mp·DN+Ap
)
/ cos θ K = πd2/E0

DOS ρDOS = Mp(DN − DN min)/ cos θ + 0.01 Mp = K·Gain, Ap = K·Bias
COST ρCOST = MCOST·(DN − DN min)/ cos θ + 0.01 MCOST = Mp/(TAUz·TAUv)

3.2.1. Simplified Top-of-the-Atmosphere Model

The TOA reflectance (i.e., apparent reflectance) can be expressed as follows:

Lsat= Gain·DN+Bias, (1)

ρTOA = Lsatπd2/(E0cosθ), (2)

where DN is the digital number of the Landsat images, which will be converted to at-
sensor radiance; E0 is the mean exo-atmospheric solar spectral irradiance; θ is the solar
zenith angle; d is the astronomical distance between the sun and earth; and Bias and Gain
are the coefficients of radiometric bias and gain in a given spectral band, respectively.
The coefficients, including d, Bias, and Gain, can be obtained from the Landsat image
header file.

Substituting Equation (2) into Equation (1) yields

ρTOA = πd2·(Gain·DN + Bias)/(E0cosθ), (3)

Using K = π·d2/E0, then Formula (3) takes the form

ρTOA = KGain·DN + Bias/cosθ (4)

If Mp = K·Gain and Ap = K·Bias, then Formula (4) can be simplified into the
following formula:

ρTOA = Mp·DN + Ap/cosθ (5)

USGS revised the Landsat 5 image data processing procedure in 2016. Two extra
reflectance parameters (reflectance_mult_band_x and reflectance_add_band_x) are pro-
vided in the header file starting in 2016 in addition to the radiance parameters (radi-
ance_mult_band_x and radiance_add_band_x). The two previous radiance parameters
correspond to Gain and Bias, respectively. Mp and Ap in equation (5) correspond to the two
adjusted reflectance parameters.

For Landsat 8 OLI images, Equation (5) calculates the apparent reflectance. Mp and Ap
are also obtained from the header file of Landsat 8 images (i.e., reflectance_mult_band_x
and reflectance_add_band_x).

The simplified Formula (5) derived from the original TOA model is very easy to use to
obtain the apparent reflectance from Landsat images.

3.2.2. Simplified COST Model

The original COST atmospheric correction model is expressed as

ρCOST =
(Lsat − Lhaze)πd2

E0·cosθ·TAUz·TAUv
, (6)
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Lhazehaze = Lmin − L1% (7)

Lmin = Gain·DNmin + Bias, (8)

L1% = 0.01·E0cosθ·TAUz·TAUv/
(

πd2
)

, (9)

where Lsat is the radiation energy received by the sensor (W/(m2 ster µm)), Lhaze is the
atmospheric path radiance, Lmin is the minimum spectral radiation value of the remote
sensor, and L1% is the blackbody radiation for each band under the assumption that the
blackbody’s reflectance is 1%.

For simplification, we define MCOST = π·d2/(E0·TAUZ·TAUV) = K/(TAUZ·TAUV), in
which case Equations (6) and (9) can be written, respectively, as

ρCOST = (Lsat − Lhaze)·MCOST/cosθ (10)

L1% = 0.01cosθ/MCOST (11)

Substituting Equations (8) and (11) into Equation (7), we obtain

Lhaze= Gain·DNmin+Bias −0.01cosθ

MCOST
(12)

Substituting Equations (2) and (12) into Equation (10) gives

ρCOST =

[
Gain·DN + Bias −

(
Gain·DNmin+Bias −0.01cosθ

MCOST

)]
MCOST/cosθ (13)

Equation (13) can be recast as

ρCOST =

[
Gain·(DN − DN min) +

0.01cosθ

MCOST

]
MCOST/cosθ (14)

Further simplifications lead to

ρCOST = MCOST ·(DN − DNmin)/cosθ + 0.01, (15)

where MCOST = Mp/(TAUZ·TAUV). We have TAUv = 1 since the viewing angle for Landsat
TM images is 0◦. Two approximate methods were proposed to estimate the atmospheric
transmittance TAUZ, one for the cosine of the solar zenith angle and another for the average
of each spectral band derived from the radiative transfer code. However, previous studies
demonstrated that the COST model frequently overestimates TAUv in several applications,
especially for clear, cloudless skies with large zenith angles or high northern latitudes.
Thus, TAUv is often ignored in practical applications [45,46].

3.2.3. Simplified DOS Model

When TAUv = 1 and TAUZ = 1, Equation (6) becomes the well-known DOS model:

ρDOS = (Lsat − Lhaze)πd2/(E0cosθ) (16)

Let K = πd2·E0 and combine Equation (17) with Equations (11) and (12) to obtain

ρDOS = Gain·K(DN − DN min)/cosθ + 0.01, (17)

If Mp= K·Gain, then we can

ρDOS = Mp(DN − DN min)/cosθ + 0.01 (18)
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3.2.4. Assessment of DOS and Sen2Cor

Compared to raw data, the atmospherically corrected images are visually clearer. It
indicates that the atmosphere’s effects were removed well in the new images. To quantify
the comparison between raw images and corrected images by atmospheric correction, we
used the coefficient of variation (CV) as a measure, which was proposed by Yang and
Lo [47]. A higher CV value indicates a more dispersed distribution, indicating that the
images with larger CV values can lead to better remote sensing classification.

