
Citation: Qadr, D.B.; Talabany, A.F.

Compaction Effort Evaluation of

Crumb Rubber Modified Hot Mix

Asphalt. Sustainability 2023, 15, 7839.

https://doi.org/10.3390/su15107839

Academic Editors: Shuangqiao Yang,

Qingye Li and Dong Tian

Received: 6 April 2023

Revised: 3 May 2023

Accepted: 7 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Compaction Effort Evaluation of Crumb Rubber Modified Hot
Mix Asphalt
Dlzar Bakr Qadr * and Aso Faiz Talabany

Civil Engineering Department, College of Engineering, Salahaddin University-Erbil,
Erbil 44001, Kurdistan Region, Iraq; aso.talabany@su.edu.krd
* Correspondence: dlzarqadr1984@gmail.com; Tel.: +964-7504727750

Abstract: The primary goal of this study was to obtain the same performance from an asphalt
mixture made using a Marshall impact hammer (MIH) as from asphalt made using a Superpave
gyratory compactor (SGC). This was due to the expense of Superpave equipment compared with
Marshall equipment. A wet process was used to blend the CR with PG 70-16 asphalt. A crushed
stone aggregate was used with a 19 mm nominal maximum aggregate size, and the samples were
prepared using an SGC and an MIH. The results show that nine percent CR was determined to be
the optimum crumb-rubber content (OCRC). In addition, the SGC provided excellent performance
in Marshall stability, density, tensile strength, and compressive strength at different numbers of
blows and gyrations compared with the MIH. Moreover, the MIH required approximately 21, 21, 18,
and 24 extra blows to obtain the same stability, density, tensile strength, and compressive strength,
respectively, as the SGC at the design number of gyrations (Ndesign). Furthermore, modified mixtures
at the OCRC increased the compressive strength in the range from 16 to 48 percent and had higher
values on the index of retained strength than unmodified mixtures. As a result, they provided
mixtures with less susceptibility to moisture damage. The significance of this study is that asphalt
that performed the same as Superpave samples was obtained using only Marshall equipment.

Keywords: crumb rubber; nominal maximum aggregate size; Superpave gyratory compactor; Marshall
impact hammer; moisture sensitivity

1. Introduction

A key component of transportation infrastructure is the roadway system. It is challeng-
ing to build a road with uniform compaction that is close to the required specifications [1].
However, to construct roads with a sufficient degree of compaction and to provide a long
service life, appropriate hot-mix asphalt (HMA) compaction is required [2]. The perfor-
mance of flexible pavements is greatly influenced by the compaction of the asphalt mixtures.
The degree and technique of compaction have significant impacts on mixing character-
istics, including the density and air voids. Permanent deformation and fatigue cracking
are two pavement performance indicators that are influenced by volumetric analysis and
compaction efforts [3].

The results of the evaluation process and the compaction technique that are employed
are both factors in how different laboratory compaction methods differ from one another.
A mix design procedure’s objective is to blend aggregates and asphalt in a way that can
deliver the appropriate degree of performance. It is crucial to use realistic methods for
assessing the strength of HMA. One of the factors that influences the strength of the HMA
is the method used to produce a test sample in the lab that exactly simulates the structure
of the paving mixture when it is implemented in the field [4–6].

The quality of the construction methods that are utilized greatly impacts how well
asphalt pavement performs. Even if an asphalt mix is well designed and well produced, the
performance of the pavement will decrease if the compaction process is not adequate during
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paving and construction. Consequently, the degree of compaction should be considered
one of the primary quality characteristics of HMA throughout design, production, and
placement in the field [7–9].

The quality and durability of asphalt are greatly influenced over time by its initial
properties, which can result in pavement distresses such as permanent deformation, fatigue
cracking, and thermal cracking. In addition to these distresses in asphalt pavement, rapid
increases in traffic volume, including high axle loads, and variations in temperature from
night to day and from the coldest temperature in winter to the hottest temperature in
summer affect the quality of the asphalt. Therefore, asphalt modifications are becoming a
necessity in asphalt mix design, specifically using the Superpave mix design method [10].

