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Abstract: Sustainability concepts should be adopted via new technologies to achieve the greatest
possible gains without compromising the objectives of projects. In this research, we empirically
investigated the influence of identified drivers on the implementation of robotics in the building
sector of developing countries. To this end, with a view to sustainable building projects, the drivers
of robotics were derived from the literature, which were subsequently contextually adjusted using a
survey method through the exploratory factor analysis (EFA) method. The results of EFA revealed
that the drivers of robotics can be classified into three primary constructs: technology, industry, and
culture. However, the benefits of implementing robotics can be grouped into two primary constructs:
resources and environment. Therefore, in this study, we employed partial least squares structural
equation modeling (PLS-SEM) to evaluate the connections amongst drivers and applications of
robotics in Nigeria’s building industry. The results indicated that the input to the implementation of
robotics in Nigeria’s building industry via the drivers of robotics has a considerable influence at a
small scale, with an impact of 14.5%. The findings of this study can serve as a guide for policymakers
looking to improve their projects and increase sustainability by using robotics in the building sector.

Keywords: construction projects; sustainability; robotics; resources; environment; structural
equation modeling

1. Introduction

The architectural, engineering, construction, and operations (AECO) industry is a
basis of a country’s economy, expected to accounting for approximately 15% of global
GDP by 2030 [1,2]. The building industry is one of the key sectors of the economy that
define the healthy lifestyle and well-being of the population of any country [3]. Building
projects utilize approximately 40% of global power and is responsible for up to one-third
of global greenhouse gas emissions in both rich and developing countries [4]. Given the
growing concentration of people and economic activity in many cities, such projects are
critical to the accomplishment of global sustainability goals [5]. Furthermore, increased

Sustainability 2023, 15, 604. https://doi.org/10.3390/su15010604 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15010604
https://doi.org/10.3390/su15010604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7347-4712
https://orcid.org/0000-0001-6551-8634
https://orcid.org/0000-0002-2939-5443
https://doi.org/10.3390/su15010604
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15010604?type=check_update&version=5


Sustainability 2023, 15, 604 2 of 25

urbanization in these cities has resulted in an increase in urban populations [6]. Nonethe-
less, in a rapidly changing and urbanizing world, building allocation cannot keep up with
demand [7]. Significant changes in the building industry have been recorded in many
developing countries, driven by the need to attain national objectives [8]. It was reported
that 828 million impoverished people in developing nations live in slums and substandard
housing, and this population is expected to grow to 1.4 billion by 2020 [7,9,10]. These
regions have experienced tremendous growth, with an emphasis on the importance of
building to ensure a basic way of life [11]. Consequently, all governments have prioritized
inexpensive building projects by enacting a variety of affordable building technologies and
laws [3]. However, a debate continues regarding whether such structures are affordable for
low-income earners [7]. In addition, the building industry in these countries is not com-
petitive, as it cannot meet global requirements for sustainable development. Such projects
are marred by multiple resource challenges, such as budget breaks, delays in scheduling,
non-completion, high risk of failure, and poor quality, making it difficult to achieve the
anticipated goals. These projects face multiple challenges [12,13]. Considering the low
level of investment in this sector, many projects have been cancelled or suspended [14].
In all developing countries, the building industry meets the demands of the government
demand, society, and consumers, consequently lagging other comparable businesses [15]
Furthermore, the problem of sustainability in the low-income building industry has not
been solved and considered [16]. As a result, the necessity of “sustainable buildings” that
are ecologically friendly and resource-efficient has been stressed in the literature. Wol-
stenholme et al. [17] argue that implementing effective and sustainable building practices
will revolutionize the building industry. Moreover, building stakeholders are unable to
quantify the environmental impacts of structures as they are created [18]. As a result,
robotics implementation may be integrated throughout the life cycle of a project through
sustainability techniques [19,20].

The use of robotics in building has been acknowledged as one of the most radical ad-
vances for building projects [21]. Skibniewski [22] characterized the application of robotics
in the construction industry as sophisticated construction equipment capable of being
teleoperated, gathering and processing sensory data, and being numerically controlled
for autonomous job implementation. According to Mahbub [23], robotics implementation
entails the use of self-controlled mechanical and electrical gear with intelligent control
mechanisms for building jobs and operations. Several building firms have already begun to
employ modern construction technology to decrease waste and resource consumption [21].
The implementation of on-site robotics construction technologies has proven to provide
several advantages, including considerable waste reduction, major time savings, flexible
working conditions, and increased quality but at a high initial cost [24,25]. At the business
level, long-term economic value in terms of payback duration and return on investment
may be used to analyze the financial viability of investments in robotics deployment [26].

Although robotics have come to represent a popular instrument for solving building
difficulties in a number of industrialized countries, particularly in terms of investigating the
functions of computerized technologies to accelerate various sorts of construction markets, [27],
most emerging countries have yet to seriously consider such technology. In the building
industry of third-world nations, only an insignificant proportion of construction firms have
successfully implemented robotics prefabrication in their projects. Notwithstanding the low
implementation rate of robotics, there has been continuous research on innovative robotics and
automation technologies incorporated into building sites. A groundbreaking technological
advancement is the invention of 3D printing robots [28], which can be used to structurally
print innocuous concrete buildings and bridges [29]. Humanoid robotics technology is (e.g.,
exoskeleton) another such invention, combining human intelligence with the speed, efficiency,
and power of a robotics system fastened to the human body. Thus, it provides the capacity to
manage constricted and complex tasks [30].

Apart from these innovative inventions, the building industry has not taken full advan-
tage of the open possibilities offered by these technologies. Whereas many industries have
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depended on and thoroughly explored the application of robotic technologies, such as the
motorized medical profession, the universal application of robotics in the building sector is
overdue as a result of many impediments [31]. The implementation of robotics in the building
industry is quite sluggish. When generating different types of building jobs, the use of several
single-task assembly robots is required [32], and robotics technology implementation is ex-
pected to enhance the sustainability of the building industry, as well as to solve issues such as
labor shortages and safety hazards, particularly in high-rise buildings [33].

