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Abstract: In this work, a new methodology to estimate the functional vulnerability of the road
network of the city of Catania (Italy) is developed with the purpose to improve the resilience of urban
transport during critical events. While the traditional approach for the estimation of vulnerability is
based on topological data, the proposed methodology is based on spatial-temporal mobility profiles
obtained with floating car data (FCD). The algorithm developed for the estimation of vulnerability
combines topological properties of the road network with mobility patterns obtained from FCD to
evaluate the consequences of failure events on trajectories and their associated travel times. The
core operation of the algorithm is based on the computation of all possible travel paths within their
assigned geographical zone every time a road link is disrupted. The procedure may prove useful to
evaluate wide failure events and to facilitate emergency plans.
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1. Introduction

In the last decade, our cities have often faced emergency situations linked to extreme
anthropological or natural events. In these circumstances, the failure and disruption of
critical infrastructures may have a negative impact on business activities with consequent
economical losses or cause hazardous situations for territory inhabitants.

Currently, road transportation plays a fundamental role both in the development of
the economy and to maintain a good quality of life in cities. Quantitative evaluations
of reliability, vulnerability, and resilience are attracting attention in the planning of road
networks and in transportation services for traffic congestion management.

For this purpose, the development of effective computational procedures to target
critical and important infrastructures in a road network is of great interest to prevent and
manage hazardous events, and therefore to minimize negative impacts on economy.

The calculation of functional vulnerability indicators allows the definition of interven-
tions to mitigate uncomfortable situations during traffic disruptions. These indicators are
associated to each edge of the road network or to city zones and represent the increased
cost in mobility due to the disruption of one or more edges.

In the past, the study of vulnerability and resilience of a road network was mainly
based on reliability criteria of travelling times, connectivity of the road network, and
safe road traffic. Recent works focus to the analysis of the consequences of extreme
weather events, climate change, and infrastructural failure on the performance of transport
systems [1–3].

Vulnerability analysis of a road network arises from the need to consider the socio-
economic performance and impact of degraded networks. Disruptions of most congested
networks are often linked to accidental events even of short time duration, but always with
a strong social and economic impact because of large traffic flows arising from the lack of
proper alternative paths. In these situations, the construction of new links could strengthen
the road network.

Sustainability 2023, 15, 711. https://doi.org/10.3390/su15010711 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15010711
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0518-0955
https://orcid.org/0000-0001-7300-1790
https://orcid.org/0000-0003-2792-7722
https://orcid.org/0000-0003-3610-1666
https://doi.org/10.3390/su15010711
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15010711?type=check_update&version=2


Sustainability 2023, 15, 711 2 of 15

A recent OECD report highlighted the importance of the vulnerability of road networks
and its effects on the performance of transport systems as an increasing consequence of the
more frequent meteorological extreme events associated to climate change [4].

In the literature, vulnerability is defined according to two distinct approaches. The
first one is based on the definition of analytical procedures to identify the reliability of the
links and the weak elements in the network. The second one introduces measures of the
disutility resulting from the disruption of a road, such as the increase of traveling time,
traveling distance, and the increased economic cost of the transport.

Based on these two approaches, four main methods for the analysis of the vulnerability
can be identified:

(a). The topological method considers the interconnections of a road network to identify
critical paths or nodes whose disruptions would have a significant impact on the
viability. The betweenness centrality and the closeness centrality are among the most
important examples of topological methods [5–8]. Briefly, the betweenness centrality
estimates the influence of a node with respect to the adjacent ones, while the closeness
centrality is a measure of the shortest time needed to reach adjacent nodes by means
of the estimation of shortest paths.

(b). The risk-based method considers the whole road network and the whole trans-
port system, identifying the roads with the higher risk of failure due to traffic and
natural events.

(c). The accessibility-based methods consider the travel demand referred to the capability
of the population of a region to keep carrying on their economic and social activities
when the transport network presents a failure. In the transport planning, the concept
of accessibility can be defined as the level of ease access to socio-economic activity
from different geographical locations [9,10].