Researchers have made several attempts in recent decades to create a modifier that
would be able to enhance the rheological properties of an asphalt binder. The scholars
discovered that adding crumb rubber modifier (CRM) increased the asphalt’s elastic com-
ponent, which indicated that an asphalt mixture would recover when the imposed tension
from wheel tracks was removed [11–13].

Prior studies demonstrated that CRM combined with an asphalt mixture provides a
pavement mixture that can reduce traffic noise, minimize maintenance costs, decrease the
environmental pollution, and increase the resistance to permanent deformation [14] and
thermal cracking [15]. As a result, most countries increased their utilization of rubberized
asphalt in HMA [16].

Scrap tires are not a recyclable material, and they pollute the environment. The
problem is how to dispose of around 1.5 billion scrap tires annually worldwide, which has
raised severe environmental concerns in several nations [17–19]. They have been residing
in waste areas and pose a hazard to the surrounding environment and to people, plants,
and animals. Therefore, the asphalt industry is now focusing on environmentally friendly
pavement infrastructure improvements as a substitute for increasing the usage of waste
materials and to enhance and improve the performance of HMA [20].

The history of using CRM in asphalt pavements can be traced back to the 1960s in
the US. At this time, waste from scrap tires was used as a modifier and was developed by
an engineer (Charles McDonald) by mixing crumb rubber (CR) with asphalt to produce a
modified mixture. Since then, specialized engineers have conducted a number of empir-
ical tests on CR [21,22]. These experiments determined that adding crumb rubber to an
asphalt pavement mixture increased the pavement’s durability, skid resistance, resistance
to permanent deformation, and resistance to fatigue cracking [23,24].

Additionally, the marketing of CRM has grown, particularly in the United States and
across the rest of the world. The majority of laboratory tests demonstrate that the majority
of engineering features are enhanced by employing rubberized bitumen in pavement [25].

Generally, there are two kinds of CR, which may be distinguished by the variations
in their surface textures and particle sizes. The methods of grinding used to produce
ambient or cryogenic rubber cause these variations. Ambient CR is produced using a
typical high-powered rubber cracker mill that is configured to produce a crumb rubber
with irregular jagged particles. On the other hand, cryogenic CR is produced using chillers
to freeze rubber that has previously been crushed into tiny crumbs or chips in order to
provide a relatively smooth fracture surface [26].

Normally, there are two methods to produce modified asphalt, which are the wet and
dry methods. In the wet method, fine particles of CR in the range of 0.075 mm to 1.2 mm
are blended with asphalt at a high temperature before being combined with an aggregate
to create CRM asphalt. In the dry method, granulated CR in the range of 0.3 mm to 10 mm
is commonly used to replace a tiny amount of aggregate in the appropriate proportion [27].

Compared to the wet method, the dry method is more economical since it uses a
large amount of CR and requires less energy for the modifying processes in asphalt plants.
However, the dry method is not a powerful method for modifying an asphalt mixture
due to a number of unsolved problems, such as the challenge of obtaining a consistent
mixture and the consequence of swelling throughout compaction [28]. Furthermore, several
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previous laboratory and field studies demonstrated that the dry method typically performs
poorly or improves asphalt little when compared to the wet process [29].

The degree of CR absorption into the asphalt is one of the fundamental factors affecting
the incorporation of CR into asphalt. There are various ways to describe CRM mixing,
but the unique way is the reaction between asphalt and CR. The mixing time, mixing
temperature, and reaction effort are the primary aspects that should be considered during
blending [30].

Typically, there are three classes of mixing temperatures, for example, a low temper-
ature at 160 ◦C, a medium temperature at 175 ◦C, and a high interaction temperature at
200 ◦C. Usually, using CR in the wet process requires a high temperature for blending, but
care should be taken to avoid the flash and fire point temperature of the asphalt that is
used. Regarding the mixing time, it is recommended to be in the range of 45 to 60 min to
enable enough interaction between the asphalt and CR [31].

The main aim of this study was to form a relationship between different compaction
methods, the number of gyrations of a Superpave gyratory compactor (SGC), and the
number of blows of a Marshall impact hammer (MIH) through a comprehensive laboratory
study. Plenty of studies have been conducted comparing Superpave and Marshall mix
design methods, but no one has worked on the differentiation in compaction effort in terms
of the number of blows from an MIH and the number of gyrations in an SGC. Therefore,
the key goal of this study was to obtain the same performance from an asphalt mixture
made using an MIH as from asphalt made using an SGC. This was because Superpave
equipment is more expensive than Marshall equipment. In addition, CRM was used to
assess both mix design compaction efforts and evaluate the performance of HMA using a
moisture sensitivity test criteria for the unmodified and modified mixtures.

