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Abstract: This paper proposes a new, metaheuristic optimization technique, Artificial Gorilla Troops
Optimization (GTO), for a hybrid power system with photovoltaic (PV) and wind energy (WE)
sources, solving the probabilistic optimum power flow (POPF) issue. First, the selected algorithm
is developed and evaluated such that it applies to solve the classical optimum power flow (OPF)
approach with the total fuel cost as the objective function. Second, the proposed algorithm is used for
solving the POPF, including the PV and WE sources, considering the uncertainty of these renewable
energy sources (RESs). The performance of the suggested algorithm was confirmed using the standard
test systems IEEE 30-bus and 118-bus. Different scenarios involving different sets of the PV and
WE sources and fixed and variable loads were considered in this study. The comparison of the
obtained results from the suggested algorithm with other algorithms mentioned in this literature has
confirmed the efficiency and performance of the proposed algorithm for providing optimal solutions
for a hybrid power system. Furthermore, the results showed that the penetration of the PV and WE
sources in the system significantly reduces the total cost of the system.

Keywords: probabilistic optimal power flow; renewable energy sources; uncertainties; Monte Carlo
Simulation; K-means clustering; Elbow method

1. Introduction

The OPF is still a significant subject in the community of power-system researchers
since it began almost half a century ago. The OPF is considered a nonlinear, multi-
dimensional, and large-scale problem in the operation of power systems. The primary
purpose of the OPF is to optimize a particular objective function by meeting a group of op-
erational and physical restrictions mandated by equipment and power system restrictions.
The objective function can be divided into single- and multi-objective functions. Examples
of objective functions include the fuel costs for generators, their emission rates, the electric-
ity grid’s losses, and the security index of the voltage. Equality and inequality constraints
involve power-balance equations and limitations on all state and control variables. The
control variables involve the active power of the generator, the bus voltage of the generator,
the transformer tap ratios, and the VAR (volt–ampere reactive) compensators, whereas
the state variables include the reactive power outputs from the generators, the bus load
voltages, and the network line flow. Consequently, the electric utilities use the OPF issue as
an essential tool to describe secure and economically advantageous operational conditions
for power systems.
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The earliest OPF problem was solved using traditional mathematical programming
techniques, successfully proving their viability [1]. Conventional methods of optimization
are used for solving the OPF problem, such as the method of Newton [1], the method of
gradient projection [2], the method of linear programming [3], and the method of interior
point [4]. The conventional optimization methods are accompanied by many difficulties
reported in [5]. Due to the continuously developing optimization issues, several techniques
have been established to solve the OPF; artificial intelligence techniques and meta-heuristic,
search-based optimization methods have been developed for solving the OPF issue. Search-
based optimization methods have been recently used for solving the OPF problem, such as
the particle swarm optimizing algorithm (PSO) [6,7], genetic algorithms method (GA) [8],
enhanced genetic algorithms method [9], differential evolution algorithm method [10,11],
gravitational searching algorithm method (GSA) [12,13], improving colliding bodies al-
gorithm [14], multi-phase searching optimization algorithm [15,16], improved PSO [17],
fuzzy-based hybrid PSO approach [18], biogeography-based optimizing algorithm [19],
black-hole optimization algorithm [20], harmony search optimization algorithm [21], impe-
rialist competitive optimization algorithm [22], grey wolf optimization [23], PSO hybrid
with GSA algorithm [24], and the bee colony optimization algorithm [25]. Several multi-
objective functions for the OPF problem were introduced in [11,17,18,23].

Currently, there is an increase on the grid in the use of RESs such as solar and wind en-
ergy [26,27]. Although RESs have benefits such as lowering pollution and saving resources,
the consequent rise in load uncertainty and associated uncertainty in power production
have created new difficulties in the operation and distribution of power networks. To
successfully integrate those sources into the grid and provide a secure and lucrative power
market, it is critical to manage them properly [26,28]. Therefore, their stochastic nature
must be considered while integrating these sporadic RESs into the grid. Solving the OPF
problem has been significantly difficult because of the uncertainties of the added RESs to
the system. Furthermore, solving the OPF is computationally intensive and impractical
because it necessitates running numerous simulations to consider most of the possible
operating conditions. Both traditional and intelligence-based techniques (deterministic
techniques) for solving the OPF issue have been mentioned in the previous paragraph. Still,
the probabilistic techniques must be considered to address the uncertainty of the RESs.

Probabilistic techniques can offer improved solutions and appropriate accuracy when
considering uncertainties [29,30]. Therefore, it is preferred that the POPF problem is solved
using a probabilistic approach rather than the deterministic point of view, as thoroughly
reviewed by Ramadhani et al. in [31] and Prusty and Jena in [32,33]. In power systems with
numerous PV and wind units, many probabilistic techniques are used in solving the OPF
issue. To obtain the PDF of the PV system’s output power, the two-point estimate method
(2PEM), dependent on the moments’ technique, was introduced in [34]. However, the
moments’ method sometimes produces estimates which do not fall within the parameter
space, resulting in the solution becoming unreliable. The Cornish–Fisher expansion was
presented in [35] to handle the uncertainties of the PV sources Still, this method does not
produce accurate estimations when handling problems that contain non-continuous return
functions and complex structures [36]. A POPF problem with wind power inserted into the
system was presented in [37], and the heuristic approach was used to calculate the PDF of
the wind speed. However, real data must be available to calculate the PDF accurately. The
kernel-density estimation technique estimated the wind speed probability distribution [38].
However, this approach is impractical since the density estimate depends on where the
bins are when they are initially placed. The number of bins increases exponentially as
the number of dimensions increases. According to the Latin hypercube random sampling
technique, the mean–variance skewness methodology for stochastic and nonconvex OPF
incorporating wind energy was developed in [39]. However, this approach is hampered by
the sample points’ statistical dependencies, and it does not appear to be noticeably better
than other random sample methods for sensitive analysis. To obtain the PDF of the power
produced from a wind energy system, the Monte Carlo Simulation (MCS) and its variations
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were taken into consideration in [40,41]. The MCS technique was used to develop an OPF
issue for a power system with PV and WE units [42].