In Figure S1 of the Supplemental File, we included the CV values computed for
each band (excluding the thermal band) for different images using atmospheric correction
methods. The figure also shows the average of these measures for all bands for each year
from 2009 to 2021. For comparison purposes, we computed the same measures for the raw
images. As shown in Figure S1, all CV values of corrected images are greater than those of
raw images. This suggests that our atmospheric correction methods were very effective in
providing important data for subsequent ISA mapping and landcover changes analysis.

3.3. Feature Approach Based on Decision Tree Classification

A decision tree is regarded to be a classification algorithm that uses a binary tree
structure to divide a dataset into mutually exclusive subsets based on a set of criteria defined
at the root node, as well as numerous internal and terminal nodes (leaves) throughout
the tree [15,48]. The interior nodes specify various decision criteria, while the leaf nodes
correspond to specific classes. Each internal node has two possible options that split one or
more classes from the rest.

DTC offers several advantages, such as wide adaptability, intuitive simplicity, and
high computing efficiency. Some DTC approaches (e.g., See5.0, a commercial decision tree
algorithm tool [49], and DTC-OOC [50], which is a DTC combined with object-oriented
classification) were developed and employed for land cover or thematic information extrac-
tion from remote-sensing data. Features can be defined as a series of bands or indices from
remote sensing data. In decision tree classification, features act as predictor factors, and the
derived land cover classes are the target variables. The determination of target variables
is based on a series of criteria and thresholds that take into account the distribution of
features in the feature space and other specialized knowledge.

The proposed FDTC method integrates multispectral features acquired from various
remote-sensing indices. The indices include the NDWI, MNDWI, BCI, BSI (bare soil index),
MFI (mangrove forest index), WI (wetness index), and TB (brightness temperature).

Figure 3 shows the FDTC method for mapping ISA and land cover types based on
multiple features. Our research goals and field survey indicate that the land cover classes
in the study area can be first categorized as six classes and further merged into four classes.
The six classes involve vegetation, ISA, water bodies, bare lands, wetlands, and high-rise
building shadows mixed with little roads (HSR). Water bodies include seas, reservoirs,
lakes, and rivers. Wetland includes beach land, marshland, ponds, and maricultural areas
of the inner bay. When the study area’s land cover is examined, the water bodies and
wetlands are combined, as are ISA and HSR.

3.3.1. Water Index

McFeeters [51] introduced NDWI as a method to identify open-water features using
the green and near-infrared bands:

NDWI = (ρGreen − ρNIR)/(ρGreen + ρNIR), (19)

where for TM/OLI/Sentinel-2 images, ρGreen and ρNIR represent the spectral reflectances of
the green and near-infrared bands, respectively.
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Xu [52] proposed the MNDWI index, which can significantly enhance the water
information, particularly in areas with mainly built-up land as background. The MNDWI
is calculated as follows:

MNDWI = (ρGreen − ρSWIR1)/(ρGreen + ρSWIR1) (20)

where for the TM/OLI/Sentinel-2 images, ρGreen and ρSWIR represent the spectral re-
flectances of the green and short-wave infrared bands, respectively.
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In the Sentinel-2 images, the short-wave infrared band 8 (20 m) and green band 2 (10 m)
have different spatial resolutions. The combination of fine-resolution and coarse-resolution
images hinders the MNDWI in differentiating spatial details of ecological conditions. The
ability of MNDWI to distinguish spectral features of water bodies and non-water bodies
in spatial detail would undoubtedly be diminished by combining fine-resolution imagery
with coarse-resolution imagery [53].
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In addition, for Landsat images with a small solar elevation angle (such as 37.61 in
2021), the high-rise buildings produce spectral features similar to those of water bodies in
MNDWI images, unlike NDWI images (Figure 4). Consequently, more high-rise buildings
in MNDWI images are misclassified as water bodies. Thus, for Sentinel-2 images or Landsat
images with a small solar elevation angle, the NDWI is recommended over the MNDWI.
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3.3.2. Bare Land Index

Rikimaru [54] proposed the BSI for bare land, which is expansively used for extracting
dust storms in arid areas and bare soil in cities. The BSI is given by

BSI = [(ρRed + ρSWIR1)− (ρNIR + ρBlue)]/[(ρRed + ρSWIR1) + (ρNIR + ρBlue)], (21)

where ρRed, ρBlue, and ρSWIR1 are the spectral reflectances of red, blue, and short-wave
infrared (SWIR) 1 bands for TM, OLI, and Sentinel-2 images, respectively.