2. Goals and Objectives

The main goal of this study was to obtain the same performance from an asphalt
mixture made using an MIH as from asphalt made using an SGC. This was because of
the high cost of the Superpave equipment. Marshall equipment is normally available in
most laboratories. A comprehensive laboratory experimental study was used to form
the required relationships between SGC and MIH in terms of Marshall stability, tensile
strength, compressive strength, and moisture damage. In addition, all the experimental
tests of the modified mixture were conducted using the CRM in order to have the best
relationships using modified and unmodified mixtures. Moreover, the utilization of waste
from scrap tires provided a clean environment. Furthermore, the mechanical properties
were improved by increasing the stability and the tensile and compressive strengths of the
asphalt mixture.

Limitations

Generally, there have been sufficient studies comparing the Superpave and Marshall
mix design methods. The problem is that in the previous studies, the comparison of the
compaction effort did not formulate a relationship between the number of blows in the
Marshall method and the number of gyrations in the Superpave method. Therefore, the
main limitation of this study is the lack of previous data supporting its results.

3. Materials and Methods

The laboratory study started when the materials were collected from three different
sources in three different cities (source A in Erbil, source B in Sulaymaniyah, and source C in
Duhok) in the north of Iraq. Then, the experimental work was separately initiated based on
the standard specifications of the Superpave and Marshall mix design methods, according
to the Asphalt Institute [32], for the three sources of aggregate and asphalt cement. The
aggregate used for the three sources in this study was a crushed stone, and its consensus
properties are shown in Table 1. The asphalt cement used in the study had a performance
grade (PG) of PG 70-16, and its physical properties are shown in Table 2. The CR used in
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the study was from the Iraqi Rubber Company in Baghdad, Iraq. The company used an
ambient grinding technique, and the particles of the CR used in the study passed through
a 0.3 mm sieve and were retained on a 0.15 mm sieve. After that, the core of the study
was initiated through a compaction effort evaluation of HMA for the unmodified and
modified mixtures with CR using SGC and a Marshall impact hammer (MIH). Lastly, the
performance evaluation of unmodified and modified HMA was carried out by conducting
a moisture sensitivity test of the indirect tensile strength and the index of retained strength
according to AASHTO T283 [33] and AASHTO T165 [34], respectively, as shown in Figure 1.
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Table 1. Source and consensus properties of the aggregate used in the study [32].

Aggregate Size Tests
Standard

Specifications

Results
Criteria

Source A Source B Source C

Coarse aggregate

Bulk specific gravity of coarse aggregate ASTM C127 [35] 2.675 2.583 2.622 n/a

Los Angeles abrasion test (%) ASTM C131 [36] 14 23 18 35% Max.

Coarse aggregate angularity, at least on
fractured face (%)

ASTM D5821 [37]

97 96 97 95% Min.

Coarse aggregate angularity with more than
two fractured faces (%) 95 93 97 90% Min.

Percentage of flat particles (%)
ASTM D4791 [38]

1 2 1 10% Max.

Percentage of flat and elongated particles (%) 2 3 0 10% Max.

Fine aggregate

Bulk specific gravity of fine aggregate ASTM C128 [39] 2.734 2593 2.634 n/a

Fine aggregate angularity (%) ASTM C1252 [40] 48 50 49 45% Min.

Sand equivalent (clay content) (%) ASTM D2419 [41] 81 80 84 45% Min.

Table 2. Physical properties of the PG 70-16 asphalt cement used in the study [32].

Tests Standard Specifications
Results

Criteria
Source A Source B Source C

Flash point (◦C) ASTM D92 [42] 265 260 263 230 Min.

Penetration at 25 ◦C (0.1 mm) ASTM D5 [43] 47 48 47 40–50

Softening point (◦C) ASTM D36 [44] 52 51 52 50–58

Ductility at 25 ◦C (cm) ASTM D113 [45] 141 133 147 100 Min.