This study formulates and solves the POPF issue with a hybrid power system that contains
wind and solar energy sources. These are the primary contributions made in this paper:

1. Implement and solve the POPF approach while allowing RESs to become more
integrated into the electricity grid using Artificial Gorilla Troops Optimization (GTO).

2. Obtain actual historical data for the summers of four years (2018, 2019, 2020, and 2021). The
whole data are used to mimic a more accurate 24-h summer day and provide curve-fitting
for each hour of data for PV and wind using the Beta and Weibull PDFs, respectively.

3. Combine the MCS with the K-means clustering method to reduce the significant
computational time.

4. Apply the Elbow method to the K-means clustering method to find the optimal initial
number of clusters and reduce the computational time.

5. Solve the POPF for a variable load of a weekend day in summer using the GTO.

The following portions of this paper are arranged: Section 2 presents the problem
formulation, the POPF, and its restrictions and penalty terms. Section 3 introduces the
mathematical models of the RESs. The Monte Carlo Simulation method combined with the
K-means clustering method and the Elbow method is introduced in Section 4. Section 5
offers the Artificial Gorilla Troops optimization algorithm. The simulation results from the
suggested optimization technique applied to the standard IEEE 30- and 118-bus systems
are shown in Section 6, along with a comparison study on several optimization techniques
reported in this paper. Finally, Section 7 concludes the whole study.

2. Problem Formulation

In this study, the proposed GTO method is applied to solve the classical OPF problem
with its objective function implemented to reduce the generation cost. To solve the POPF,
the algorithm’s structure is modified to include the uncertainty and stochastic nature of
RESs and the variable load profiles. The following equations provide a formulation for the
OPF problem:

Minimize : f (q, w) = f1(q, w), f2(q, w), . . . . ., fNobj (1)

Subject to : g (q, w) = 0 (2)

h(q, w) ≤ 0 (3)

where q is the state variable, w denotes the control variable, f (q, w) denotes the objective
function, h (q, w) denotes the inequality constraints and g (q, w) denotes the equality constraints.

2.1. Objective Function

The OPF issue in this study is to reduce the total fuel cost of conventional generators.
An equation formulates the cost function in the quadratic form of the real power generated.
The cost function can be mathematically formulated in Equations (4) and (5).

Minimize F =
24

∑
h=1

NG

∑
j=1

Cj,h

(
PGj,h

)
(4)

Cj,h

(
PGj,h

)
= aj P2

Gj,h + bjPGi,h + ci (5)

where F represents the objective function, PGj,h denotes the power generated at bus ‘j’ at
hour ‘h’, and NG represents the total number of conventional generators. The objective
function is recomputed for each hour to obtain the optimal generation cost hourly.

2.2. Equality Constraints

The power-balance equation imposes equality constraints by requiring that active and
reactive power generated must match the load demand and power losses. The equality
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constraints consist of a group of nonlinear power-flow equations that can be formulated in
Equations (6) and (7).

PGi − PDi = Vi ∑NB
j=1 Vj

[
Gijcos

(
δij
)
+ Bijsin

(
δij
)]
∀ i ∈ NB (6)

QGi −QDi = Vi ∑NB
j=1 Vj

[
Gijsin

(
δij
)
− Bij os

(
δij
)]
∀ i ∈ NB (7)

where PGi and QGi represent the generation’s active and reactive power of the bus i, respec-
tively. PDi and QDi represent the load demand’s active and reactive power, respectively.
NB denotes the total number of buses, Gij denotes the transfer conductance between i and j
buses, and Bij denotes the susceptance between i and j buses. The = δi − δj. Finally, Vi and
Vj are the voltages of bus i and bus j, respectively.

2.3. Inequality Constraints

The inequality constraints are imposed by the operating restrictions on the power
system’s equipment and the security limitations on the lines and load buses.

• Generator constraints:

Pmin
TGi ≤ PTGi ≤ Pmax

TGi , i = 1, . . . , NG (8)

Qmin
TGi ≤ QTGi ≤ Qmax

TGi , i = 1, . . . , NG (9)

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, . . . , NG (10)

• Security constraints:

Vmin
Lp
≤ VLp ≤ Vmax

Lp
, p = 1, . . . , NPQ (11)

Slq ≤Smax
lq , q = 1, . . . , NTL (12)

Equation (8) represents the thermal generator’s active power boundaries. Equation
(9) represents the thermal generator’s reactive power capabilities. NG denotes the total
number of thermal generators. Equation (10) represents the limits of voltage on generator
buses (PV buses), while Equation (11) represents the limits of voltage on load buses (PQ
buses). Equation (12) represents the capacity of the transmission line. NTL and NPQ
denotes the number of lines and load buses in the network, respectively.