(d). The serviceability-based methods consider the capability of a transport network
to satisfy its functionality in different conditions, including the decay or failure of
some edges of the network. A simple example of vulnerability analysis using the
serviceability approach is the estimation of the variation of travelling times within a
network upon failure of specific edges [9].

In this work, we present a serviceability-based algorithm aimed at estimating vulner-
ability using a dataset of floating car data available over the road network of the Italian
city of Catania, Sicily. Results are presented through statistical outputs and maps which
highlight vulnerable roads within the considered geographical zones. The methodology
aims at being a tool for policy makers for the allocation of financial resources addressed to
maintenance interventions, prevention, and effective emergency management.

2. Data Setups

The study area chosen for the evaluation of road vulnerability covers the province
of Catania (Italy). A digitalized graph was used to represent the road network, while
traffic counts were gathered from fixed sensors and floating car data (FCD). Both datasets
included private and commercial vehicles.

The road network data was downloaded from OpenStreetMap [11] and covers a wide
area around the city of Catania. For the purpose of this study, only the “driving” network
was considered. The graph consists of approximately 74,000 nodes and 172,000 edges for a
total length of 29,000 km.

FCD represents GPS time series collected by moving vehicles through an on-board
terminal [12]. Therefore, it has been possible to estimate traffic volumes, speeds, traveling
times, origin and destination of trajectories, and the choice of the trajectory of each trip.

FCD data were recorded during the months of February, May, August, and November
2019 in order to be representative of the four seasons of the year. These data were provided
by VEM-Solutions [13]. FCD is characterized by the presence of an anonymized identifica-
tion, a date and time, a progressive distance travelled by each vehicle, a code 0/1 indicating
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the engine status on/off, and the instant speed. Preprocessing of FCD included the removal
of outliers and the reorganization of the dataset by trips.

With an average sampling frequency of about 30 s for each record, FCD consisted of
about 74 million processed traces referred to 27,000 vehicles, of which 97% were private
vehicles and 3% were commercial vehicles.

On average 17% of the weekly distances were travelled during the days of Thursday,
Friday and Saturday with a mean travelled distance of about 8 km for each trip. Longer
travelled distances were observed on a Sunday and during the month of August. Fi-
nally, the typical travelling time was within 5 and 20 min for approximately 75% of the
analyzed vehicles.

The identification of trajectories travelled by FCD traces within the road network of
Catania was possible through the use of a map-matching algorithm developed in a recent
work [14] that associates a sequence of GPS traces to a real path on the network. The
methodology is based on a Markovian process guided by the travelled distance between
traces, the quality of the signal and, the direction of the trajectory. The final result is repre-
sented by a sequence of nodes and edges crossed by consecutive traces. The accuracy of the
algorithm, represented by the percentage of the correctly mapped trajectories compared to
its total number, is approximately 85%. Figure 1 shows the traffic volumes obtained from
map-matching of FCD on the graph for the weekday of 24 February 2019. Traffic volumes
were estimated considering the total number of paths crossing the edges.
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Figure 1. Traffic count obtained from the map matching of FCD with the road network around the
area of the city of Catania, Italy for the day of 24 February 2019. (a) for private and (b) fleet vehicles.
Thickness of roads is proportional to the number of times (counts) each edge was crossed during the
matching process.

As shown in Figure 1a, private vehicles were mostly travelling towards the urban
area of Catania, along the west Ring Road and the freeway Catania-Paternò. Instead,
commercial vehicles were mainly travelling along the motorway Messina-Catania and
Palermo-Catania Figure 1b).