Specific gravity at 25 ◦C ASTM D70 [46] 1.01 0.99 1.01 1.01–1.06

Elastic recovery (%) ASTM D6084 [47] 17 14 15 n/a

Rotational viscosity at 135 ◦C (Pa·S) ASTM D4402 [48] 0.572 0.569 0.570 3 Max.

G*/sinδ at 70 ◦C (not aged) (kPa)

ASTM D7175 [49]

1.32 1.1 1.27 1.0 Min.

G*/sinδ at 70 ◦C (RTFO) (kPa) 2.42 2.35 2.4 2.2 Min.

G*sinδ at 31 ◦C (PAV) (MPa) 3.1 3.0 3.09 5.0 Max.

Stiffness at −6 ◦C (PAV) (MPa)
ASTM D6648 [50]

56 62 60 300 Max.

Slope at −6 ◦C (PAV) 0.38 0.35 0.39 0.3 Min.

Sample Preparation

The samples were prepared as follows:

i. After confirming the results of the asphalt cement, the source and consensus prop-
erties of the aggregate used in the study were calculated according to the standard
specification criteria of the Asphalt Institute [32], as shown in Tables 1 and 2.

ii. Modified bitumen with CR was prepared by mixing bitumen with CR prior to mix-
ing with aggregate at 160–200 ◦C for 45 min; this was known as the wet process [31].

iii. The Marshall samples were prepared according to ASTM D1559 [51], and the
Superpave samples were prepared according to AASHTO TP4 [52].

iv. In total, 64 Superpave Marshall samples were prepared for each source used in
the study for the design aggregate structure (DAS), design asphalt content (DAC),
optimum asphalt content (OAC), optimum crumb rubber content (OCRC), Marshall
stability, indirect tensile strength test (ITS), and index of retained strength test (IRS),
as shown in Figure 2.
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4. Results and Discussion
4.1. Selection of Design Aggregate Structure (DAS)

The standard Superpave specification criteria were chosen according to a 19 mm
nominal maximum aggregate size (NMAS) and for an equivalent single-axle load (ESAL)
of 3–10 × 106, as shown in Table 3 [32]. The DASs were selected for each source as follows:

i. Source A: Trial blends 1 and 2 failed the voids filled with asphalt (VFA) criteria.
However, these two blends were created with high compaction effort. It is clear in
Table 3 that trial blend 3 had all the criteria; therefore, trial blend 3 was selected
as a DAS.

ii. Source B: Trial blend 3 failed the percentage of voids in mineral aggregate (VMA)
criteria. However, this trial blend was created with high compaction effort. It is
shown in Table 3 that trial blends 1 and 2 had all the criteria, but only one trial blend
was needed. Therefore, on the basis of the closest values of VMA and VFA to the
criteria, it can be observed in Table 3 that trial blend 2 had closer values than trial
blend 1; thus, trial blend 2 was selected as a DAS.



Sustainability 2023, 15, 7839 7 of 23

iii. Source C: All the trial blends passed the requirements of the Superpave criteria, but
in order to choose the best one, it was recommended to select trial blend 1 because
all the parameters that were determined in terms of the volumetric analysis were
close to the required criteria. Therefore, trial blend 1 was selected as a DAS.

Table 3. Selection of best trial blends [32].

Trial Blends Sources Estimated
% AC % Air Voids % VMA % VFA Dust

Proportion
% Gmm at

Nmax
Satisfy Criteria Trial Blend

Selection

1

A

3.58 4 16.1 75.2 0.83 96.8 No

2 4 4 18.6 78.4 1 97.1 No

3 4.2 4 15.6 74.4 0.75 97.1 Yes Selected

1

B

4.58 4 15.3 73.85 1.08 96.7 Yes

2 4.7 4 13.56 70.5 1.06 96 Yes Selected

3 4.58 4 12.76 68.65 1.05 97 No

1

C

4.5 4 13.6 70.58 0.98 96.8 Yes Selected

2 4.66 4 15.32 73.89 0.96 96.9 Yes

3 4.62 4 13.84 71.1 0.95 96.7 Yes

Superpave Criterion 4 13% Min. 65–75% 0.6–1.2 98% Max.