It is noteworthy that the active and reactive power equations’ equality constraints
are automatically met when the power-flow problem is converted into a solution. The
inequality constraints, such as the active power and the bus voltage of the generator (except
for slack, which is regarded as linked to bus 1), are the control variables. The optimization
algorithm selects possible values for such control variables, which are bounded by their
limits. The other inequality constraints, such as the power of the slack generator, voltage
limits of the load bus, reactive power output from the remaining generators, and the
capacity of the transmission lines, require special considerations such that their values
must not exceed the limits. Therefore, the objective function incorporates these inequality
constraints as quadratic penalty factors. Accordingly, the new objective function is given in
Equation (13) [43].

F =

[
FC + λP

(
PTG1 − Plim

TG1

)2
+ λV

NPQ

∑
i=1

(
VLi −V lim

Li

)2
+ λQ

NG

∑
i=1

(
QTGi −Qlim

TGi

)2
+ λS

NTL

∑
i=1

(
Sli − Slim

li

)2
. . .

]
n×1

(13)
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where λP, λV, λQ, and λS represent penalty factors. The chosen values for all penalty factors
are λP = 100, 000, 000, λV = λQ = 50, 000, and λS = 1000.

3. Mathematical Modeling of the RES

The primary generation elements in the power system are wind, solar, and thermal
generators. Therefore, solar and wind power are considered in solving the POPF prob-
lem [44]. However, due to the uncertain nature of the RESs (as mentioned earlier), the
generation power from the RESs incorporates high uncertainties [45,46]. Consequently, it is
crucial to precisely simulate the PV and WT generators in the manners described below.

3.1. Modeling the WE Power Generation

The wind speed variations are described using the Weibull PDF [36,47]. The probability
of wind speed v (m/s) may be expressed as follows using Weibull PDF:

f (v) =
(

k
c

)(v
c

)(k−1)
exp

[
−
(v

c

)k
]

, v ≥ 0 (14)

where c and k denote the Weibull distribution’s scale and shape factors, respectively. By
using the stochastic variable wind speed, the power output from wind generators is
determined as follows:

Pw(v) =


0 v < vin Or v ≥ vout

Pwr
v − vin
vr − vin

vin ≤ v < vr

Pwr vin ≤ v < vr

(15)

where v, and vr represent current and rated wind speed, respectively, Pwr represents rated
output power, and vin and vout represent cut-in and cut-out speed, respectively. The data
obtained for wind speed was at the height of 33 ft (10 m). However, according to the
Enercon E82-E4 product datasheet, a 3-MW wind turbine’s hub height is generally 84 m,
so to obtain wind speed at that height, the method of Weibull wind speed distribution
extrapolation is applied, which can be formulated as follows [48]:

C2 = C1

(
h2
h1

)n
(16)

k2 = k1

1− 0.0881 ln
(

h1
hr

)
1− 0.0881 ln

(
h2
hr

) (17)

where hr is a 10 m reference height and n is a power. The following formula may be used
to find the power n:

n =
0.37− 0.0881 ln(C1)

1− 0.0881 ln
(

h1
hr

) (18)

Figure 1 shows the Weibull PDF for the wind speed data over the equivalent 24-h
day in summer. Table 1 shows the parameter of the Weibull PDF for the equivalent 24-h
summer day of the real-time historical date such that the Weibull parameters are scale
parameters (C) and shape parameters (K).
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Table 1. The Weibull parameters of the equivalent 24-h summer day for wind data.

Hour C K Hour C K

1 7.274 3.043 13 6.793 3.036
2 7.257 2.854 14 6.968 3.036
3 7.417 2.921 15 7.288 2.998
4 7.444 3.146 16 7.372 2.806
5 7.504 2.862 17 7.357 3.102
6 7.214 2.858 18 7.456 2.821
7 6.852 2.547 19 7.278 2.845
8 5.843 2.072 20 7.008 2.475
9 5.127 2.309 21 6.887 2.475
10 5.208 2.678 22 6.949 2.638
11 5.793 3.232 23 6.984 2.771
12 6.439 3.149 24 7.279 2.716

3.2. Modeling the PV Power Generation

Solar irradiance is very uncertain as it changes depending on several variables such as
the time of day, month, season, weather, and the direction in which the solar generator faces
the sun. According to the Beta PDF [36,49], the probability distribution for solar irradiation
is as follows:

f (R) =
Γ(α + β)

Γ(α)Γ(β)
Ra−1(1− R)β (19)

where f (R) is the Beta PDF of solar radiation. The incomplete gamma function is repre-
sented by Γ(.). R represents the solar radiation [W/m2]. By using the stochastic variable
solar irradiance, the output power of solar generators is determined as follows:

Ppv(R) =


Ppv,r

(
R2

RCRSTD

)
0 ≤ R ≤ RC

Ppv,r

(
R

RSTD

)
RC ≤ R ≤ RSTD

Ppv,r RSTD ≤ R

(20)

where RC represents a certain radiation point and RSTD represents solar radiation within
standard conditions. Figure 2 shows the Beta PDF for the solar irradiance data over the
equivalent 24-h day in summer. Table 2 shows the parameter of the Beta PDF for the
equivalent 24-h summer day of the real-time historical date such that the Beta parameters
are shape parameter 1 (α) and shape parameter 2 (β).
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Table 2. The Beta parameters of the equivalent 24-h summer day for the PV data.