The number of vehicles crossing each edge has been compared with the in-situ mea-
surements carried out by the National Autonomous Roads Corporation (Azienda Nazionale
Autonoma delle Strade, ANAS) at fixed monitoring stations. The comparison was carried
out using an historical time series of data recorded along several road sections in the area
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of Catania. Both in-situ data and map-matched FCD were aggregated by date, time, and
travelling direction (ascending and descending). The hourly trend of the number of vehicles
recorded in situ and obtained with FCD are shown in Figure 2. On average, the maximum
number of cars was observed between 12:00 and 17:00. This value represents an hourly
average calculated on several road sections during the months of February, May, August,
and October 2019.
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Figure 2. Hourly trend of the number of vehicles travelling along selected road sections in the area
of Catania during the months of February, May, August and November 2019 for two travelling
directions. Dashed line is referred to map-matched FCD (from VIASAT) while solid line represents in
situ measurements (from ANAS, see text).

The ratio between the hourly counts of FCD and the counts obtained from in situ
data along several road sections was used to estimate the penetration coefficient of the
fleet vehicles equipped with GPS sensors. On average, from 08.00 to 20:00, the penetration
coefficient ranges from 1.2% and 1.6% with a confidence interval of about 0.4%.

3. Hardware and Software

The map matching [14] and vulnerability algorithms run on a standard server (Intel®,
Xenon®, Gold 6142 CPU®, 2.59 GHz processor, 64 CPUs, 128 GB RAM). Outputs are
stored in a PostgreSQL data base. The map matching and vulnerability algorithms were
written entirely with the open-source programming language Python using the modules
networkx 2.8.8, and osmnx 1.2.3 to process road network data. Because of the high number
of trips to be processed, parallel processing was setup using the Python module multipro-
cessing which allowed simultaneous treatment of different vehicles together with their
trips. Overall, approximately 3.4 million trips in about 20 days were processed over the
area of Catania.
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4. Serviceability Analysis

The vulnerability analysis of a road network requires a priori knowledge of its topology
and traffic flow (vehicles/h) obtained from map matching. For the estimation of the traffic
flow, we considered the equivalent hourly rate at which vehicles crossed each edge during
a 15 min interval [15]. Figure 3 shows that the highest traffic flow values are mainly
observed along motorways, along the main road crossing the center of the city, and on the
connecting links between motorways and primary roads or highways. The typical flow
along these edges is of about 1000 vehicles/h. Further statistical analysis shows that 80% of
the traffic counts has a flow of about 150 vehicles/h while only 10% can be attributed to
high traffic flow, ranging from 400 to 1300 vehicles/h and mainly occurring on highways
and motorways (Figure 4a). On the other hand, the speed distribution of vehicles crossing
each edge showed that approximately 40% of the observed vehicles travel with a speed
ranging from 20 to 40 Km/h (Figure 4b).
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Figure 3. Traffic flow on the road network around the area of the city of Catania in Italy. Flow has
been obtained from FCD data matched to the network and averaged over each edged during the
months of February, May, August and November 2019.
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May, August and November 2019. (b) Distribution of mean speed calculated on each edge of the road
network. Elaborations are referred to the month of February, May, August and November 2019.
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This result is consistent with statistics about the mean trip speed which ranges from
20 to 40 km/h for about 80% of private vehicles and 40% of the total traffic counts, whereas
from 30 to 80 km/h for about 80% of commercial vehicles. As shown in Figure 1, commercial
vehicles mainly travel on motorways, so their speed up to 80 km/h is expected.

Traffic flow may experience temporary variations affecting network performance in
terms of capacity, traveling time, and delays. Indeed, drivers usually choose travel paths
considering the shortest length or the shortest travelling time. Hence, when a disruption
occurs, or when there is an increase of travel demand, the traffic outflow becomes unstable
with the consequent formation of queues and loss of functionality of the network.