However, the BSI cannot effectively distinguish ISA from bare land in Sentinel-2
images, so we used the MFI [55] for bare land in Sentinel-2 images. The MFI was proposed
for extracting coastal mangroves. However, we found that the index is well adapted to the
extraction of bare soil information from Sentinel-2 images when forestland is masked out
in the images. The MFI is expressed as follows:

MFI = [(ρVRE1 − ρBλ1) + (ρVRE2 − ρBλ2) + (ρVRE3 − ρBλ3) + (ρVRE4 − ρBλ4)]/4, (22)

ρBλi = ρSWIR2 + (ρRed−ρSWIR2)(2190− λi)/(2190− 665), (23)

where ρVRE1, ρVRE2, ρVRE3, and ρVRE4 are the spectral reflectances of four vegetation red-
edge bands in Sentinel-2 images; λi is the central wavelength (705, 740, 783, and 865 nm)
of each vegetation red-edge band; and ρBλi is the reference reflectance of four vegetation
red-edge bands.

3.3.3. Impervious Index Based on Biophysical Composition Index

Deng and Wu [26] proposed the biophysical composition index (BCI) in 2012. Its
main principle is based on Ridd’s triangle-shaped model of vegetation, impervious surface,
and soil (V-I-S). To efficiently distinguish ISAs (buildings, roads, etc.) or other impervious
features (water, bare land, etc.) from pervious features (e.g., soil and vegetation), the BCI
modified the Tasseled Cap (TC) transformation. Deng and Wu [26] concluded that the BCI
values for ISA were greater than zero, the vegetation BCI values were less than zero, and
the soil BCI values were close to zero. Thus, three components can be distinguished.

These steps can be used to compute the BCI.

BCI = [(H + L)/2−V]/[(H + L)/2 + V], (24)
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where H is high albedo (i.e., the first TC component), V is vegetation (i.e., the second TC
component), and L is low albedo (i.e., the third TC component). These three factors are
given by the following equations:

H = (BI − BImin)/(BImax − BImin), (25)

V = (GI − GImin)/(GImax − GImin), (26)

L = (WI −WImin)/(WImax −WImin), (27)

where BI, GI, and WI stand for the three TC components of brightness, greenness, and
humidity, respectively; BImin, BImax, GImin, GImax, WImin, and WImax are the three TC
components’ respective minimum and maximum values. In order to obtain the three TC
components, linear combinations of the reflected image bands were constructed through
TC transformations. For the TM, OLI, and Sentinel-2 images, the TC transformation
reflectance coefficients were acquired from Crist [56], Baig et al. [57], and Shi and
Xu [58], respectively.

3.3.4. Brightness Temperature (TB)

TB defines the temperature of a black body radiator at the same radiance [59].
TB is obtained from Landsat 5, Landsat 8 satellite’s thermal-infrared data, using the
following equation:

TB = k2/ ln(1 + k1/Lλ), (28)

where k1 and k2 represent two constants of thermal bands from image header files, band 6
for Landsat 5 and band 10 for Landsat 8. For Landsat 8, kc1 = 774.89 W m−2 sr−1 µm−1,
k2 = 1321.08 K; for Landsat 5, k1 = 607.76 W m−2 sr−1 µm−1, k2 = 1260.56 K. Lλ is the
radiance at the satellite (i.e., top of the atmosphere).

3.3.5. The Principle of FDTC

As seen in Figure 3, MNDWI or NDWI are applied to assign each image into one of
two groups because water bodies have much higher MNDWI and NDWI values than other
types of land cover. Previous studies demonstrate that setting an initial threshold of zero
for the NDWI or MNDWI can generally allow most water bodies to be distinguished from
other land-cover types.

The BCI can be used to distinguish between vegetated (such as forests and crops)
and non-vegetated environments (built-up land, bare land, and beaches) because non-
vegetation areas have higher BI values compared with vegetation areas (Figure 5).
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The BSI is useful for separating bare land from ISA because the former corresponds to
a greater BSI value than that of ISA. However, the BSI does not work well with Sentinel-2
imagery. Therefore, the BSI was replaced by the MFI for Sentinel-2 imagery.

The WI is useful for differentiating wetlands from ISAs because wetland has a higher
WI than ISA. However, roads and shade from high-rise buildings on ISA appear similar to
wetlands in the WI spectra in Figure 5. Roads and high-rise buildings usually absorb heat
in the daytime and become warmer than wetlands. Thus, TB is used in combination with
WI to distinguish between wetlands and ISAs.

3.3.6. The Calibration of FDTC Parameters

After all the images underwent atmospheric correction using the DOS or Sen2Cor
method, a dataset for each feature band, including NDWI (or MNDWI), BSI (or MFI), BCI,
WI, and TB bands, were produced. To train each landcover class for Landsat or Sentinel-2
images from 2009 to 2021, we utilized a minimum of 15 training sites per period. These sites
were obtained by using Google Earth (GE) images that were as close in date as possible to
the original remotely sensed data, with sizes ranging from 16 to 600 pixels. To obtain the
initial set of FDTC parameters, we calculated a minimum pixel value in each feature band
(BCI, etc.) for training sites containing the corresponding landcover class. The histograms
for each feature band (such as NDWI and BCI) facilitate the separation of the pairing
landcovers (such as waterbody and non-waterbody) in Figure 3. As a threshold value, the
point in the histograms where the two classes separate was chosen [37]. Therefore, the
initial parameters may be adjusted and combined with the histograms to analyze the study
area. Where necessary, we further reviewed and adjusted the parameters based on the
accuracy of the landcover classes.