Hour α β Hour α β

1 0 0 13 0.412 0.044
2 0 0 14 0.372 0.055
3 0 0 15 0.928 0.426
4 0 0 16 1.726 1.639
5 0 0 17 2.185 3.603
6 0 0 18 2.367 7.990
7 3.540 119.773 19 3.837 31.290
8 10.900 74.130 20 0.534 17.101
9 10.497 21.772 21 0 0
10 8.670 7.613 22 0 0
11 5.887 2.629 23 0 0
12 2.159 0.496 24 0 0

In this paper, the wind turbine parameters were vin = 3 m/s, vout = 25 m
s , and

vr = 16 m/s. The rated power output for each turbine was Pwr 3 MW; this value is pre-
sented in the Enercon E82-E4 product datasheet. For the PV generator, RC was set to be
120 W/m2 and the RSTD was set to be 1000 W/m2. Real-time historical data was used for
solar irradiance and wind speed. These data weres for the summer seasons of four years
(2018, 2019, 2020, and 2021). The real-time historical data is presented in [50]. Whole data
were used to mimic a more accurate 24-h summer day such that the curve fitting, either by
Weibull or Beta PDF, was performed for each hour of that day.

4. Monte Carlo Simulation Combined with K-Means Clustering and Elbow Method

As was mentioned in the previous sections, the summer data for the last four years
was represented by an equivalent 24-h day, and curve fitting was applied for each hour.
For each hour there was a vast number of operating conditions that needed to be taken into
consideration. Therefore, MCS was run for 8000 scenarios for each hour of these data and
were used in the analysis. The MCS was then combined with K-means clustering and the
Elbow method, as is presented in the following subsections.

4.1. Monte Carlo Simulation

To integrate the PV and WE sources into the power system, the power system must deal
with all possible scenarios due to the uncertain nature of renewable energy. Accordingly, it
is essential to use a stochastic technique instead of the deterministic one. A Monte Carlo
Simulation (MCS) was used in this research study. It is also known as multiple probability
simulation for the stochastic technique. MCS is a probabilistic simulation technique to
estimate the possible outcomes for uncertain situations. It can also be used to obtain
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stochastic outcomes from random variables [51]. The MCS was chosen because it is the
most suitable technique for large, complex systems with a high number of uncertainties [36].
After making curve fitting for each hour of the data over the equivalent summer day, the
MCS was run with 8000 scenarios for each hour. Consequently, there were a lot of scenarios
overall, and many iterations were required, so a clustering technique was used in this paper
to reduce the substantial computational time. Figures 3 and 4 show two examples of wind
speed distribution and solar irradiance after running the MCS for 8000 scenarios for hour
10 with their scale and shape parameters.
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4.2. K-Means Clustering

The MCS was combined with the K-means clustering method to reduce the overall
number of scenarios and iterations [52]. K-means clustering is a partitioning clustering
method in which the data points are sectionized into different sets (clusters), mentioned by
the number K, in which each cluster depends on how similar the data points are [53] and is
considered as an iterative algorithm within the initial number of clusters K, which must be
manually determined by the user [54]. K-means clustering is performed in two steps:

1. Determine the best centroids or center points—K values—using an iterative process.
2. Set each data point to the closest K-center.
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Figures 5 and 6 show an example of the data for wind speed and solar irradiance at
hour 19, the initial centroid points, the final locations of the centroids after 100 iterations,
and each set of data belongs to each centroid, as during iteration the centroids’ location
is changed to reach the best location. The trial-and-error method is used to determine the
best number of iterations such that after 100 iterations the location of the centroids is not
changed anymore.
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4.3. Elbow Method

The main weakness of the K-Means Clustering method is that it randomly assumes
the number of clusters. Therefore, a cluster optimization technique is required to obtain
the optimal number of clusters. [54]. The Elbow method determines the best number of
clusters such that K-means clustering is run for the data set with assumed clusters. The
sum of square error (SSE) is calculated for each assumed number of clusters, and the most
significant difference from the angle of the elbow (knee point) shows the best number
of clusters [55]. Initially, it is assumed that there are between one to ten clusters, and
then, for each number of clusters Elbow method is applied, an SSE is calculated. The
calculations showed that the angle of the elbow (the most significant difference) is formed
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when three clusters are used. Accordingly, the optimal number of clusters is K = 3. From
both Figures 7 and 8, it is clear that the optimum number of clusters is three.
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5. Proposed Method

The GTO technique was selected to solve the POPF problem for different scenarios.
The GTO is a nature-inspired metaheuristics algorithm inspired by the gorilla troop’s social
intelligence in nature [56]. Figure 9 presents the GTO flowchart for easier comprehen-
sion, and each step’s formulation algorithm is fully described in detail. The following
mechanisms are a description of the many processes that the GTO algorithm employs for
optimization tasks.
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5.1. Exploration Phase

The exploration phase involves three primary mechanisms, which are: moving to
other gorillas where this mechanism is selected when rand ≥ 0.5, migrating to an unknown
location where this mechanism is selected when rand ≤ p, and migrating in the direction
of a known location where this mechanism is selected when rand < 0.5. Each of these three
techniques is chosen based on a standard process. Where p is a parameter used to select
the mechanism of migrating to an unknown location, each of these mechanisms presents a
great ability of the GTO technique. The following equations simulate the three mechanisms
utilized in the exploration stage [56].