Kim et al. [34] argued that the low level of automation in the building sector delays
other industries. An investigation involving 11 significant building firms and public orga-
nizations in Europe revealed that apart from the perception that automated and robotic
systems can enhance output, safety, and health [35], there are substantial threats to the
implementation of robotics. These include technical and commercial risks and the high
cost of implementation [36]. However, some studies have attempted to classify drivers
of adoption, especially for definite activities in the building industry; these experiments
have primarily focused on global building firms instead of the building industry in third-
world nations building, such as in Nigeria. The existing literature has not presented an
all-inclusive analysis that recognizes the impediments to the conventional implementation
of robotics in building activities within Nigeria’s building industry. Consequently, filling
this gap requires advanced knowledge concerning construction in third-world nations,
especially Nigeria. To that end, we formulated the following research questions to be
answered in this study. What are the benefits and impact of robotics in Nigeria’s building
industry? What are the requirements and drivers needed to implement robotics in Nigeria’s
building industry? Accordingly, this study was carried out to fill the existing gap by mathe-
matically studying the connection concerning robotics drivers and adoption and the impact
of implementing robotics in the building industry using the partial least squares modeling
technique. We used the global–local context (GLC), which emphasizes the worldwide
importance of the study subject. Furthermore, this strategy both represents and accentuates
the issues under consideration. Thus, the method has been embraced by “developing”
countries, including Nigeria, as the local environment is geared to produce such clarity
(i.e., establishing its importance). The outputs from this study can be useful in enabling
numerous attractive benefits for many building professionals, such as policymakers, project
bidders, and architects [37], not only in Nigeria but also in other developing countries
where building projects are carried out in the same way. This study will offer valuable
insight that can help in decision making with respect to successful construction projects
by enhancing building resources and improving the entire building environment through
robotics implementation.

2. Model Development and Research Background

In 1921, Karel Capek coined the concept of robotics. At present, robots are utilized
on farms, in workplaces, homes, streets, and other public places, such as restaurants,
malls, and amusement parks, in the form of drones, humanoids, and self-driving vehicles.
Robotics has been a promising and evolving field of science and engineering since the
1920s. Initially, robots were utilized for complex routinized tasks and limited to factories
and warehouses, whereas they are currently an integral part of human society. At present,
robots are applied for various purposes, such as in food manufacturing [38], therapeutic
training [39], teaching [40], and drain cleanup [41]. The pace of automation is expanding
very precipitously, which is apparent from the rate at which robots are applied in the
construction industry. Robots have made significant advances in the socioeconomic percep-
tions of human society [42]. Consequently, the global manufacturing network paradigm is
evolving, with increased use of artificial intelligence and robots enabling manufacturing
intelligence and smart production [43].

Robots are grouped into two major classes: field and service robots. The latter are
applied in domestic contexts, such as homes, public parks, and restaurants and are typ-
ically referred to as humanoids. Field robots are specific and unique robots designed to
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operate in a specific milieu, such as ground, aerial, and marine applications [42]. The
developments of robotics can be grouped into three generations. The first generation
comprised robots primarily used for carrying out repeated tasks and for automation. Those
dealing with weaponry, the development of tasks, entertainment, and research are termed
second-generation robots. Those concerned with intelligence that can co-operate and
coexist with humans constitute third-generation robots. These robots are primarily ap-
plied to understand patterns of behavior and natural languages and respond to human
behavior [44–46].

The application of robotics offers active customer care and involvement through de-
cision making. Rockart [47] described drivers as locales in which findings guarantee a
company’s commercial success if adequate. Chan et al. [48] and Yu et al. [49] concur that
drivers can be deemed as essential for managing planning and field actions to guarantee
achievement [50]. Based on Dillon and Morris’ [51] definition of technology implemen-
tation, the operator’s readiness to employ technology in day-to-day life to complete as-
signments specifies customer acceptance. Other studies, including [52], have examined
the implementation of technology in everyday life. The analyzed theories typically see the
drivers of technology implementation as achievement aspects [53–55].

The theory of reasoned action (TRA) is concerned with the elements of intentionally
planned behaviors [56]. A task abstraction module (TAM) was pioneered to evaluate
operator adoption of high-tech modernizations [57]. the unified theory of acceptance and
use of technology (UTAUT) is, likewise, a well-established theory developed on the basis
of TRA and TAM [52]. Additionally, precise methods and tools are needed to boost the
implementation of robotics developed for building projects. Robotics constitute a technique
that entails the application of approaches that proffer a motivation to achieve improved
project and environmental resources. The speediest innovations in automation and robotics
are driven by software programming methods that enable applications to find patterns,
conduct analysis, and make predictions according to various sources of data. Many types
of methods are used in nearly all industries to enhance the precision, quality, and pace of
specialized processes.

The building industry is dominated by equipment and plants that generate consid-
erable emissions. If robotic machinery is used in place of such equipment, it can reduce
environmental pollution and create a friendly environment. This includes robots whose
primary function may not affect the environment, although they might have considerable
environmental consequences. Robots are designed to explore their effect on the environ-
ment, although they have substantial environmental effects. Robots are also designed to
delve into new environments that are impenetrable by humans [58]. The desire for mod-
ernization in the building industry hinges on the willingness of the industry to adopt novel
technologies. Implementing novel technologies tends to lessen some obstacles that can
affect the building industry. Carmona [59] argued in favor of building technology, arguing
that the intrinsically conservative nature of the sector has failed to transform construction
processes. However, results have lagged, despite the availability of new methods that can
reduce construction costs.

Consequently, the application of new building methods can aid in the expansion of the
effectiveness of tasks and reduce the high costs devoted to building projects. Among the
significant benefits of robotics, implementation improves working conditions by avoiding
contact with dangerous tasks and reducing such tasks among workers. Robotics implemen-
tation can boost occupational safety by performing unsafe tasks in hazardous areas that
would otherwise have to be performed by humans [60,61]. Robotics implementation has
led to a reduction in injuries to workers and laborers. Issues stem from the quality of work
delivered by employees and the repetitiveness of tasks performed, and labor costs can be
reduced if fewer workers are required. Currently in the construction industry, human tasks
are being supplemented with robots to cut down on the number of workers. Tables 1 and 2
show the benefits and drivers of robotics adoption, respectively. Likewise, Figure 1 shows
the conceptual framework for the present study.
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Table 1. Drivers leading the application of robotics for construction projects.