Congestion occurs when traffic flow is larger than the outflow capacity of the down-
stream road or junction. The main consequence of congestion is the formation of queues
together with very low outflow speeds. To evaluate the loss of functionality of the Catania
road network, a methodology to identify and quantify different types of congestion was
developed. This methodology considers the number of trips and the travel time along each
edge and classifies the magnitude of the congestion through the estimation of a congestion
index (Figure 5) [16].
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The congestion index shown in Figure 5 requires the estimation of traffic at free-flow
and traffic at peak hours′ conditions. Free-flow has been assumed to be the minimum flow
occurring on each edge during the observation time. The congestion index is defined as the
ratio between speed at peak hours

(
speedpeak Hour

)
and free-flow speed

(
speed f ree− f low

)
according to the following equation:

CI =
speedPeak Hour
speed f ree− f low

(1)

The free-flow speed is estimated on hourly basis at the lowest flow recorded on each
edge. The speed at peak hours is estimated at the highest flow recorded on each edge. As
shown in Figure 6, in the condition of peak hours, the largest number of vehicles crossing
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each edge was recorded in the morning from 08:00 to 09:00 and in the evening from 18:00
to 19:00.
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Figure 6. Hourly distribution of number of vehicles crossing each edge at peak hours′ conditions.
Observations are referred to the months of February, May, August and November 2019.

The congestion index shows a remarkable seasonal variation. Indeed, during the
winter month of February, when commercial activities occur, the most congested edges are
found in urban areas (Figure 7). On the other hand, during the summer month of August,
when commercial activities are reduced, congested edges are mainly found along roads
connecting touristic places of relevant interest. However, the congestion index referring to
highways and motorway does not show substantial differences between the two seasons.
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5. Vulnerability Analysis

For the evaluation of vulnerability, we have used two methodologies, the first one
based on topology, the second one on the evaluation of risk through the identification of
the edges with higher risk of failure.

5.1. Topological Vulnerability

Two well-known topological methods to measure the importance of each node and
its influence on the movements within the road network are the betweenness centrality
and the closeness centrality [7,8,17]. A first elaboration of vulnerability was carried out
using the betweenness centrality model to estimate the centrality of each node within a
road network. The betweenness centrality is based on the calculation of the shortest paths
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in a connected Graph [5,6] and determines the influence of a node compared to the traffic
flow between each pair of nodes or adjacent edges. Usually, the betweenness centrality of a
node x is defined as:

BC(x) = ∑
u 6=v 6=x

shortest_path(u, v|x)
shortest_path(u, v)

(2)

where the shortest_path(u, v) considers the total number of shortest paths from node u to
node v, while the shortest_path(u, v|x) considers the shortest paths from u to v crossing
node x. The calculation of the shortest path has been carried out using the Dijkstra’s
algorithm that, from a given graph and a source vertex in it, finds all possible shortest
paths from source to all vertices [18]. The sum performed in Equation (2) refers to the
whole number of edges of the graph. Shortest paths are determined by minimizing the
total length of all road links within the path from node u to node v. For the analysis of
the Catania′s network, each edge has been weighted with its average travel time or cost
obtained from the elaboration of FCD data. This has been accomplished by estimating the
mean travel speed on each edge using the map-matching algorithm. The travel time has
been then calculated using the length of the edge. The FCD data provide the advantage
of a real measure of the vehicle speed that can substitute the maximum speed provided
by Open Street map. In addition, it is reasonable to suppose that not all the vehicles
circulating on the street are travelling at the maximum speed limit. This highlights the
importance of using realistic measures (FCD data). As presented in Figure 8, the normalized
(0–1 range) value of betweenness centrality shows differences between the weighted and
unweighted network. One of these is the assignation of a not-negligible value to the
freeway Catania-Paternò (Figure 8) that does not assume any importance when considering
the unweighted network. However, the betweenness centrality only highlights the fast-
flowing road network (i.e., motorways and highways) without giving information about
the importance of urban roads.
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Another parameter largely used to characterize topological vulnerability is the close-
ness centrality. This method is based on the estimation of the length of shortest paths
between a given node and all other nodes in the network [19]. The closeness centrality is
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defined as the reciprocal of the sum of the shortest path lengths between a node and all
other nodes:

CC(x) =
N − 1

∑u 6=x shortest_path(u, x)
(3)

where the ∑ shortest_path(u, x) is the sum of all possible shortest paths between the node
u and node x across the entire network. The closeness centrality characterizes a connected
network by quantifying the spatial accessibility of a node. It can also be considered an
indicator of the reachability of nodes, through the estimation of the shortest paths. As
shown in Figure 9, highest values of closeness centrality are observed along the West Ring
Road of the motorway Palermo-Catania and the motorway Catania-Siracusa. Indeed, these
roads represent the faster path to reach the center of the city of Catania when coming from
peripheral zones. On the other hand, Figure 9 shows that a large fraction of the roads in
the center of the city is characterized by the lowest closeness centrality. This indicates the
difficulty to reach several neighborhoods in the city center with a consequent reduction
of the traffic flow in these zones. It is once again important to stress that this behavior is
based on real traffic speeds observed on the considered edges, retrieved from FCD data.
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5.2. Vulnerability Based on Risk and Functionality

The other approach used for the calculation of vulnerability is the risk-based method.
This approach consists in the quantification of the impact a road closure has on the whole
network, rather than the evaluation of the reduction of the functionality of the edge itself
by simulating slowdown of traffic flow. For this purpose, each link has been considered
as an interconnected edge within a geographical zone represented by a hexagonal cell.
For this reason, tessellation or zoning has been carried out in order to better represent the
interconnection between edges and to highlight the effect of potential road closure within
a given zone. Assuming a probability of 1 for a disrupted link and a probability of 0 for
a connected link, the vulnerability of each geographical cell can be defined as the sum of
importance of each link within the cell:

vulnerability[cell] ∼
Nlinks

∑
i

importancei (4)
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The importance represents the time (defined as vehicle × hour) lost by all drivers when
a link is disrupted. Basically, the importance of a link is strictly related to the number
of vehicles crossing that link and therefore to the flux of vehicles. More generally, if the
number of drivers travelling from an origin towards a destination (OD) is known, it is
possible to estimate the frequency at which an edge is crossed and therefore the amount of
time lost along the route.

For the estimation of vulnerability along the Catania network we have followed
the methodology proposed by the work of Jenelius and Mattson [20], assuming that the
consequences derived by the disruption of a set of links within a cell are an indication of
their importance within the network. The vulnerability algorithm has been setup according
to the flow diagram illustrated in Figure 10. Outputs from map matching have been used to
estimate the traffic counts, the mean speed occurring on each link and, to find all possible
Origin-Destination trajectories along the network for a given observation time.
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As reported above, we operated a tessellation or zoning of the road network using
hexagonal cells of 400 m diameter (the diameter is referred to the circumscribed circumfer-
ence, corresponding to the double of the hexagon side). Overall, the whole network has
been zoned with approximately 30,000 cells (Figure 10).

As shown in Figure 10, each cell includes a limited number of connected links. If
one of those links get disrupted, other links in the same cell will also get congested or
will suffer long delays. Ideally each cell should contain only few interconnected links
whose ending nodes are located in the adjacent cells. In this way, it is possible to model
the vulnerability of each link by considering the effect of the adjacent cells according to the
following procedure:

(1) For each edge in the cell, origins and destinations are assigned to the associated trip
involving the edge.

(2) A travel cost (time) is assigned to each edge in the network. The travel cost is
calculated as the ratio between the mean speed along each edge and its length. The
mean speed of each edge is computed from the average of all instant speeds recorded
from all FCD involving the edge.

(3) In the connected scenario, the shortest and faster path between each origin and
destination node is calculated assuming none of the links within the cell is disrupted.

(4) In the disrupted scenario, a penalty time (defined as the duration of the disruption)
is added to the travel cost of each edge and the shortest path between each origin
and destination is computed again. For this study, the penalty time was set at a value
of 5 h.

(5) For each route crossing the cell, the difference between the travel time in a connected
scenario and in a disrupted scenario is calculated considering all possible combi-
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nations between each origin and destination. These differences were then added
together to estimate the time lost on each link as well as in each cell.