GX(t + 1) =


(UB− LB)× r1 + LB, rand < p
(r2 − C)× Xr(t) + L× H, rand ≥ 0.5
X(i)− L× (L× (X(t)− GXr(t)) + r3 × (X(t)− GXr(t))), rand < 0.5

(21)

C = F×
(

1− It
MaxIt

)
(22)

F = cos(2× r4) + 1 (23)

L = C× l. (24)

H = Z× X(t) (25)

Z = [−C, C] (26)

5.2. Exploitation Phase

The exploitation phase includes two behaviors: following the silverback and compet-
ing with adult females. It is possible to choose between them using the value of C calculated
in Equation (22). Following the silverback method is chosen if C ≥W. This behavior can be
modeled as follows:

GX(t + 1) = L×M× (X(t)− Xsilverback) + X(t) (27)

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g) 1

g

(28)

g = 2L (29)

However, if C < W, the competition with adult females is selected. After some time,
when adolescent gorillas reach puberty, they eventually engage in violent competition
with other male gorillas in their group for the attention of adult females. This behavior is
simulated as follows:

GX(i) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A (30)

Q = 2× r5 − 1 (31)

A = β× E, (32)

E =

{
N1, rand ≥ 0.5
N2, rand < 0.5

(33)

At the end of the exploitation phase, the cost of each GX solution is assessed, and if the
cost of GX (t) is less than the cost of X (t), the GX (t) solution is adopted as the X (t) solution.
The silverback is considered the best solution found throughout the whole population.
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6. Simulation Results and Discussion

This paper proposed a solution for the OPF and POPF issues by applying the GTO
algorithm. To verify the viability and performance of the suggested GTO-based OPF and
POPF problem, the IEEE 30-bus and 118-bus systems were applied. Table 3 lists the details
of these two power systems [36]. The effectiveness of the suggested algorithm is compared
with GA (Genetic Algorithm) [57], PSO (Particle Swarm Optimization) [58], SFO (Sunflower
Optimization) [59], HHO (Novel Harris Hawk Optimization) [60], and HFPSO (Hybrid Firefly
Particle Swarm Optimization) [61] for a classical OPF. Algorithms used as competitors were
the HHO and SFO for the POPF, including renewable energy. The control parameter of the
OPF issue wasre the active power output from the thermal generators. The iteration number
was selected to achieve good performance for the suggested GTO technique.

The selection of the controlling parameter of the GTO method was such as any meta-
heuristic optimization technique. The trial-and-error method was used to choose these
parameters with many independent trials and finally to check the algorithm’s performance.
Many various cases have been shown to demonstrate the efficacy of the proposed algo-
rithm. All scenarios were ran for fixed and variable loads. The fixed load is the standard
load for the standard test systems mentioned in this paper. The variable load is the load
of an available summer weekday and is presented in [62]. Figures 10 and 11 show an
example of the variable load curve over a summer day at bus 15 for the IEEE 30-bus and
IEEE 118 systems, respectively. To prove the efficacy of the proposed approach for OPF
and POPF problems, three different scenarios were considered, as are shown in Table 4.
The performance and efficacy of the proposed GTO algorithm have been confirmed by
comparison with the other chosen approaches.

Table 3. Key features of the three studied systems.

Characteristics
30-Bus Test System 118-Bus Test System

Value Detail Value Detail

Number of buses 30-bus [43] 118-bus [63]

Generators 6 Buses-location: 1, 2,
5, 8, 11 and 13 54

Buses-location: 1, 4, 6,
8, 10, 12, 15, 18, 19, 24,

25, 26, 27, 31, 32, 34,
36,40, 42, 46, 49, 54, 55,
56, 59, 61, 62, 65, 66, 69,
70, 72, 73, 74, 76,77, 80,
85, 87, 89, 90, 91, 92, 99,
100, 103, 104, 105, 107,
110,111, 112, 113 and

116
Branches 41 186

Transformers 4 Branches: 11, 12,
15 and 36 9 Branches: 8, 32, 36, 51,

93, 95, 102, 107 and 127
Loads 21 99

Connected load (MVA) 283.4 + j126.2 4242 + j1438
Load losses (MVA) 5.28 + j23.14 132.86 + j783.79
Bus voltage limits [0.9–1.1] [0.9–1.1]
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Table 4. Scenarios of the OPF.

Scenario No. The Scenario Details

1 Solve the classical OPF (with no RESs) for fixed loads and compare the results of the proposed
technique with the other chosen approaches.

2 Add the PV & Wind generators at the optimal bus location, solve the POPF, and compare the result of
the proposed algorithm with other algorithms using fixed and variable loads.

3 Show the effect of adding the PV & wind generators on the total fuel cost using the proposed
algorithm with fixed and variable loads.

6.1. The IEEE 30-Bus System

The small-scale power system was used to verify the proposed algorithm’s perfor-
mance. The classical OPF problem with no RESs and the POPF with PV & wind generators
at the optimal bus locations were solved. The results were compared to those from other
algorithms reported in this paper to confirm their viability. Finally, the proposed algorithm
was used to investigate how adding PV and wind generators would affect the system’s
overall operating costs.
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6.1.1. Case 1: Classical OPF

In this case, the proposed technique was used for solving the classical OPF with the
fixed load. Its results were then compared to the GA, PSO, SFO, HHO, and HFPSO to
verify the performance of the suggested technique. The objective function was to reduce
the thermal generator’s cost function with no renewable energy added to the system. For
all algorithms, the sizes of the population were set at 30. The number of iterations for all
algorithms was set at 2000. The optimized control variables and the objective function
calculated by GTO are compared to the results from other algorithms in Table 5. Figure 12
shows a comparison of the conversion curve of the objective function for the different
algorithms. It is clear from Figure 12 that the GTO outperforms the other techniques in
finding the minimum cost with fewer iterations.