Code Driver [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73]

D1 Technology innovation
√ √ √

D2 Environmentally friendly nature
of robots

√ √ √ √ √

D3 The need for connectivity and
convergence

√ √ √ √ √

D4 The rapidly-changing, field- and
project-based nature of the industry

√ √ √ √ √

D5 Integration and globalization of the
construction industry

√ √ √

D6 The use of ICT in the construction
industry

√ √ √ √

D7 Rapid advancement in software
programming technologies

√ √ √ √

D8 Software visualization and
artificial vision

√ √ √ √ √

D9 Fusion of traditional and
innovative technology

√ √ √ √

D10 The need for urbanization
√
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Table 2. Benefits through the adoption of robotics for construction projects.

Code Benefit [62] [63] [64] [65] [66] [67] [68] [62] [74] [70] [75] [75] [76] [23] [72] [77]

RI 1 Improves real-time planning and
saves time

√ √ √ √ √ √ √

RI 2 Better accuracy than that of
site laborers

√ √ √ √ √

RI 3 Enhances efficiency and improves
the quality of work

√ √ √ √ √ √ √ √ √

RI 4 High standards for health and
safety measures

√ √ √ √ √ √ √

RI 5 Reduces hazardous risk
√ √ √ √ √ √ √

RI 6 Enhances existing construction
plants and equipment

√ √ √

RI 7 Decreases labor intensity
√ √ √ √ √ √

RI 8 Reduces waste of building materials

RI 9 Reduces dependence on direct labor
√

RI 10
Makes construction plants and
equipment more
environmentally friendly

√ √ √

RI 11 Improves the process of
construction activities

√ √

RI 12 Greater control over the
productive process

√ √



Sustainability 2023, 15, 604 7 of 25

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 25 
 

 
Figure 1. Impact of robotics drivers on robotics implementation. 

3. Research Methodology 
The study approach involves creating a theoretical model that summarizing a litera-

ture review used to create transitional theories (or hypotheses) that were verified by em-
ploying experimental proof [78]. A three-stage procedure was established for the concep-
tual modeling process: (i) identifying the model’s construct, (ii) grouping the model’s con-
structs, and (ii) itemizing the connections between the model’s constructs [79]. The 
model’s results were obtained following this process, as shown in Figure 1. The study plan 
was based on the work of Tanko et al. [80], as illustrated in Figure 2. Because the use of 
robotics is comparatively new in Nigeria, in this study, we employed a stratified sampling 
approach to attain a particular subpopulation group [81]. This method was proposed to 
help researchers collect highly reliable and accurate data because the current survey is 
associated with a topic concerning robotics. The benefits of stratified sampling, as high-
lighted by Sharma [82], are as follows: (i) “Decreasing bias in sample case selection, this 
also implies that perhaps the sample will represent a substantial portion of the surveyed 
populations; (ii) Allow the sample to be generalized to the population. The population 
difference is considered by stratification, along with all three sectors (client, contractor, 
and consultant) and most five subsectors in Nigeria” [83]. Respondents reported robotics 
drivers and adoption benefits on an experience and knowledge basis utilizing a five-point 
Likert scale, with scores of 5 and 1 representing very high and very low, respectively, with 
high, average, and low scores falling between 5 and 1. This scoring system has been 
broadly applied in many studies, including those concerned with construction manage-
ment [84–90]. The study was designed to provide stakeholders with a variety of solutions 
based on practice in a range of construction schemes. 

The size of the sample was determined according to [91]. More than thirty (30) cases 
were considered adequate for further examination, including mean, median, and mode 
for a normal distribution curve [92]. In contrast, Harris and Schaubroeck [93] argued that 
a sample size of at least 200 is required to warrant vigorous SEM. A very intricate path 
model requires a sampling size of 200 or more, as suggested by Kline [94], whereas a sam-
pling size greater than 100 was considered satisfactory by Yin [95]. Because in this analy-
sis, we employed the SEM method, 104 participants were recruited among 180 construc-
tion experts. The participants were personally recruited and completed a self-adminis-
tered questionnaire for SEM evaluation, with a response rate of approximately 68%, which 
was deemed satisfactory for this study [96,97]. 

Figure 1. Impact of robotics drivers on robotics implementation.

3. Research Methodology

The study approach involves creating a theoretical model that summarizing a literature
review used to create transitional theories (or hypotheses) that were verified by employing
experimental proof [78]. A three-stage procedure was established for the conceptual
modeling process: (i) identifying the model’s construct, (ii) grouping the model’s constructs,
and (ii) itemizing the connections between the model’s constructs [79]. The model’s results
were obtained following this process, as shown in Figure 1. The study plan was based
on the work of Tanko et al. [80], as illustrated in Figure 2. Because the use of robotics is
comparatively new in Nigeria, in this study, we employed a stratified sampling approach to
attain a particular subpopulation group [81]. This method was proposed to help researchers
collect highly reliable and accurate data because the current survey is associated with a
topic concerning robotics. The benefits of stratified sampling, as highlighted by Sharma [82],
are as follows: (i) “Decreasing bias in sample case selection, this also implies that perhaps
the sample will represent a substantial portion of the surveyed populations; (ii) Allow the
sample to be generalized to the population. The population difference is considered by
stratification, along with all three sectors (client, contractor, and consultant) and most five
subsectors in Nigeria” [83]. Respondents reported robotics drivers and adoption benefits
on an experience and knowledge basis utilizing a five-point Likert scale, with scores of
5 and 1 representing very high and very low, respectively, with high, average, and low
scores falling between 5 and 1. This scoring system has been broadly applied in many
studies, including those concerned with construction management [84–90]. The study was
designed to provide stakeholders with a variety of solutions based on practice in a range of
construction schemes.