3.4. Accuracy Assessment

Accuracy assessments are crucial to evaluate the performance of various image clas-
sifications or specific feature extractions. Due to unavailable ground data for historical
remote-sensing data, we used independent ground samples from GE images as refer-
ence data in this investigation. The dates of the GE images we selected (29 October 2009,
10 March 2018, 23 August 2020, and 27 July 2021) were as close to those of the original
images as feasible in order to obtain the best reference data.

We randomly selected 910 samples for each scene using a stratified random sampling
scheme, with at least 60 samples for each class. These samples were exported to GE for
accuracy assessment, and the classification results were evaluated using a confusion matrix.

In this study, three validation metrics, kappa coefficient (KC), overall accuracy (OA),
and map-level image classification efficacy (MICE), were applied. An OA value greater
than 70% is recognized as satisfactory [60], and a Kappa value above 0.8 indicates strong
agreement (beyond chance) [61]. Shao et al. [62,63] pointed out that the accuracy met-
ric kappa has two significant disadvantages: being extremely sensitive to class imbal-
ance and lacking explicit interpretations for evaluating classification performance. To
overcome the shortcomings of the evaluation metric, the metric MICE was introduced
to estimate image classification. An Excel template is very helpful for obtaining MICE
(see https://web.ics.purdue.edu/~shao/ (accessed on 8 September 2022)). The MICE is
expressed as follows:

MICE = (A− A0)/(1− A0), (29)

where A0 represents the accuracy of a random classification used as a baseline, and A is the
overall accuracy.

In order to compare the performance of the proposed FDTC with those of other indices,
the three indices BCI, ABEI, and PISI were applied for the four images with three sensors,
leading to various ISA maps.

The ABEI was proposed based on Landsat 8 OLI reflective bands [28]. ABEI can
distinguish built-up areas from bare land, sand, and rock. The ABEI is given as

https://web.ics.purdue.edu/~shao/
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ABEI = 0.312Re f1 + 0.513Re f2 − 0.086Re f3 − 0.441Re f4 + 0.052Re f5 − 0.198Re f6 + 0.278Re f7 (30)

where Ref 1–Ref 7 represent the spectral reflectance of coastal, blue, green, red, near-infrared,
and two short-wave infrared (SWIR1 and SWIR2) bands for Landsat 8 OLI images, respec-
tively. Note that the ABEI is limited to Landsat 8 OLI images. Additionally, the ABEI must
first set NDVI < 0 and NDVI > 0.5 to exclude pure pixels of vegetation and water.

The PISI was proposed [4] based on the spectral reflectance in the blue and near-
infrared bands, which can be applied to various images. The PISI is given as

PISI = 0.8192ρBlue − 0.5735ρNIR + 0.0750, (31)

In addition, we also compare our results with two open-source ISA products (OSP).
The open-source datasets, namely global artificial impervious area (GAIA) [64] with 30 m
resolution and Dynamic world (DW) [65] with 10 m resolution, were used as validation data
because they were all created primarily from Landsat or Sentinel-2 images acquired over
short time intervals and with good spatial resolution and high accuracy. We implemented
change detection between the FDTC and each ISA product to obtain common regions. The
common region defines pixels whose classification (ISA or non-ISA) is consistent, which are
typically regarded as accurate pixels [66]. We defined the following formulas to evaluate
the accuracy of ISA or non-ISA in the common region between FDTC results and each
ISA product.

AISA = ISAC/ISAF × 100%, (32)

ANISA = NISAC/NISAF × 100%, (33)

where AISA and ANISA represent the percent accuracy of ISA and non-ISA; ISAC represents
the area of a common region of ISA between FDTC result and each ISA product (GAIA
or DW); ISAF represents the total area of ISA obtained by FDTC; NISAC represents the
area of a common region of non-ISA between FDTC result and each ISA product; NISAF
represents the total area of non-ISA obtained by FDTC.

4. Results and Discussion
4.1. Parameter Analysis for FDTC

Extraction of ISA and land cover was carried out using FDTC based on the multiple-
feature dataset consisting of NDWI or MNDWI, BCI, BSI or MFI, WI, and TB. The parameter
values obtained from the dataset spanning from 2009 to 2021 are presented in Table 3.
Some FDTC parameters were relatively stable, and others varied only slightly, except for
TB. Given the significant effects of season and climate change on surfaces, the surface
temperature varies greatly. We found that the TB calculated from winter images has
difficulty distinguishing water bodies, roads, and building shadows. Therefore, in the years
2019 and 2021, we used summer TB images to replace winter TB images (September 2019
and July 2021, respectively). The threshold of the water parameter (i.e., MNDWI or NDWI)
is approximately zero, and the water parameter for Sentinel-2 images is higher than that for
Landsat images. The threshold of the ISA parameter (BCI) can range from 0.05 to 0.14 due
to different sensors and seasons. The WI varies from 0 to −0.16 due to different sensors
and various ocean tides caused by lunar gravity.

Table 3. Parameters of FDBC derived from three sensors in Xiamen.