Therefore, as stated above, the importance of a link is represented by the time lost
during its disruption and can be defined according to the following Equation (5) [20]:

importancee
i,j =

Fluxi,j × ∆te
i,j

(
penalty−

∆te
i,j

2

)
i f ∆te

i,j < penalty

Fluxi,j×penalty2

2 otherwise
(5)

where Flux[OD] is the travel demand that can be approximated with the flux of vehicles
travelling from one origin to one destination and, ∆tOD

link is the delay time accumulated by
the driver on each link within the cell during the disruption time window.

For the estimation of vulnerability over zones represented by cell, it is important to
stress that each link may cross multiple cells. In addition, considering that within each
cell links are connected, the disruption of a link might affect the congestion of all links
within that cell [21]. For this reason, cell vulnerability has been estimated by considering
the highest vulnerability value among the links crossing that cell. Figure 11 shows the
pseudo code used for the computation of the delay time used for the estimation of the
vulnerability. Basically, the algorithm computes all possible travel paths obtained every
time a link is disrupted within its assigned cell.
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Elaborations

Vulnerability analysis along the Catania network was estimated for the months of
February and August 2019 as representative of the winter and summer season, respectively.
The vulnerability of each link and cell was calculated by considering all trips and traffic
flows computed for both the months of February and August 2019. Map-matching carried
out on each edge resulted in the estimation of fundamental parameters, such as mean
speed, travel time, traffic count, and traffic flow. As final output, vulnerability values were
normalized to the highest value found in the network. Therefore, the vulnerability of each
link was expressed with a value between 0 (minimum) and 1 (maximum).

It can be observed that only few links and cells are characterized by high vulnerability
values (Figure 12). Indeed, most of the links in residential areas show very low values,
whereas high values are observed along motorways, connecting links and along the main
primary road crossing the center of the city. The vulnerability of the Catania network does
not show substantial differences between the winter (February) and summer (August)
seasons, with the exception of few roads along the north side of the main motorway, in the
urban area of Catania, and of the town of Acireale that show higher vulnerability values
during the summer compared to the winter. However, the fact that vulnerability does
not show considerable differences between the winter and the summer along most of the
roads can be an indication of the intrinsic nature of vulnerability. Indeed, although we
have used FCD data corresponding to two different periods of the year, most of the roads
show the same vulnerability value. Further analysis shown in Figure 13 highlights links
with vulnerability values larger than 0.5. In that case, it is observed that vulnerability
mainly increases along links with high traffic flows and along the intersections of primary
roads where highways and ramps are present. Most critical links can be targeted and can
undergo further analysis. For instance, links with high vulnerability values can be better
investigated through an interdependency analysis to understand the breakdown of traffic
flow among adjacent links. Another analysis could involve the evaluation of travelling
time of all trips crossing critical links. In other words, we stress the importance of targeting
vulnerable links as the starting points of further analysis to investigate possible solutions
to mitigate the vulnerability of the road network [22,23].

Sustainability 2023, 15, 711 12 of 15 
 

Elaborations 

Vulnerability analysis along the Catania network was estimated for the months of 

February and August 2019 as representative of the winter and summer season, respec-

tively. The vulnerability of each link and cell was calculated by considering all trips and 

traffic flows computed for both the months of February and August 2019. Map-matching 

carried out on each edge resulted in the estimation of fundamental parameters, such as 

mean speed, travel time, traffic count, and traffic flow. As final output, vulnerability val-

ues were normalized to the highest value found in the network. Therefore, the vulnera-

bility of each link was expressed with a value between 0 (minimum) and 1 (maximum). 