The size of the sample was determined according to [91]. More than thirty (30) cases
were considered adequate for further examination, including mean, median, and mode for
a normal distribution curve [92]. In contrast, Harris and Schaubroeck [93] argued that a
sample size of at least 200 is required to warrant vigorous SEM. A very intricate path model
requires a sampling size of 200 or more, as suggested by Kline [94], whereas a sampling
size greater than 100 was considered satisfactory by Yin [95]. Because in this analysis,
we employed the SEM method, 104 participants were recruited among 180 construction
experts. The participants were personally recruited and completed a self-administered
questionnaire for SEM evaluation, with a response rate of approximately 68%, which was
deemed satisfactory for this study [96,97].

3.1. Exploratory Factor Analysis

Exploratory factor analysis (EFA) was conducted to examine the groups mentioned
above based on a questionnaire distributed to experts in Nigeria’s construction industry.
Between 150 and 300 samples or observations are required for EFA [98]. However, Pal-
lant [99] argued that the investigators have some leeway concerning the sampling size for
factor analysis. Thus, the use of larger sampling sizes is advocated relative to the number of
variables involved. Shen [100] suggested that a set of 20 to 50 variables or parameters is ap-
propriate for factor analysis. Because the individual aspects are not sufficiently determined
if the quantity of variables exceeds this limit, some analyses required fewer variables if the
sampling size is sufficiently large [14,101]. The population included in the present study
was considered a good representative sample across the relevant ranges [98]. Accordingly,
the ten identified variables and the completed questionnaires acquired from 104 respon-
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dents in the current analysis were, likewise, deemed suitable for factor analysis [98,102].
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3.2. Analytical Method (Structural Equation Modeling)

To examine the implementation of robotics, we conducted a literature review, and four
models were compared in order to develop an optimal model of robotics implementation
that guarantees practical construction projects. The considered models were multiple linear
regression (MLR), structural equation modeling (SEM), artificial neural network (ANNs)
and system dynamics (SD). Owing to the connections among non-observed variables, a
regression model was not applied. This is a major limiting factor for the application of
regression model [103]. Likewise, SD could not be applied because the nature of the survey
data is unconnected to the period. ANNs are also a projecting tool, and the purpose of
the analysis is to analyze the effects of the drivers of robotics adoption on robotics imple-
mentation. The SEM technique explains the relationship between many quantifiable and
non-observable variables, making it appropriate for the analysis in this study [104]. Ama-
ratunga et al. [105] explained that SEM is a valuable instrument for tackling errors within
variables. This SEM analysis technique was used to generate a model and determine the
relationships among robotics drivers and robotics implementation. Byrne [73] noted that
SEM is a widely recognized non-experimental investigation used for parameter evaluation
and hypothesis testing [106]. Similarly, Ringle et al. [107] confirmed that this technique has
been improved over many decades in a research journal bulletin issued in MIS (Manage-
ment Information Systems) Quarterly. Furthermore, Yuan et al. [108] concluded that SEM
is a thoroughly understood and prevalent form of data analysis in the social sciences.

The SEM technique was used in the current analysis because it has been widely applied
in studies concerning the construction industry [109]. This approach enabled us to test
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hypothesized relationships simultaneously [110]. In order to establish the relationships
between robotics drivers and robotics implementation, we used the partial least squares
model (PLS) [111], which includes both formative and reflective variables. It enables
examination of the drivers within robotics and the effects of robotics implementation.
PLS-SEM, on the other hand, allows for the comprehensive testing of complicated models
for their similarity with the data, as well as the testing of explicit assumptions about
parameters for their similarity with the data [112]. In the PLS, the computing model defines
the relationsships among the constructs (i.e., robotics drivers) and the experiential pointers
(or drivers) [113,114]. In this study, the goal of the data reduction procedure was to decrease
the number of variables and parameters in the research model to a reasonable amount
relative to the sample size/parameters estimated in the SEM ratio [115].

4. Results
4.1. Characteristics of the Respondents

Data on the characteristics of the respondents were collected for background infor-
mation, including the profession of the respondent, professional qualifications, academic
qualifications, and years of professional experience. Table 3 shows the profession of the
respondents who completed the questionnaire; a proportion of 28.8% of respondents were
architects, 28.8% were quantity surveyors, 11.5% were builders, 25% wre engineers, and
5.8% were project managers. Table 3 shows the years of professional experience of the
respondents; a proprotion of 32.7% of respondents had fewer than 5 years of professional
experience, 32.7% had 6 to 10 years of professional experience, 21.2% had 11 to 15 years
of professional experience, 11.5% had 16 to 20 years of professional experience, and 1.9%
had more than 21 years of professional experience. Table 3 shows the knowledge level of
the respondents about robotics, with three possible responses; a proportion of 73.1% of
respondents anwered ‘Yes’ to this question about knowledge of robotics, 21.2% answered
‘No’, and 5.8% answered ‘Maybe’ indicating that they were not sure about the answer
to the question. Table 3 shows the knowledge level of the respondents about the use of
robotics in the construction industry, with three possible responses; a prorportion of 71.2%
of the respondents answered ‘Yes’, 21.2% answered ‘No’, and while 7.7% answered ‘Maybe’
indicating that they were not sure about the answer to the question.