Sensor Type Year MNDWI/
(P1)

NDWI
(P1s)

BCI
(P2)

BSI and BCI
(P3 and P4)

MFI and BCI
(P3s and P4)

WI
(P5) TB(P6)

Landsat-5 2009 −0.05 / 0.13 0.17 and 0.75 / −0.10 301.00
Landsat-8 2018 0 / 0.06 0.15 and 0.4 / −0.04 292.86
Sentinel-2 2019 / 0.09 0.05 0.25 and 0.4 −0.15 299.70
Landsat-8 2021 / 0.02 0.14 0.13 and 0.4 0 299.80



Sustainability 2023, 15, 7947 14 of 27

Figure 6 shows the land cover map covering the northeast of Xiamen Island, Xiang’an
new town, and their adjacent sea area using the FDTC. The FDTC effectively separates
ISA from bare land by using the BCI and the BSI or MFI. It uses WI combined with BT to
distinguish wetlands from ISA and high-rise buildings.
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Due to rapid urbanization, more high-rise buildings have sprung up (Figure 7). Far
more high-rise buildings appeared after 2019 than in 2009. Compared with two 30 m land
cover images for both the 2009 Landsat 5 TM and 2021 Landsat 8 images, FDTC produces a
10 m land cover image for the Sentinel-2 image and thus significantly improves the spatial
details of the land cover. For ISA and land cover studies on an urban scale, higher spatial
resolution is always desired. A fine-scale map with intricate spatial details allows urban
planners to understand and examine how ISA structures and urban land cover affect living
conditions. Therefore, Sentinel-2 images should play a more important role in the study of
urban ISA and land cover in the future.

4.2. Analysis of Classification Accuracy for ISA

Figure 8 displays the OA, KC, and MICE of ISA maps generated using FDTC and the
other three methods applied to four-period images. The FDTC method achieves higher OA
values of 94.40%, 93.41%, 95.05%, and 95.27% in 2009, 2018, 2019, and 2021, respectively,
compared to BCI (85.16–85.71%) and PISI (87.25–88.90%), as well as ABEI (88.13–90.02% in
2018 and 2021). KC and MICE values are also higher for FDTC results than those obtained
from other methods. MICE values are usually smaller than KC values due to their ability
to handle class-imbalance effects [62]. For instance, while the KC value is 0.675 for BCI in
2021, MICE yields a lower value of 0.640.

The FDTC method produces a high average OA of 94.53%, a KC of 0.855, and a MICE
value of 0.851. The average OA increases by 9.93%, 7.58%, and 6.20% compared with the
corresponding values for BCI, PISI, and ABEI. The average KC values increase by 0.212,
0.183, and 0.151 compared with those for BCI, PISI, and ABEI. The average MICI values
increase by 0.256, 0.190, and 0.160 compared with those for BCI, PISI, and ABEI. Therefore,
compared to the other three indices, the proposed technique yields more accurate results.

Figure 9 shows spatiotemporal changes in ISA maps obtained from the FDTC and
other indices. The other three indices are mislabeled as ISA large areas of bare land and
wetland. Furthermore, many hill shadows are mislabeled as ISA (Figure 9i) by the PISI
method since the sun elevation angle is smaller in 2021 than that in other years. This shows
that when using the PISI method in images with a smaller solar elevation angle, its accuracy
may be impacted. Further data are needed to verify this notion.
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Figure 8. Comparison of ISA classification accuracy by OA (a), KC (b), and MICE (c) using different
methods from 2009 to 2019.
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For all images, the accuracy obtained by the FDTC exceeds that obtained by the other
methods. The FDTC method displayed high accuracy stability in four images with diverse
surfaces and environmental conditions compared to other methods, as confirmed by the
accuracy assessment results.

4.3. Comparison of ISA Classification Accuracy with Related Methods

Table 4 compares our results with those of previous studies using various indices.
Tian et al. [26] used PISI to map the ISA distribution in four cities in China and estimated an
average OA of 93.40% and a KC of 0.87. Firozjaei [28] used data from Landsat 8 and ABEI
to generate an OA of 88.46% and a KC of 0.87. Xu [29] obtained an ISA map based on NDIS
and achieved an OA of 90.70% and a KC of 0.81. Waqar et al. [30] applied NBAI to extract
ISA and reported an average OA of 86.87% and a KC of 0.73. Bouzekri et al. [31] prepared
an ISA map-based BAEI and achieved an OA of 92.66% and a KC of 0.85 for Landsat 8.
Kaimaris et al. [33] delineated the ISA map using Landsat ETM+ and BUI method and
estimated an OA of 90% and a KC of 0.8. Bouhennache et al. [34] prepared an ISA map
using BLFEI and estimated an OA of 95% and a KC of 0.9 for Landsat 8. For Sentinel-2
and Landsat-8 images, Deliry et al. [38] developed the OB- NNC method and obtained an
OA of 90.91% and 88.64% and a KC of 0.82 and 0.77, respectively. Therefore, the results
obtained by FDTC compare well with those obtained from other remote sensing indices.

Table 4. Comparisons of ISA classification accuracy with other related studies.