Table 5. Comparison of GTO with different algorithms case 1.

GTO GA PSO SFO HHO HFPSO

PG1(MW) 197.2527 194.4922 197.2210 195.7589 196.624 197.2172
PG2(MW) 44.79628 36.03198 44.6978 39.74899 42.11522 44.68869
PG3(MW) 20.4345 21.08808 20.4191 20.74845 21.46444 20.41206
PG4(MW) 10.00067 12.33066 10.1388 13.42112 12.00587 10.15811
PG5(MW) 10 13.85565 10 11.96257 10.01774 10
PG6(MW) 12 16.10798 12 12.48151 12.05558 12

Min Cost($/hr) 915.78184 918.96676 915.78142 916.5774 915.96791 915.78142
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6.1.2. Case 2: POPF with RESs

In this case, the PV and wind generators were inserted into the optimal bus loca-
tions [64], as is shown in Table 6. The rating of the added PV and wind generators were
20 MW and 30 MW, respectively, and were selected such that the total capacity of the RESs
represented 17.6% of the total load of the IEEE 30-bus systems. The sizes of the population
for all algorithms were set as 15. The number of iterations for all algorithms was set at
200. The proposed technique was used for solving the POPF for fixed and variable loads.
The suggested approach’s results were then compared to the other chosen algorithms
such as the PSO and HHO. The time-varying load is shown in Figure 10 for the standard
30-bus system. Due to changes in irradiance and wind speed, the active power production
from the wind and PV generators varied. Therefore, the RESs’ uncertainty was considered
when forecasting the RESs’ output power. Figures 13 and 14 show the convergence of the
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objective function for the proposed GTO algorithm against the HHO and PSO techniques
under fixed and variable loading, respectively. The results indicated that the fuel cost
calculated by the GTO is relatively less than the other two algorithms for fixed and variable
loads. The results from the proposed approach are significantly superior to results from the
other algorithms for fixed load, but for a variable load the results are very similar.

Table 6. Optimal bus location for the RES for different test systems.

IEEE 30-Bus IEEE 118-Bus

Optimal bus for PV 4 114
Optimal bus for Wind 21 15
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6.1.3. Case 3: Effects of Adding the RES on the Total Cost

After confirming that the suggested algorithm successfully founds the optimal results
for either the classical OPF or the POPF, the effect of adding the RESs on the system’s
total operating cost was considered. The proposed algorithm was used for solving the
POPF problem considering the uncertainties of the RESs for fixed and time-varying loads.
The ratings of the PV, rating of the wind generators, population size, and the number of
iterations were kept the same as in the previous case study. Figures 15 and 16 show the effect
of adding the RESs to the optimal bus locations on the system’s total operating cost. For the
fixed and variable loads, adding the PV generators to the system reduced the total cost from
hour 7 to hour 20 (as the solar irradiance existed only during this period), while adding the
wind generators reduced the total cost throughout the day. Extreme cost reduction occurred
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when adding both PV and wind generators simultaneously. Tables 7 and 8 summarize the
cost reduction percentage from adding PV and wind generators for each hour during the
equivalent summer day with fixed and time variable loads, respectively.
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Table 8. Cost Reduction Percentages resulting from adding PV and wind generators for a variable
load for the 30 bus system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

PV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.90% 2.26% 3.87% 4.88% 5.68%
Wind 3.20% 3.24% 3.46% 3.57% 3.55% 3.30% 2.81% 1.90% 1.26% 1.43% 1.88% 2.36%

PV & W 3.20% 3.24% 3.46% 3.57% 3.55% 3.30% 2.89% 2.78% 3.55% 5.12% 6.58% 7.46%

Hour 13 14 15 16 17 18 19 20 21 22 23 24

PV 6.35% 6.09% 4.82% 3.60% 2.60% 1.78% 0.70% 0.07% 0.00% 0.00% 0.00% 0.00%
Wind 2.62% 2.72% 2.98% 3.00% 2.96% 3.18% 2.98% 2.62% 2.68% 2.61% 2.58% 3.05%

PV & Wind 7.64% 7.49% 7.40% 6.56% 5.75% 4.91% 3.70% 2.88% 2.68% 2.61% 2.58% 3.05%

6.2. The IEEE 118-Bus System

The proposed algorithm’s performance was evaluated using the large-scale power
system. The classical OPF with no RESs and the POPF with PV and wind generators at the
optimal bus locations were solved. The results of the suggested approach were compared
with those of the other selected algorithms to confirm its viability. Then, the proposed
algorithm was used to study the effect of inserting the PV and wind generators on the
system’s total operating cost.

6.2.1. Case 4: Classical OPF

The proposed approach was used for solving the classical OPF with the fixed load and
then comparing its results with the GA, PSO, SFO, HHO, and HFPSO methods to verify the
effectiveness of the suggested technique. The objective function was to reduce the thermal
generator’s cost function with no renewable energy added to the system. The sizes of the
population for all algorithms were set at 30. The number of iterations in all algorithms was set
as 2000. The best results of the control variables and the objective function calculated by GTO
are compared to the results from other algorithms in Table 9. Figure 17 compares the conversion
curve of the objective function for the different algorithms. Comparing other algorithms verified
that the GTO algorithm is capable of finding a more advantageous solution.
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Table 9. Comparison of the GTO with different algorithms, Case 4.