4.2. Identifying and Categorizing the Model’s Constructs

A total of 20 elements pertinent to robotics drivers and 12 items regarding the bene-
fits of robotics implementation were examined using EFA. Many recognized factorability
parameters were employed for model construction. The KMO is a homogeneity of factor
dimension widely applied to assess whether partial associations between items are negligi-
ble [116–118]. The KMO index must be between 0 and 1 for effective factor analysis and
should have a value of at least 0.6 [98]. Bartlett’s sphericity test also indicates whether the
correlation matrix is identical. An appropriate factor analysis requires Bartlett’s sphericity
test, as suggested by Pallant [119]. A p-value <0.05 is considered significant [120]. The
initial results for robotics drivers and benefits of robotics implementation show that the
Kaiser–Meyer–Olkin sample suitability ratios were 0.730. and 0.882, respectively. These
values are greater than the recommended Bartlett’s value of the sphericity test. It was
significant for robotics drivers (x2(45) = 123.511, p < 0.05) and for benefits of robotics imple-
mentation (x2 (66) = 270.008, p < 0.05). Moreover, the entire diagonal of the anti-image’s
correlation matrix are above 0.5 and putative, given the insertion of individual elements
in the factor analysis. The preliminary communalities are estimations of variance within
variables measured among all components, and lower values (<0.3) designate variables
that do not fit the solution factor. In the current analysis, all initial communalities were
greater than the threshold, and all factor loadings were above 0.
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Table 3. Characteristics of the respondents.

Frequency Per Cent Cumulative per Cent

Architect 15 28.8 28.8
Quantity Surveying 15 28.8 57.7

Builder 6 11.5 69.2
Engineer 13 25.0 94.2

Project Manager 3 5.8 100.0
Total 52 100.0

Professional qualification of respondents

Less Than 5 Years 17 32.7 32.7
6 To 10 Years 17 32.7 32.7

11 To 15 Years 11 21.2 65.4
16 To 20 Years 6 11.5 86.5

Above 21 1 1.9 98.1
Total 52 100.0 100.0

Knowledge Level About Robotics

Yes 38 73.1 73.1
No 11 21.2 94.2

Maybe 3 5.8 100.0
Total 52 100.0

Knowledge Level About use of Robotics

Frequency Per cent Cumulative per cent
Yes 37 71.2 71.2
No 11 21.2 92.3

Maybe 4 7.7 100.0
Total 52 100.0

The results of exploratory factor analysis for all ten elements relevant to robotics
drivers indicated two factors with eigenvalues or more than 1. The total variance and
the eigenvalues described by the two factors were 57.915%. It is noteworthy that D 1
was excluded from the primary analysis, owing to cross loading, as shown in Table 4.
Additionally, the EFA results revealed that all 12 elements were relevant to the robotics
implementation benefits with three extracted. EFA results also identified ten elements
relevant to the robotics derivers, with three extracted factors with eigenvalues of more
than 1. The total variance and the eigenvalues described by the three factors were 59.88%.
However, as shown in Tables 4 and 5, three cross-loading factors (RI 5, RI 8, and RI 9) were
excluded from the main study.

Table 4. Factor loadings of robotics drivers.

Driver
Components

1 2 3

D 1 0.488 0.587
D 2 0.642 -
D 3 0.657 -
D 4 0.692 -
D 5 0.721 -
D 6 - 0.784 -
D 7 - - 0.867
D 8 - - 0.684
D 9 0.651 - -
D 10 0.763 - -
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Table 5. Factor loadings of robotics benefits.

Benefit
Components

1 2

RI 1 0.546
RI 2 - 0.650
RI 3 - 0.791
RI 4 - 0.740
RI 5 0.609 0.564
RI 6 - 0.669
RI 7 0.683 -
RI 8 0.523 0.550
RI 9 0.507 0.605

RI 10 0.821 -
RI 11 0.766 -
RI 12 0.743 -

For the factors extracted by EFA, statistical reliability was determined. Factors for
individual phases of the factor (or group) were measured based on the maximum factor
loading for each parameter in the matrix structure. The table also shows that the reliability
test was satisfactory. According to Nunnally [121], Cronbach alpha value should be higher
than 0.6 for recently developed dimensions, although the expected value was 0.7, and
values greater than 0.8 were deemed reliable. Therefore, the total Cronbach values were
satisfactory, as they were higher than 0.6, and usual correlations of variables were above
0.3 for all factors, suggesting harmonious inner variables [122].

4.3. Common Method Bias

Calculation of variance errors that influence the validity of samples is referred to as
general process bias, i.e., the statistical error variance for the observed and expected vari-
ables [123]. It is calculated using Harman’s single-factor model, which suggests different
construction measures [124]. In this analysis, a single-factor test was used for variance
calculation [125]. If the overall variance of the variables is less than 50%, the traditional
method bias has a minimal impact on the results [124,126]. “When such a single-factor
test is conducted, a high common method variance may exist if all factors come down to
one single factor or a special factor accounts for the majority of total covariance over all
variables” [127]. As shown in Table 6, the first set of variables accounts for 47.9% of the
overall variance, indicating that the common method variance cannot be influenced by less
than 50% [124].

Table 6. Common method variance.

Sum of Squared Loadings

Total % of Variance Cumulative %

9.11 47.9 47.9

4.4. First-Order Construct Measurement Model

The SEM shown in Figure 3 duplicates the theoretical study model presented in
Figure 1. As shown in Tables 1 and 2, the model constructs of each robotics driver and
implementation benefits model were comprehensive and categorized based on elements
obtained from the literature. According to Hair Jr et al. [128], the evaluation model requires
an estimate of (i) an indicator’s reliability, (ii) merged reliability, (iii) extracted average vari-
ance, and (iv) discriminant ability. In the current analysis, the PLS algorithm was applied
300 iterations using the following settings [129] recommended by Wong [130]: weighing
scheme, weighing path, data matrix with a mean 0, variance of 1, highest interactions of
300, abort criterion of 1.0 × 10−5, and initial weights of 1.0.
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Typically, indicators with external loadings in the range of 0.40 to 0.70 must be con-
sidered for elimination if removal of the indicator results in a significant increase in the
reliability of the composite and AVE [131]. External load variables below 0.60 were found
to disagree with this prerequisite and were eliminated for further analysis, as suggested
in [128]. At this level, roughly one-half of an indicator’s variance is described by its compo-
nents. The intensity at which the variance was described is higher than the variance error.
Figure 3 and Table 4 show the external loadings for all variables of the measurement model.
Thus, all external loads were greater than 0.60, which was deemed acceptable. Because the
Cronbach alpha limits computational sensitivity with respect to the number of variables
considered, the core constancy of composite reliability (cr) was evaluated according to Hair
Jr et al. [128]; values greater than 0.70 were considered acceptable. For exploratory research,
values greater than 0.60 are deemed suitable [130]. All models met the cr threshold of
>0.70 and were therefore accepted, as summarized in Table 7. The AVE is a technique that
is commonly used to estimate the convergent cogency of constructs within models with
values higher than 0.50 [132,133], suggesting an acceptable value as recommended in [130].
All constructs passed this test, as shown in Table 7.