It can be observed that only few links and cells are characterized by high vulnerabil-

ity values (Figure 12). Indeed, most of the links in residential areas show very low values, 

whereas high values are observed along motorways, connecting links and along the main 

primary road crossing the center of the city. The vulnerability of the Catania network does 

not show substantial differences between the winter (February) and summer (August) 

seasons, with the exception of few roads along the north side of the main motorway, in 

the urban area of Catania, and of the town of Acireale that show higher vulnerability val-

ues during the summer compared to the winter. However, the fact that vulnerability does 

not show considerable differences between the winter and the summer along most of the 

roads can be an indication of the intrinsic nature of vulnerability. Indeed, although we 

have used FCD data corresponding to two different periods of the year, most of the roads 

show the same vulnerability value. Further analysis shown in Figure 13 highlights links 

with vulnerability values larger than 0.5. In that case, it is observed that vulnerability 

mainly increases along links with high traffic flows and along the intersections of primary 

roads where highways and ramps are present. Most critical links can be targeted and can 

undergo further analysis. For instance, links with high vulnerability values can be better 

investigated through an interdependency analysis to understand the breakdown of traffic 

flow among adjacent links. Another analysis could involve the evaluation of travelling 

time of all trips crossing critical links. In other words, we stress the importance of targeting 

vulnerable links as the starting points of further analysis to investigate possible solutions 

to mitigate the vulnerability of the road network [22,23]. 

 

Figure 12. Snapshots of vulnerability estimated in the road network around the city of Catania (It-

aly) for the months of February and August 2019. Links within a 400m cell are colored according to 

their vulnerability value. When a link crosses multiples cells, the vulnerability is given by the sum 

of the cumulative values obtained for each Origin-Destination. 

Figure 12. Snapshots of vulnerability estimated in the road network around the city of Catania (Italy)
for the months of February and August 2019. Links within a 400 m cell are colored according to their
vulnerability value. When a link crosses multiples cells, the vulnerability is given by the sum of the
cumulative values obtained for each Origin-Destination.
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Figure 13. Road link in the Catania network with vulnerability larger than 0.5 (August 2019).

The interconnectivity of links within a given zone or cell results in the assignation
of the highest vulnerability value that can be observed in that cell. Vulnerability analysis
by zones or cells shows that vulnerability becomes significant when a particular event
affects a given area (Figure 14). This event may be represented by conditions of intense
traffic flow or by a natural event such as a flooding or a collapse of the road. Figure 14
shows that all the zones crossed by the main motorway towards the city of Catania have
not-negligible vulnerability values. The same situation was observed in most of the zones
around the center of the city. In this case, as shown in Figure 13, although only a few
links are associated to high vulnerability, the interconnection between links clearly affects
other neighbor roads and therefore the zones they cross [24]. For this reason, zoning of
the vulnerability may be useful to setup possible emergency plans based on the value of
importance estimated for each zone (cell) as well as to assign a priority in the interventions
over a given zone.
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value of the edge crossing it has been assigned. Cells are colored according to their maximum
vulnerability value.
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6. Conclusions

In this work, a methodology to estimate road vulnerability using map matched FCD
data has been proposed, together with a pseudo code illustrating the main steps for its
practical implementation. This methodology showed that it is possible to identify roads
and geographical zones that may require interventions to minimize the impact related to
disruptions that, in most cases, is represented by traffic congestion or disasters caused by
natural phenomena [21].

It is shown that, while the traditional vulnerability methods based on topology assign
importance to road links only considering their rank within the network, the vulnerability
risk-based method provides information along the whole network by considering the
change in travel demand. This was possible because FCD data allowed the estimation of
travel speed, travel time, and traffic flow over the whole road network.

The case study illustrated in this work shows that roads and zones with high vulner-
ability are both located along motorways/highways and in the center of the city where
most people live and economic activity occurs on daily basis (Figure 13). This is extremely
important when considering emergency plans to be implemented before road disruption
occurs. Finally, the outcomes of this work may improve emergency plans in elaborating
the strategies for the choice of alternative roads to be used in case of emergencies or to set
priorities for the improvement of the existing infrastructure in order to avoid congestion.

Future studies can be focused on a more detailed analysis of the most critical links
identified by the vulnerability method presented in this work. For instance, as stated
in Section 5, links with high vulnerability values can be further investigated through an
interdependency analysis in order to characterize the impact of the link on the traffic flow
of adjacent links. Moreover, an a priori analysis of the travelling times of all trips crossing
the critical considered links can be performed for different scenarios in order to elaborate
detailed emergency plans.
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