Note: These criteria are according to a 19 mm nominal aggregate size and for an equivalent single-axle load
(ESAL) of 3–10 million.

On the basis of these trial blend confirmations, the same selected trial blends were
used for the Marshall mix design method.

4.2. Selection of Design Asphalt Content (DAC)

On the basis of the estimated asphalt content for the selected best trial blends shown
in Table 3, Superpave recommends selecting four DACs into three parts as follows:

i. Estimated asphalt content;
ii. Estimated asphalt content ± 0.50%;
iii. Estimated asphalt content + 1.0%.

According to the results shown in Table 4, for both HMA design procedures, on the
basis of the volumetric analysis and the stability of the mixtures, the OAC was determined
for each source and mix design method. It can be observed in Table 4 that the OAC
determined using the Marshall method (4.7–4.9%) was higher than that determined using
the Superpave method (4.3–4.5%) for all three sources, whereas the Superpave method
provided higher stability. This means that the Superpave mix design method is more
cost-effective. This result conforms with the previous studies conducted by [53–55]. On the
other hand, if the cost of equipment is considered, MIH is much cheaper than SGC.

4.3. Optimum Crumb Rubber Content (OCRC) Determination

In order to determine the OCRC, four percentages of crumb rubber (CR) were used (6,
9, 12, and 15) based on the previous studies of [56,57] and the 3 percent interval was used
to obtain accurate results. Normally, in the wet process, less CR content is used compared
to the dry process. These percentages of CR were used for each source using both the
Marshall and Superpave mix design methods. Figure 3 illustrates that the stability and
density of all the mixes increased steadily at six percent CR until it reached a maximum
value at nine percent CR. Then, it gradually decreased. Generally, the Superpave mix
design provided the maximum Marshall stability and density in all three sources compared
to the Marshall mix design. However, both mix designs provided the maximum Marshall
stability at nine percent CR. Accordingly, nine percent CR was selected as the OCRC for
both mix design methods. Normally, the optimum CR content is selected on the basis of
excellent performance, and usually, ranges vary from one study to another, depending on
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the parameters that are used. This result has trends that are similar to the results of prior
studies [58–60].

Table 4. Optimum asphalt content (OAC) determination for Superpave and Marshall mixtures.

Sources
Asphalt

Content (%)

Marshall Procedure Superpave Procedure

Air Void (%) VMA (%) VFA (%) Stability (kN) Air Void (%) VMA (%) VFA (%) Stability (kN)

A

3.7 5.83 14.28 59.16 9.55 5.13 13.93 63.18 17.80

4.2 4.46 13.03 65.78 13.86 4.18 15.25 75.00 18.90

4.7 4.03 12.64 68.13 12.67 3.56 18.00 80.20 16.11

5.2 3.46 12.12 71.48 11.11 2.11 17.36 87.83 12.18

OAC 4.70 4.30

B

4.2 6.25 14.45 56.76 15.57 4.43 14.15 68.66 16.72

4.7 4.28 13.11 67.33 16.88 3.67 12.69 71.10 19.31

5.2 3.12 12.51 75.09 15.47 3.26 13.13 75.19 18.28

5.7 2.93 12.80 77.14 12.37 1.97 11.86 83.37 17.28

OAC 4.75 4.40

C

4 7.67 14.88 48.48 11.91 4.84 13.12 63.07 12.36

4.5 5.28 13.13 59.82 12.12 3.96 13.33 65.64 16.52

5 3.74 12.18 69.32 13.88 2.52 11.93 78.83 15.57

5.5 3.41 12.35 72.36 11.91 1.61 11.56 86.11 13.62

OAC 4.9 4.5
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4.4. Relationships between SGC and MIH
4.4.1. Relationship on the Basis of Marshall Stability

In general, SGC and MIH are directly responsible for increasing the density and
Marshall stability of the mixtures in order to provide HMA with a better performance.
However, each method had its own different performance, as presented in Figure 4. The
responses of each mixture to the different numbers of blows in the Marshall method and
the number of gyrations in the Superpave method were different for all three sources (A, B,
and C) used in this study.