Table 7. The results of convergent validity.

Construct Item Outer
Loading

Cronbach’s
Alpha

Composite
Reliability AVE

Culture

D10 0.724

0.730 0.831 0.552
D3 0.717

D5 0.762

D9 0.768

Technology
D2 0.658

0.606 0.792 0.562D4 0.813

D6 0.735

Environment

RI 1 0.677

0.811 0.869 0.570
RI 10 0.755

RI 11 0.768

RI 12 0.802

RI 7 0.768
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Table 7. Cont.

Construct Item Outer
Loading

Cronbach’s
Alpha

Composite
Reliability AVE

Resources

RI 2 0.658

0.746 0.840 0.569
RI 3 0.802

RI 4 0.813

RI 6 0.735

For constructs differing considerably from other constructs, discriminant analysis was
accurately defined based on the observed standards. Consequently, the establishment of
discriminative validity (DV) indicates that a construct is typical and describes singularities
that are not clearly defined by the remaining constructs within the model [134]. DV can
be computed by applying two types of methods: the cross-loading criterion and Fornell
and Larcker’s (1981) criterion. The square root of the AVE of the individual construct in the
initial technique can be equated to the correlation of an individual construct with any other
construct to estimate discriminant validity. The square root of the AVE should be greater
than the correlation among the dormant parameters based on the Fornell and Larcker [135]
values. The results confirming the discriminant validity of the measurement model are
presented in Table 8 [136].

Table 8. Correlation of latent variables and discriminant validity (Fornell–Larcker).

Culture Environment Industry Resources Technology

Culture 0.743 - - - -
Environment 0.383 0.755 - - -

Industry 0.379 0.248 0.834 - -
Resources 0.26 0.527 0.223 0.754 -

Technology 0.455 0.173 0.303 0.127 0.75

The cross-loading criterion was employed to measure discriminative validity. This
technique represents an attempt to establish the loadings of indicators based on the assumed
dormant construct, which must be greater than the loadings on the remaining construct
in a rows, which means that the indicator’s (items) loadings for each construct must be
greater than the loadings of alternative constructs. Table 9 shows that the loading of each
point of the allotted dormant construct is greater than the cross loading on the alternative
constructs in a row.

4.5. Measurement Model (Second-Order Construct)

The significant variables (dependent and independent variables) were categorized
as second-order static variables, and the momentous input of all first-order dormant
variables was then examined by employing the bootstrap method. The individual construct
of the robotics drivers was determinative, and robotics implementation was found to
be an insightful construct. Significant correlations among the formative indicators of
the measurements model were not characteristically projected. Furthermore, significant
correlations among the formative variables indicating collinearity is deemed awkward [134].
Analysis of the value of the variable inflation factor (VIF) revealed collinearity between
the construct’s formative variables. For this assessment, the internal VIF values were
used to evaluate collinearity problems related to the formative–reflective form of second-
order constructs. The three (3) first-order subscales of robotics drivers comprised culture,
technology, and industry. For culture, maximum external loading was observed (β = 0.621,
p < 0.001), as indicated in Table 10, followed by industry (β = 0.277, p < 0.001) and technology
(β = 0.369, p < 0.001). According to these findings, all VIF values were less than 3.5,
signifying that those subdomains contributed individually to higher-order constructs.
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Table 9. Cross-loading testing of the discriminant validity of indicators.

Item Culture Technology Industry Environment Resources

D10 0.768 0.347 0.22 0.198 −0.103
D3 0.762 0.433 0.346 0.358 0.371
D5 0.724 0.245 0.313 0.287 0.194
D9 0.717 0.313 0.243 0.288 0.293
D2 0.472 0.856 0.216 0.121 0.124
D4 0.263 0.629 0.19 0.079 0.236
D6 0.252 0.748 0.283 0.193 −0.066
D7 0.185 0.205 0.761 0.186 0.277
D8 0.411 0.29 0.9 0.225 0.128
RI 1 0.314 0.205 0.393 0.677 0.388

RI 10 0.225 0.005 0.115 0.755 0.302
RI 11 0.258 0.071 0.157 0.768 0.416
RI 12 0.332 0.193 0.141 0.802 0.443
RI 7 0.314 0.18 0.148 0.768 0.429
RI 2 0.049 0.028 0.161 0.305 0.658
RI 3 0.272 0.318 0.32 0.412 0.802
RI 4 0.182 0.003 0.226 0.478 0.813
RI 6 0.259 0.074 0.216 0.376 0.735

Table 10. Second-order model testing by means of bootstrapping for foundational constructs.

Path β SE T p-Value VIF

Culture→ Drivers 0.621 0.054 11.499 <0.001 1.373
Industrial→ Drivers 0.277 0.05 5.588 <0.001 1.19

Technology→ Drivers 0.369 0.053 7.003 <0.001 1.294

Robotics implementation was identified as a second-order construct within the re
model with two subsamples, comprising two components, i.e., environment (β = 0.907,
p < 0.001) and resources (β = 0.907, p < 0.001), which contributed considerably to robotics
implementation as a static second-order variable; standardized coefficient paths (external
loadings) were greater than 0.7 and statistically significant, as indicated by Table 11.

Table 11. Second-order model testing by means of bootstrapping for weighty second-order constructs.