Authors Methods Sensors OA% KC

Tian et al. [4] PISI Landsat 8 89.51~96.50 0.79~0.93
Xu [29] NDISI Landsat ETM+ 90.70 0.81
Firozjaei et al. [28] ABEI Landsat 8 92.04~97.62 0.90~0.96
As-syakur et al. [32] EBBI Landsat ETM+ 88.98 /
Kaimaris et al. [33] BUI Landsat ETM+ 90 0.8
Waqar et al. [30] NBAI Landsat 5 TM 86.87 0.73
Kebede et al. [37] NBAI Sentinel-2 93~97 0.86~0.92
Bouhennache et al. [34] BLFEI Landsat 8 95 0.9
Bouzekri et al. [31] BAEI Landsat 8 92.66 0.85

Deliry et al. [38] OB-NNC Sentinel-2
Landsat 8

90.91
88.64

0.82
0.77

Hua et al. (this study) FDTC Landsat 5 TM 94.40 0.84
Landsat 8 93.41~95.27 0.83~0.89
Sentinel-2 95.05 0.87

4.4. Comparison with Open-Source ISA Products

Table 5 compares the percent accuracy from our classification results with those of the
two open-source ISA products (GAIA and DW). In the common regions between the FDTC
and each ISA product, the average AISA and ANISA are 86.25% and 90.41%, respectively.
The analysis reveals that our results are entirely consistent with currently published ISA
products (Figure 10).

Table 5. Percent accuracy between classifications achieved by FDTC and open-source ISA products
in common regions.

Year ISA Product Type AISA (%) ANISA (%)

2009 GAIA 73.25 98.54
2018 GAIA 80.47 96.81
2019 DW 91.91 82.89
2021 DW 99.37 83.41

Average 86.25 90.41
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Figure 10. The ISA maps showing for two open-source ISA products (OSPs): GAIA and DW, from
2009 to 2021.

Figure 10 displays unique distinctions between our classifications and two open-
source products due to the various classification techniques. The area mapped ISA with
GAIA is slightly less than our results (Figure 10a,b). Many pixels that should be fallow
ISAs generated by coastal reclamation in the study area were divided into non-ISAs in
GAIA. However, the area mapped ISA with DW is considerably larger than our results
(Figure 10c,d). Many pixels that should be vegetation areas with low coverage (e.g., fallow
land) in the study area were misclassified as ISAs in DW. The analysis showed that the
FDTC could achieve results similar to open-source ISA products, proving the feasibility of
the proposed method.

4.5. Analysis of Classification Accuracy for Land Cover

Table 6 summarizes the accuracy assessment for land-cover classification based on the
FDTC. The overall accuracy of the four-period land cover maps using the FDTC method
ranges from 90.77% to 92.74%. Both KC and MICE vary from 0.865 to 0.895 (Table 6).
The average OA, KC, and MICE values are 91.54%, 0.877, and 0.877, respectively. The
three metrics of classification assessment indicate that the classification is reasonable for
real-world image classifications.
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Table 6. Summary of land-cover accuracy using FDTC from 2009 to 2021.

Sensors Date OA (%) KC MICE

Landsat 5 TM June 2009 91.10 0.869 0.869
Landsat 8 OLI March 2018 90.77 0.865 0.865

Sentinel-2 November 2019 91.54 0.879 0.879
Landsat 8 OLI December 2021 92.74 0.895 0.895

Note: OA is overall accuracy; KC is overall kappa coefficient; MICE is map-level image classification efficacy.

4.6. Spatiotemporal Land-Cover Changes

The study region’s land cover distributions and area percentages from 2009 to 2021
are depicted in Figures 11 and 12, respectively. Over the last 13 years, ISA saw the most
significant increase among the four land-cover classes, rising from 16.33% to 26.17%. The
urban ISA expansion was predominantly achieved by occupying vast areas of vegetation,
encroaching upon bare land, and reclaiming coastal regions. Vegetation decreased the
most over the study period, from 57.76% to 51.37%. Since the majority of forestland can be
concentrated in hilly regions that are unfavorable for urban ISAs, farmland is primarily
losing vegetation rather than forestland in Xiamen. Water bodies and beaches experienced
the second-largest decrease, from 23.55% to 20.64%. A “cross-island development” strategy
that was implemented to encourage the transformation of Xiamen from a tiny island city
to a huge bay-like metropolis may be the main cause of the decrease in water bodies and
wetlands [67].
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from 2018; (c) Sentinel 2 image from 2019; (d) Landsat 8 image from 2021.
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Figure 12. Land cover changes in the study area from 2009 to 2021.

Bare land is an important land-use type. The total area of bare land monitored in
Xiamen was 56.33 km2 in 2009, accounting for 2.56% of the total area of Xiamen. In 2021,
the percentage dropped to 1.81%. Figure 7 shows that four urban villages changed from
ISA (Figure 7—2019C) to bare land (Figure 7—2021C) in the Huli district. The bare land is
viewed as a source of dust pollution because fine particles of bare soil are easily transported
into the atmosphere by the wind and then cause air pollution. The local government has
taken important measures (“blue sky defense battle”) to control dust pollution and continue
to improve the ambient air quality. For example, the bare land in the construction areas can
be temporarily covered with dust-proof nets (green plastic nets), and the long-term reserve
lands may be planted with suitable green vegetation.