GTO GA PSO SFO HHO HFPSO

PG1(MW) 26.18848 38.69563 0 80.80498 33.55546 25.46572
PG2(MW) 0 34.54459 0 37.35566 13.1234 0
PG3(MW) 3.131875 40.67364 0 10.77051 5.962829 2.065198
PG4(MW) 0 44.69058 0 46.4833 17.85259 0
PG5(MW) 401.3321 243.0178 415.8368 210.9861 396.2438 400.7185
PG6(MW) 86.44421 79.98373 89.90279 38.33848 95.7612 86.33017
PG7(MW) 25.05885 51.9427 55.35771 22.21952 1.623387 22.81037
PG8(MW) 0 40.09035 0 16.52578 3.903755 14.5435
PG9(MW) 25.13821 48.08774 0 37.95764 3.134425 21.63433
PG10(MW) 2.65 ×10−8 30.05467 0 62.26664 17.82799 0
PG11(MW) 193.7335 139.6534 200.6964 137.652 140.3687 193.4682
PG12(MW) 279.574 168.6507 289.5222 167.6169 309.3616 279.1499
PG13(MW) 11.16098 37.95601 0 53.09325 16.51134 10.41423
PG14(MW) 7.299935 20.56223 7.614375 25.17363 8.764279 7.290661
PG15(MW) 15.5625 38.14864 0 47.90474 28.8523 14.68148
PG16(MW) 7.759906 44.63419 36.1037 47.32149 30.804 6.87235
PG17(MW) 13.24058 45.07933 37.29125 69.93029 28.07977 12.45803
PG18(MW) 52.0967 38.98866 0 71.70347 10.77414 51.73578
PG19(MW) 45.6204 43.32827 0 82.64717 19.30909 45.43208
PG20(MW) 19.15219 34.06854 19.83277 47.94304 23.70269 19.14443
PG21(MW) 194.3681 123.5074 201.957 220.9543 205.6901 194.3044
PG22(MW) 49.5984 58.71383 51.21706 43.58349 29.95601 49.59079
PG23(MW) 32.61312 41.37444 61.36237 34.85694 3.591768 32.43649
PG24(MW) 33.40108 51.23699 0 63.35362 6.230911 33.22536
PG25(MW) 149.9672 107.3912 153.9797 82.20485 168.4252 149.9155
PG26(MW) 148.3587 111.358 152.3196 111.5377 162.9175 148.2991
PG27(MW) 0 43.39223 0 74.01292 0.802241 0
PG28(MW) 352.8442 257.211 362.4883 181.7175 319.5687 352.6833
PG29(MW) 350.0555 232.6245 360.3861 153.2511 264.4179 349.9061
PG30(MW) 454.4951 335.8225 466.4657 364.7503 458.2573 454.3115
PG31(MW) 0 39.08945 0 59.05702 35.49517 0
PG32(MW) 0 43.71411 6.913055 23.68731 3.786613 0
PG33(MW) 0 42.80282 11.90306 55.47009 17.88553 0
PG34(MW) 15.90603 48.36927 0 22.81919 1.576059 15.61905
PG35(MW) 19.08924 46.80627 0 67.17789 14.88727 18.93601
PG36(MW) 0 44.07293 0 19.75745 16.67851 0
PG37(MW) 432.5556 284.9051 441.0368 340.4575 413.9175 432.4178
PG38(MW) 0 42.07106 0 36.19369 1.307114 0
PG39(MW) 3.622698 16.80306 0 15.01034 1.998334 3.620793
PG40(MW) 495.5841 311.9643 497.4787 320.7231 547.9216 495.508
PG41(MW) 0 52.28653 0 41.33231 33.26819 0
PG42(MW) 0 47.19072 0 55.13177 1.373383 0
PG43(MW) 0 53.90083 0 55.04574 26.08328 0
PG44(MW) 0 44.12449 0 54.94354 3.808979 0
PG45(MW) 231.3747 131.5375 229.8034 192.9504 228.3779 231.3408
PG46(MW) 38.39065 44.31912 37.40516 49.8089 40.07927 38.3863
PG47(MW) 0 47.68645 0 6.309235 10.27407 0
PG48(MW) 4.353593 42.00289 0 64.33285 1.172926 4.309747
PG49(MW) 29.49593 47.15439 21.05478 33.54225 1.518659 29.46746
PG50(MW) 6.676168 48.76126 100 18.5602 47.12069 6.644204
PG51(MW) 35.074 54.01312 32.26676 30.65004 19.77206 35.07286
PG52(MW) 40.89573 57.99037 3.087442 26.42687 29.11091 40.8769
PG53(MW) 0 35.42681 0 41.83573 3.117257 0
PG54(MW) 0 53.13364 0 24.85332 18.9848 0

Min Cost($/hr) 130,159.80628 137,112.90305 130,615.18496 138,281.50269 131,470.33551 130,156.68222
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6.2.2. Case 5: POPF with RESs