Path B SE T p-Value

Robotics Implementation→ Environment 0.907 0.018 51.39 <0.001
Robotics Implementation→ Resources 0. 907 0.033 25.674 <0.001

4.6. Path Analysis: Structural Model

Path analysis (PA) is a linear statistical technique that is ideal for management and
social sciences. Likewise, PA is an essential tool for concurrent examination of multifaceted
associations [98]. Primary phase analysis requires the application of SEM. This model is
applicable for the evaluation of associations among studied concepts. After model fitting,
SEM is the subsequent primary phase within SEM analysis. SEM can be used to detect
relationships among variables. In SEM, the connections between factors are described
in detail. The connections among exogenous (or dependent) and independent variables
are shown by the data [137,138]. SEM evaluation is based on the model’s total fit, with
theorized variable estimations trailed by importance, size, and direction [137]. The last
component involves confirmation of the proposed analytical relationship on the basis of
the research hypotheses presented in Figure 1.

SEM was applied to the research hypothesis. The effect of robotics drivers on robotics
implementation was studied using PLS-SEM based on the study framework. The related
research model hypothesis is illustrated in Figure 4. Within the context of the bootstrap-
ping methodology, the consequence of the model’s hypothesis was estimated. Arbitrary
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resampling of the fundamental dataset comprised the process of bootstrapping to produce
new samples of comparable size to the basic set of data. This approach tests the consistency
of datasets and their statistical implications and, consequently, the error of the computed
coefficient’s path [139]. The standardized coefficient path (β) and p-values, as well as the
significance of the pathway, are presented in Figure 4. Table 12 presents the results of the
bootstrapping method, indicating the p-values of the model path. According to the results,
the effects of robotics drivers on robotics implementation were significant and positive
(p = <0.001, β = 0.384).
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Table 12. Relative path for the model.

Path B SE T p-Value

Drivers→ Robotics Implementation 0.384 0.083 4.631 <0.001

4.7. Exploratory Supremacy of the SEM Model

The model results reveal robust reliability of each item, as well as the discriminatory
and cogent validity of the measurement model. Besides calculating the variance within
the dependent variable, which the model can define, the exploratory supremacy of the
SEM model can be tested. Concerning the dependent variables within the model, the PLS
algorithm reinforced squared multiple (R2) relationships. The R2 established by the PLS
algorithm is comparable to the standard regression [140].

The value of R2 signifies the sum of variance and can be explained using the inde-
pendent variable within dependent variables. Consequently, higher R2 values increase
the analytical capacity of the SEM model. In the current analysis, the R2 values were
calculated by employing the Smart-PLS algorithm, as shown in Table 13. The adjusted R2

for robotics implementation, as the significant dependent variable within the model, was
0.139, suggesting that the independent (or exogeneous) static variable (robotics drivers) can
explain 13.9% of robotics implementation. These results imply that the effect of robotics
drivers is insignificant, as argued by Chin [93].

Table 13. Coefficient of determination (R2).

Endogenic Dormant Variable R2 Adjusted R2

Robotics Implementation 0.148 0.139

4.8. Predictive Relevance of the Structural Model

A significant component of the proposed model is its capacity to assess analytical
significance. A blindfolding protocol was employed for individual dependent variables to
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assess the redundancy measures of cross validation. The results showed that project accom-
plishment with values of Q2 (0.057) was greater than 0, suggesting that the autonomous
construct has predictive relevance for the supported construct analyzed in this study [141].
The Q2 value is greater than zero, as shown in Table 14. Thus, it can be assumed that the
model has exceptional predictive significance.

Table 14. Predictive relevance (Q2).

Endogenic Dormant Variable SSO SSE$ Q2 (=1 − SSE/SSO)

Robotics Implementation 936 882.36 0.057

5. Discussion

A wide range of equipment is used on construction sites [142]. However, “the selection
of a variant of a life cycle of a building among a vast number of alternatives is an important
problem in project management” [143]. Overall, there are fewer aspects within the construc-
tion industry than in other industries, comprising aspects such as productivity, quality, and
product functions [144], and firms operate in a market that is becoming more complicated
and dynamic in the current epoch and global environment [145]. Nevertheless, sustainable
construction projects effectively promote environmental sustainability and social devel-
opment. Implementation of robotics technologies among experts and meaningful actions
can substantially improve the realization of construction projects. Automated systems and
robotics have transformative potential and offer numerous benefits to the building, archi-
tecture, engineering, and construction industries [146,147]. A comprehensive foundation
for identification of relationships among robotics drivers and their benefits in the proposed
model was incorporated in an SEM analysis, in addition to statistics generated by model
evaluations. As a result of revision and analysis, some fascinating results were discovered.

EFA analysis shows that the drivers of robotics implementation can be categorized
into three main categories (culture, technology, and industry). The PLS-SEM results show
that the greatest impact of these categorizes on robotics drivers was derived from cultural
drivers, with an external path of 0.63, followed by technology and industrial drivers,
with external paths of 0.399 and 0.277, respectively. EFA results likewise indicate that
the implantation of robotics can be grouped into two significant groups: environment
and resources, with external paths of 0.90 and 0.86, respectively. The independent and
dependent variables were analyzed revealing the effect of robotics drivers and robotics
implementation. The findings show that the robotics drivers contribute approximately
14.0% to implementation of robotics in the building industry.

Robotics drivers also exhibit a significant correlation with robotics implementation,
with a β value of 0.384, achieving significance once an organization or a company imple-
ments one component of robotics drivers. Furthermore, robotics technology is improved
by 0. 384 due to environmental and resources elements. The results show that the imple-
mentation of some robotics drivers supports the people engaged in implementing robotics
technology for projects with the goal of sustaining the client’s resources and meeting
environment obligations.

The environmental aspect was found to be the most important, with an exterior loading
score of 0.79. “Environmental benefits arise from enhanced rational use and reduction of
the extraction of natural resources, reduction of water and energy consumption, conscious
and orderly development” [148]. It has been argued that robotic systems can enhance the
construction environment by reducing fatalities and liberating employees from performing
hazardous assignments [16]. In this regard, the implementation of robotics is a possible
solution to expand environmental resources and sustainability in many ways, including
by reducing construction waste, saving natural resources, improving the safety of the
workplace, and supporting an improved living atmosphere [21]. Furthermore, participants
must reflect on how risks are reduced by robotics in construction firms, which can justify
the high initial cost of investing and improving the construction environment [149].
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To enhance the construction environment in the design stage, diverse automation
design software and tools can be applied, in combination with parametric mechanisms,
such as basic 2D drawing kits with parametric regulations via a wholly integrated 3D
AutoCAD interface [23]. However, the formation of design concepts must be entrusted to
an individual. Computers can provide considerable support through storage capacity and
the ability to evaluate and maintain highly integrated and complex data designs [150], with
tasks are carried out much faster compared to manual approaches, providing consistent
and predictable productivity that reduces management oversight.