As shown in Figure 4, the SGC depended on a kneading technique for compaction,
and it was performed well to achieve excellent Marshall stability for the mixtures from
all sources compared to the MIH. Additionally, even when the modified mixtures at the
OCRC were considered, the Superpave samples performed better in the Marshall stability
than the Marshall specimens.
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Due to the excellent performance achieved by the SGC for the unmodified and mod-
ified samples, it was significant to achieve the same performance using the MIH. This
could be obtained by fixing the Marshall stability value at the design number of gyration
(Ndesign) for the Superpave method, extending the horizontal line to cross the Marshall
line and the vertical line to set a new equivalent number of blows that provided the same
Marshall stability as the Superpave method at Ndesign, as shown in Figure 4a–c. Based on
this technique, the following results were determined:

i. Source A: In order to achieve the same Marshall stability value as the Superpave
unmodified sample, the MIH required 78 blows (28 extra blows). However, the
modified sample at 9 percent OCRC only required 64 blows (14 extra blows).

ii. Source B: In order to achieve the same Marshall stability value as the Superpave
unmodified sample, the MIH required 70 blows (20 extra blows). In addition, the
modified sample at 9 percent OCRC required 74 blows (24 extra blows).

iii. Source C: In order to achieve the same Marshall stability value as the Superpave
unmodified sample, the MIH sample required 68 blows (18 extra blows). In addition,
the modified sample at 9 percent OCRC required 72 blows (22 extra blows).

Consequently, based on the three sources, as illustrated in Figure 4, it can be observed
that the average numbers of blows required by the MIH in order to achieve approximately
the same Marshall stability as the SGC were 72 blows (22 extra blows) for unmodified
mixtures and 70 blows (20 extra blows) for modified mixtures at 9 percent OCRC. This
is because the SGC used a kneading technique instead of impacting and compacting the
mixtures at rotating angles, which provided a better aggregate skeleton for the asphalt
mixtures. The results of this study confirm the results of previous research [54,61–65].

4.4.2. Relationship on the Basis of Density

Generally, the density of HMA increases by increasing the compaction effort. Usually,
the density of unmodified mixtures is greater than that of modified mixtures, as demon-
strated in Figure 5 for all three sources used in this study. This is due to the effect of the
light weight of the CR portion that is used instead of the portion of asphalt cement in the
wet process or the aggregate in the dry process.
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Considering the density determined using the SGC and MIH methods, it can be
observed in Figure 5a,b that for the unmodified and modified samples from sources A
and B, the Marshall specimens required approximately an average of 73 blows (23 extra
blows) in order to obtain the same density as the Superpave specimens at Ndesign. The
unmodified and modified specimens from source C required 68 and 63 blows, respectively
(18 and 13 extra blows, respectively), as shown in Figure 5c. Accordingly, an average of
71 blows (21 extra blows) was required for all three sources used in this study. The SGC
provided higher density and lower air voids than the MIH due to better simulation of field
compaction. The results of this study conform with those of previous studies [61,66,67].

4.5. Moisture Sensitivity
4.5.1. Indirect Tensile Strength (ITS)

The evaluation of HMA in terms of moisture sensitivity can be performed on the basis
of ITS test findings, in accordance with the Asphalt Institute’s Superpave mix design [32,33].
This test allows for the determination of the mixture’s tensile strength for unconditioned and
conditioned samples. The tensile strength ratio compares the average of three conditioned
samples to the average of three control samples, and the ratio should be greater than 80%.

Moisture damage is one of the most significant causes that lead flexible pavement
to be distressed after construction while exposing it to heavy rainfall and temperature
variations. Figures 6a, 7a and 8a demonstrate that the tensile strength ratios (TSRs) of
the samples conformed to the standard specifications of the Superpave, which should
be more than 80 percent, except the conditioned Marshall sample modified at 9 percent
OCRC from Source B, which failed the TSR. This may have been due to the effect of the
compaction method, which did not form a strong skeleton in the asphalt mixture compared
to Superpave kneading, but the result was very close to the specification, as shown in
Figure 7a.

It can be observed in Figures 6b,c, 7b,c and 8b,c that the CRM had a positive effect
on the performance of the HMA and increased the tensile strength of the Superpave and
Marshall unconditioned and conditioned samples. However, it is difficult to perceive
whether the effect of the CRM increased or decreased the number of extra blows required
by the Marshall impact hammer to achieve the same tensile strength as with the SGC.