In this case, the PV and wind generators were inserted into the optimal bus loca-
tions [64], as is shown in Table 6. The rating of the added PV and wind generators were
250 MW and 500 MW, respectively. The total capacity of the RESs represents 17.6% of the
total system load, such that the percentage of penetration of the RESs was kept the same
for the standard 30-bus and 118-bus systems. The sizes of the population for all algorithms
were set at 30. The number of iterations for all algorithms was set at 400. The proposed
approach was used to solve the POPF, including the RESs, to minimize the fuel cost for
fixed and variable loads and to compare the suggested approach with the other chosen
algorithms, such as PSO and HHO. The time-varying load is shown in Figure 11 for the
standard 118-bus system. Figures 18 and 19 show the convergence curves of the objective
function under fixed and variable loading, respectively. The results indicated that the fuel
cost calculated by the GTO was less than the other two algorithms for fixed and variable
loads, respectively. The results from the proposed approach were significantly superior
to results from the other chosen algorithms mentioned in the literature for both fixed and
variable loading conditions.
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6.2.3. Case 6: Effects of Adding RESs on the Total Cost

After confirming the performance of the suggested approach in finding the optimal so-
lution, whether for classical OPF or POPF in the large-scale system, the effect of adding the
RESs on the overall system cost was considered. The proposed approach was used for solv-
ing the POPF problem considering the uncertainties of the RESs for fixed and time-varying
loads. The ratings of PV generators, wind generators, the size of the population, and the
number of iterations were kept the same as in the previous case studies. Figures 20 and 21
show how adding the RESs to the optimal bus locations affects the overall system cost.
For the fixed and variable loads, adding the PV generators to the system reduces the total
cost from hour 7 to hour 20, as solar irradiance exists only during this period. Adding the
wind generators reduces the total cost all over the day, and extreme cost reduction occurs
when adding both PV and wind generators simultaneously. Tables 10 and 11 show the
cost reduction percentages from adding PV and wind generators for each hour during the
equivalent summer day with fixed and variable time loads, respectively. The percentage
reduction can be higher for higher RES penetration levels. These reductions happened
when only 17.6% of DGs were inserted.
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Table 10. Cost Reduction Percentages resulting from adding PV and wind generators for a fixed load
of the 118 bus system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

PV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.93% 2.47% 4.00% 5.13% 6.02%
Wind 4.09% 4.11% 4.26% 4.29% 4.31% 4.08% 3.62% 2.61% 1.83% 1.89% 2.60% 3.21%

PV & Wind 4.09% 4.11% 4.26% 4.29% 4.31% 4.08% 3.67% 3.59% 4.36% 5.84% 7.56% 8.72%

Hour 13 14 15 16 17 18 19 20 21 22 23 24

PV 6.59% 6.39% 5.10% 3.86% 2.82% 1.76% 0.72% 0.10% 0.00% 0.00% 0.00% 0.00%
Wind 3.62% 3.77% 4.12% 4.22% 4.20% 4.26% 4.13% 3.73% 3.63% 3.74% 3.76% 4.07%

PV & Wind 8.75% 8.82% 8.77% 8.01% 7.04% 6.13% 4.94% 3.99% 3.63% 3.74% 3.76% 4.07%

Table 11. Cost Reduction Percentages resulting from adding PV and wind generators for a variable
load of the 118 bus system.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

PV 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 1.21% 2.80% 4.21% 5.20% 6.01%
Wind 5.86% 6.49% 6.69% 7.03% 6.82% 6.69% 5.33% 3.26% 2.11% 2.00% 2.63% 3.23%

PV & Wind 5.86% 6.49% 6.69% 7.03% 6.82% 6.69% 5.48% 4.57% 5.04% 6.17% 7.64% 8.74%

Hour 13 14 15 16 17 18 19 20 21 22 23 24

PV 6.69% 6.43% 5.07% 4.00% 3.03% 1.83% 0.81% 0.15% 0.00% 0.00% 0.00% 0.00%
Wind 3.70% 3.81% 4.13% 4.38% 4.45% 4.48% 4.49% 4.06% 3.98% 4.02% 4.40% 5.46%

PV & Wind 8.88% 8.82% 8.74% 8.29% 7.41% 6.45% 5.35% 4.38% 3.98% 4.02% 4.40% 5.46%

7. Conclusions

In this study, a classical and a probabilistic OPF issue were developed and solved for a
hybrid power system that included PV and WE sources with fixed and variable loads. The
proposed algorithm was intended to minimize the operational cost of a complex power
system. To deal with the uncertainty of the RESs and solve the POPF problem, curve fitting
was used for the historical data, applying the most suitable PDFs representing these data.
The MCS was then run with many scenarios in combination with the K-means clustering
method that minimized the significant computational time. Finally, the optimal number of
clusters was calculated using the Elbow approach.

The classical OPF and the POPF problems were solved using the GTO approach.
The proposed method was successfully used with different combinations of wind power
generation units and solar power generation units in the IEEE 30-bus and 118-bus systems.
The performance and efficacy of the proposed algorithm for producing a set of optimal
solutions have been proven by comparing the results acquired by the suggested approach
with the other optimization techniques. The results of the POPF problem show that
inserting the RESs into the system has a significant reduction in the total generation cost.
The percentage reduction can be higher for higher RES penetration levels. These reductions
happened as only 17% of DGs were inserted. This is essential for the planning and operating
of modern power systems that incorporate many alternate forms of energy. Future work
will extend our POPF problem to include the cost of renewable energy.
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