The performance of resources is described as a mixture of features needed for services
required by the building project stakeholders and a foundation for the assessment of fitness
and user satisfaction [151]. Resources factors had an exterior loading of 0.861, which
was deemed reasonable. Results indicate that it is important to identify the components
necessary for a project’s success, which is one of the conventional benefits of implementing
robotics technologies. These results are in line with those reported by Mao et al. [152], who
argued that an autonomous classification robot based on image recognition might aid in the
reduction in the amount of labor required for recycling activities. Pradhananga et al. [102]
also posited that robotics implementation has many economic benefits and enhances the
speed, quality, and productivity of construction. Additionally, robotic implementation has
the potential to address some of the challenges associated with construction. Robotics might
help to increase off-site construction, resulting in triple bottom-line benefits (economic,
environmental, and social) by enabling more accurate building, closing the gap between
intended and real energy usage [153].

Automation and construction robots are divided into three classes based on IAARC:
those that improve existing construction equipment and factories, enthusiastic robots, and
comparatively less cognitive (or intelligent) robots. For instance, the Obayashi Corpora-
tion’s ABCs scheme improved construction schedules for forty (40)-story buildings within
six months, and its Big Canopy system reduced the number of on-site workers required for
concrete-strengthened structures by 75% [154]. Furthermore, the implementation of robotics
can enable effective prefabrication, delivery, and supply of components to be undertaken
according to the project schedule [155–158]. Automation implementation can also help to
increase the coordination of planning throughout the project life cycle in terms of design,
manufacturing, transportation, and installation, which are generally regards as difficult
tasks by contractors due to the nature of the building industry, which is fragmented and
varied and involves many parties [155,157]. The improved predictability and production
quality associated with the adoption of engineering robots have led to an intensification of
margins [159].

Based on the results reported above, we can conclude that robotics drivers will impact
the success of the implementation of robotics technology under the influence of environ-
mental and resource considerations. The obtained results concerning the achievement of
robotics technology implementation through robotics drivers confirmed our study hypoth-
esis. Therefore, the study objective was achieved. Our results also corroborate the existing
literature, which indicates that environmental and resource considerations impact the
implementation of robotics and that these variables influence the success of a project [160].

6. Conclusions

The construction industry is highly dependent on robotics in various countries, al-
though this dependence is uncertain in third-world nations. Nigeria had experienced
numerous loopholes and construction quality incongruities involving large-scale projects.
This is typical of many developing countries. To improve these conditions, robotics tech-
nologies need to be implemented. To confirm the relationships between drivers of robotics
and robotics implementation constructs, a PLS-SEM method was adopted.

Based on information gathered from 104 building experts, one direct and eight indirect
paths were authenticated as essential for the development of a structural model. Moreover,
the connections among factors via indirect and direct paths amongst drivers and robotics
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implementation indicators and components were verified. The obtained results show
that the adoption of robotics as mediated by the investigated drivers (proposed in the
model) can enhance the sustainability of construction projects in terms of environmental
and resource considerations. Significant findings of this study and its practical implications
are as follows:

• Previous studies focused less on activities relating to robotics adoption and it is drivers.
In this analysis, we narrowed the existing gap by examining the connection between
robotics drivers and the adoption of robotics. The reported finding contribute signifi-
cantly to the existing literature with respect to the management of building engineering
by advancing the state of the art in robotics methods and requirements. Furthermore,
the present study can serve as a basis for future research using analytically confirmed
approaches concerning the implementation of robotics drivers, which a powerful and
positive impact on robotics implementation in the construction industry. Moreover,
the current research can inspire additional research works concerning construction
projects.

• Although Nigeria is classified as a third-world nation with high population growth,
most of its inhabitants have lower and medium income levels. There is a dire need
for additional studies on the construction industry, owing to low environmental per-
formance, especially concerning robotics drivers and robotics implementation. Such
studies can inspire additional investigations on robotics drivers and implementation
both within Nigeria and its neighboring countries. The results reported herein lay a
foundation for robotics implementation both within and outside Nigeria. Our results
can support the Nigerian construction industry by offering ways to reduce project
costs and boost project resources.

• This analysis has many implications for experts in the construction industry, as well
as contractors and project owners seeking to ensure the success of their projects by
adopting robotics. The results reported herein can help stakeholders to adopt robotics
by emphasizing the goal of the project with respect to resource and environmental
requirements, which can impact the magnitude of the project’s success.

7. Limitations and Future Research

We believe that research is a journey and not a destination. Therefore, we recommend
research in the following areas:

1. In this research, we investigated the application of robotics for construction projects
in Nigeria. Further research can be carried out by implementing robotics in construc-
tion projects.

2. Assessment of the effect of robotics on the performance of students in higher education
institutions in Nigeria.

3. Current applications of building automation in Nigeria should be identified.

Based on the results of our study on the benefit of robotics in the construction industry,
we propose the following recommendations:

1. Higher education institutions should train student on the application of new tech-
nologies and their applicability to construction projects. This will help to bring about
enhanced student knowledge, which can be implemented after graduation.

2. Construction firms should educate construction professionals, such as architects,
quantity surveyors, builders, project managers, and engineers on the importance and
advantages of the application of robotics in the construction industry, and training
should be organized.

3. Members should also be encouraged to adopt robotics in the construction industry so as
to catch up with the ongoing trend in the construction industry and maintain relevance.

4. Suppliers should ensure that the cost of purchasing robotics equipment is reduced so
that it can be easily accessible by various stakeholder in the construction industry.
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