4.7. Spatiotemporal ISA Changes

Figures 13 and 14 show significant changes in ISA expansions in Xiamen from 2009
to 2021. The results show that the ISA increased dramatically over the study period from
318.95 km2 in 2009 to 511.11 km2 in 2021, representing a 0.60-fold increase over the past
13 years (Figure 13), or an average annual increase of 14.78 km2/year. The rates of increase
in ISA in the two stages differ. In the first stage, the increase in ISA occurs between 2009 and
2018, when the ISA grows by 124.20 km2, for an average annual increase of 13.80 km2/year.
In the second stage, the average annual increase in ISA between 2018 and 2021 exceeds that
in the first stage by reaching 16.99 km2/year.

Figure 14 revealed that the boost in ISA in Xiamen from 2009 to 2021 was achieved at
the expense of natural resources such as vegetation, water bodies, and bare land. A signifi-
cant portion, specifically 71.75%, of the newly developed ISA was taken from vegetated
areas, resulting in a loss of more than 12.98 km2 of vegetated land per year. Additionally,
14.01% of the new ISA was obtained from converting water bodies, primarily sea areas
abutting the land, while 14.23% came from converting bare land.
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Bay, E—Xiang’an new urban area, F—Xiamen second international airport under construction.

The surrounding areas of Haicang Bay, Malyuan Bay, Xinglin Bay, Tong’an Bay, Xi-
ang’an new urban areas, and the second airport of Xiamen witnessed the most significant
increase in ISA (Figure 14). The ISA increase in Xiamen is characterized by the bay-like
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form of the city. Two main reasons may explain this urban pattern: Firstly, the ISA sprawl
is constrained by the coastal line. Secondly, to alleviate population pressure on Xiamen
Island, a novel policy called “the cross-island development strategy” was implemented
in 2002 to guide the excessive population on Xiamen Island to the mainland. Four new
urban areas located in four bays (Haicang Bay, Maluan Bay, Xinling Bay, and Tong’an Bay)
witnessed rapid population growth, strong economic growth, and a rapid increase in ISA
increase. The four new urban areas accounted for about 47.29% of the total population
in Xiamen in 2010, and the percentage reached about 60.47% at the end of 2021. What is
remarkable is that Jimei District tops the list for the first time with 1.078 million people in
2021, accounting for more than 20% of the total population in Xiamen.

According to Figure 14, the second airport in Xiamen is well in progress. The new
airport, located on Dadeng Island of the Xiang’an District, is a rare island-type airport and
an important international cargo port. The land-reclamation area of the airport will be
approximately 8.23 km2. The project has two phases. It will be a 4F-level airport that can
handle various large aircraft and have an annual passenger throughput of 45 million in the
first phase and 85 million in the second phase.

Coastal reclamation is one of the most crucial strategies for supplying land re-
sources to accommodate a rising population in coastal cities. However, coastal recla-
mation may impact the quality of the maritime ecosystem, including a decline in tide
absorption and an increase in mild ocean pollution. A proper balance must be reached
between the rate and size of ISA expansion and the demand for marine ecosystem
services. In fact, dredging and regulation projects in the sea have produced impressive
achievements over the past ten years.

While the total area of vegetation greatly decreases over the study period in the
rapidly urbanizing area, the vegetation increases in some areas. This appears clearly in
the northeast of Xiamen Island by comparing Figure 7. Our data reveal an impressively
pronounced greening pattern in some areas of Xiamen City. The effect comes in large part
from the ambitious park greening program and massive and intensive redevelopment of
urban villages in Xiamen City. The findings support those of Zhang et al. [68], who found
that the urbanized environment had both direct and indirect effects on vegetation growth,
using 1 km-resolution data from 672 global cities.

The policy of redevelopment of urban villages was implemented in the 1980s when
it was mainly occurring on Xiamen Island. The strategy aims to transform urban villages
into high-rise residential areas while boosting green land cover. In the last ten years,
the redevelopment of urban villages has appeared throughout Xiamen City due to rapid
urbanization. Xiamen has more than 100 urban villages that have unique characteristics,
with dense old low-rise buildings, low vegetation cover, crowded streets, and deep lanes.
At present, some of them have been demolished and transformed into high-rise residential
areas with high vegetation cover. Therefore, re-planning of urban villages and transforming
them from urban villages to high-rise residential areas is an important approach to mitigate
population and increase vegetation.

The policy to increase park greening aims to expand the green space of urban parks by
building new parks or renewing the existing parks. Xiamen’s green space has been greatly
expanded since 2016. Xiamen had 120 parks covering 26.04 km2 in 2016, which rapidly
increased to 342 parks with 83.68 km2 of green space and 40.52 km2 of green buffers by the
end of 2020. The parks include various types, from large comprehensive urban parks to
small community parks. Community parks are also called pocket parks and provide space
for fitness, leisure, sightseeing, etc., which significantly improves the livability of the city
and the happiness of its citizens.

5. Summary and Conclusions

In this study, we propose an FDTC algorithm to extract ISAs and the corresponding
land cover from Landsat 5 TM, Landsat 8 OLI/TIRS, and Sentinel-2 images from 2009
to 2021 in Xiamen City, a coastal city in China. The performance of the FDTC was as-
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sessed and compared with that of three other indices. Furthermore, we also explored the
spatiotemporal variations in ISA and land cover in the study area.