Consequently, the required number of extra blows decreased for the conditioned and
unconditioned specimens from sources B and C, as shown in Figures 7b,c and 8b,c. On
the other hand, for specimens from source A, the required number of extra blows required
to obtain the same tensile strength as with the SGC increased, as shown in Figure 6b,c.
Therefore, the required number of extra blows depended on which compaction technique
was more influenced by CRM and may also have depended on the percentage of asphalt
content, the aggregate gradation, and the source of the material.
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In addition, the improvement of HMA with CRM not only increased the tensile
strength but also formed relationships among different techniques of compaction, and it
might decrease the required compaction effort. Overall, on the basis of the results shown
in Figures 6b,c, 7b,c and 8b,c, the MIH required approximately an average of 67 blows
(17 extra blows) in order to obtain the same tensile strength as the SGC at Ndesign for
modified mixtures and an average of 69 blows (19 extra blows) for the unmodified mixtures,
as averages of all three sources used in this study. The superiority of Superpave samples
compared to Marshall samples was due to the fact that in the SGC method, the interaction
between aggregate particles created a stronger bond, and the kneading technique during
compaction also increased the shear strength of the asphalt mixture. Previous studies
confirmed the results of this study, such as [54,61–63,65].

4.5.2. Index of Retained Strength (IRS)

The loss of compressive strength resulted from the influence of water on HMA for the
conditioned sample. The conditioned compressive strength to unconditioned compressive
strength ratio is known as the IRS. The IRS is one of the parameters, next to ITS, that
is used to assess an asphalt mixture’s moisture susceptibility. The lower the ratio, the
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more susceptible a mixture is to moisture. This test was carried out according to ASTM
D1075 [68] and AASHTO T165 [34].

Effect of the Number of Blows and Gyrations on the Compressive Strength

The compressive strength of the Superpave and Marshall samples was increased by
increasing the number of blows and gyrations for unmodified, modified, unconditioned,
and conditioned samples from all three sources used in this study. However, the Superpave
samples had higher compressive strength values than the Marshall samples with an equiv-
alent number of blows, as shown in Figures 9–11. The number of extra blows required by
the MIH in order to obtain the same compressive strength as with the SGC at Ndesign was
approximately the same for sources A and B, and it was around 76 blows (26 extra blows).
However, source C required a lower number of extra blows (around 71 blows (21 extra
blows)). As a result, an average of 74 blows (24 extra blows) was required by all three
sources in order to obtain the same compressive strength as with the SGC at Ndesign, as
demonstrated in Figures 9–11. The superiority of the Superpave samples over Marshall
samples can be attributed to the fact that in SGC, the interaction between aggregate particles
created stronger bonds, and the technique of kneading used during compaction improved
the compressive strength of the asphalt mixture. The results of this study have a trend
similar to the results of previous studies, such as [64,69].

Effect of CRM on the IRS at Different Numbers of Blows and Gyrations

Generally, the techniques of compaction procedures have a great effect on IRS results.
As shown in Figure 12, there was a significant difference between the Superpave and
Marshall mix design results in terms of the IRS percentage. The Superpave mix design had
better results, but overall, both mix designs had reasonably acceptable results; however,
the Marshall design failed to satisfy the criteria of 80 percent IRS at four compaction levels
for unmodified specimens from sources A, B, and C.

Additionally, due to the fact that the modified samples provided a higher IRS per-
centage and a higher compressive strength than the unmodified samples, as shown in
Figures 9–12, it was demonstrated that adding CRM, in addition to increasing the compres-
sive strength, provides a mixture with a high susceptibility to moisture damage.

Effect of CRM on Compressive Strength

The modified Superpave and Marshall samples provided greater compressive strength
than the unmodified specimens from all three sources used in this study, as shown in
Table 5. This test was carried out according to ASTM D1075 [68] and AASHTO T165 [34].
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Table 5. Effect of CRM on the compressive strength.

Sources

Superpave Samples Marshall Samples

Number of
Gyrations

Compressive Strength (MPa) Number
of Blows

Compressive Strength (MPa)

Modified Unmodified Percentage Increase (%) Modified Unmodified Percentage Increase (%)

Source A

40 2.55 2.04 25 20 2.23 1.81 23

80 3.21 2.50 29 40 2.89 2.05 41

120 4.08 2.75 48 60 3.13 2.35 33

160 4.48 3.26 38 80 3.85 2.89 33

Source B

40 3.31 3.06 8 20 2.80 2.20 27

80 3.92 3.62 8 40 3.37 2.74 23

120 4.74 3.97 19 60 3.67 3.49 5

160 5.10 4.74 8 80 3.88 3.55 9

Source C

40 3.52 3.21 10 20 2.50 2.01 24

80 4.23 3.82 11 40 3.28 2.82 17

120 4.54 4.18 9 60 4.19 3.42 22

160 5.30 4.59 16 80 4.76 4.37 9

Consequently, if the percentage that the compressive strength increased was consid-
ered being due to the effect of CRM, it can be seen in Table 5 that the compressive strength
values of the Superpave and Marshall samples increased by 48 and 41 percent for source A,
19 and 27 percent for source B, and 16 and 24 percent for source C. Therefore, adding CRM
to HMA is essential to improve the compressive and tensile strengths of an asphalt mixture
in order to reduce the possibility of pavement distress, such as permanent deformation.
The mechanism of the improvements in the mechanical properties of asphalt mixtures is
attributed to an increase in the elastic response of the viscoelastic part of the asphalt cement
in the entire mixture. This helps in recovering after a load has been applied and specifically
provides resistance to permanent deformation. The results of this study conform with the
results of [70].

5. Conclusions

A comprehensive experimental study was conducted in order to evaluate the perfor-
mance of compaction effort and to check the moisture sensitivity between the SGC and
the MIH for the unmodified and modified mixtures with CRM using the Superpave and
Marshall mix design methods. The conclusions can be concisely summarized as follows:

i. The percentage of the optimum asphalt content determined using the Superpave
mix design was lower than that determined using the Marshall mix design for the
three sources used in this study. This reveals that the Superpave mix design is more
economical.

ii. In comparison to the Marshall mix design, the Superpave mix design provided
the highest level of stability for all sources. However, at 9 percent CRM, both mix
designs provided maximum stability. Therefore, 9 percent CR was selected as the
OCRC in this study.

iii. Based on the various numbers of blows and gyrations, the Superpave mix design
provided higher stability than the Marshall mix design for the three sources that
were used and even for the modified mixtures at the OCRC.

iv. The Superpave mix design provided higher tensile and compressive strengths than
the Marshall mix design for the unmodified and modified mixtures, whereas the
modified mixtures provided greater tensile and compressive strengths than the
unmodified mixtures.

v. Because of the excellent performance (stability, density, indirect tensile strength,
and compressive strength) achieved by the SGC for the unmodified and modified
mixtures at the OCRC, it was important to attain the same performance using the
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MIH at Ndesign. The average numbers of extra blows (after 50 blows) required by the
Marshall samples to obtain the same performance as with the Superpave samples,
based on the three sources that were used, were approximately 21 extra blows for
stability, 21 extra blows for density, 18 extra blows for tensile strength, and 24 extra
blows for compressive strength.

vi. The superiority of the Superpave compaction method using the SGC over the MIH
was due to the effect of kneading during compaction, which increased the shear
strength of the mixture and improved the tensile and compressive strengths of the
asphalt mixture.

vii. The Marshall samples failed to satisfy the 80 percent criteria of the IRS at four
compaction levels from unmodified sources A, B, and C, while the Superpave
samples satisfied these criteria for all compaction levels from all the sources that
were used.

viii. In addition to increasing the compressive strength in the range from 16 to 48 percent,
CRM also provided a higher IRS percentage than the unmodified mixtures. This
allowed the mixtures to have more resistance to permanent deformation and
moisture damage.

The main significant finding of this study was determining the possibility of using
MIHs instead of SGCs in laboratories at an equivalent number of blows corresponding to
the Ndesign number of gyrations. It is recommended to use asphalt pavement performance
tests such as wheel tracking, the repeated load axial test, and the indirect tensile stiffness
test using styrene butadiene styrene (SBS) in future studies.
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