The process of atmospheric correction is a crucial preprocessing step essential for
numerous remote-sensing applications. In this study, a simplified DOS atmospheric correc-
tion model was first developed based on the original DOS model. However, the original
DOS model invokes relatively complicated computations for atmospheric correction, so we
developed a modified DOS to simplify the computation and facilitate application.

The aim of this study was to introduce a new FDTC method that can extract accurate
ISA information from different medium- and high-resolution remotely sensed images by
eliminating or reducing interference from wetlands, bare land, and vegetation. The results
show that the FDTC approach performs better than other methods, such as BCI, PISI, and
ABEI, for ISA extraction, achieving an average OA of 94.53%, KC of 0.855, and MICE of
0.851 between 2009 and 2021. In contrast, BCI, PISI, and ABEI produced lower average
OA, KC, and MICE values. Additionally, using the proposed FDTC method for land cover
mapping produced satisfactory results, with an average OA of 91.54%, KC of 0.877, and
MICE of 0.877 from 2009 to 2021. The findings also suggest that the FDTC method compares
well with other remote sensing indices and two open-source ISA products.

The FDTC method greatly improves the classification accuracy of ISA because the
FDTC has some advantages. First, multispectral features (e.g., BCI, NDWI, MNDWI,
BSI, WI, TB) were combined, and specialized knowledge was applied to avoid spectral
confusion. The FDTC method adheres to a definite set of classification rules that remain
consistent or undergo minor alterations. In addition, it separates ISA from bare land by
using BCI and BSI or MFI, and it distinguishes wetlands from ISA and high-rise buildings
by combining WI with TB.

The results show that ISA increased 0.60-fold over the past 13 years. The occupancy
of vegetation, encroachment of bare land, and reclamation of coastal areas were the main
causes of ISA’s rapid expansion. The ISA increased most in the areas surrounding Haicang
Bay, Malyuan Bay, Xinglin Bay, Tong’an Bay, Xiang’an new urban areas, and the second
airport of Xiamen. Xiamen features a bay-like urban structure as a result of a past urban
development strategy (“cross-island development”) coupled with the coastline’s natural
restrictions on ISA expansion. Some areas in Xiamen became greener than they were 10
years ago. Our findings indicate a strikingly prominent greening pattern in some areas of
Xiamen. The impact is primarily attributed to an ambitious park greening program and a
massive and intensive redevelopment of urban villages in Xiamen City.

This study presents useful techniques for correcting atmospheric effects on remote
images and mapping urban ISA and land cover, which facilitates the planning of sustain-
able urban structures. Nevertheless, this proposed method has some limitations. First,
the parameters of the model cannot be calculated automatically. Thus, it is crucial to
combine FDTC with the effective remote sensing image segmentation algorithm to ob-
tain the parameters in a timely manner. Second, because FDTC uses a thermal infrared
band to distinguish wetlands from high-rise buildings, some mixed pixels are generated
when FDTC is applied to high-resolution Sentinel-2 images. In order to overcome this
problem, the thermal infrared images must be refined by downscaling with land surface
temperature. In addition, we utilized the DOS and sen2cor methods to eliminate the effects
of the atmosphere on Landsat and Sentinel-2 images. However, to compare changes in
FDTC parameters resulting from various atmospheric correction methods, future research
should consider investigating other techniques, such as ACOLITE. Finally, this study uses
FDTC only in one coastal city, so further experimentation should consider other areas with
different environmental conditions using more medium- and high-resolution images.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su15107947/s1, Figure S1. Comparisons of coefficient
of variation (CV) for the raw images and their corrected products by atmospheric correction methods
from 2009 to 2021.

https://www.mdpi.com/article/10.3390/su15107947/s1
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Abbreviations

DTC Decision tree classification
FDTC Feature approach based on decision tree classification
ISAs Impervious surface areas
NDWI Normalized difference water index
MNDWI Modified normalized difference water index
MFI Mangrove forest index
BSI Bare soil index
BCI Biophysical composition index
GI Greenness index
BI Brightness index
WI Wetness index
TB Bright temperature
HSR high-rise building shadows mixed with little roads
DN Digital number
θ Sun zenith angle
TOA Top-of-the-atmosphere reflectance
DOS Dark object subtraction
COST A particular DOS approach calculating atmospheric transmittance using θ

TAUv Atmospheric transmittance along the path from the earth’s surface to the sensor
TAUz Atmospheric transmittance along the path from the sun to the earth’s surface
OA Overall accuracy
KC Overall kappa coefficient
MICE Map-level image classification efficacy
AISA Percent accuracy of ISA in common region between FDTC results and each ISA product
ANISA Percent accuracy of non-ISA in common region between FDTC results and each ISA product
GE Google Earth
PISI Perpendicular impervious surface index
ABEI Automated built-up extraction index
NDISI Normalized difference impervious surface index
NBAI Normalized built-up area index
BAEI Built-up Area Extraction index
BUI Built-up index
EBBI Enhanced built-up and bareness index
BLFEI Built-up land features extraction index
OB-NNC Object-based nearest neighbor classification
OSPs Open-source ISA products
GAIA Global artificial impervious area
DW Dynamic world
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