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Abstract: The path-following control of the parafoil system is essential for executing missions, such
as accurate homing and delivery. In this paper, the lateral path-following control of the parafoil
system is studied. First, considering the relative motion between the parafoil canopy and the payload,
an eight-degree-of-freedom (DOF) model of the parafoil system is constructed. Then, a guidance law
containing the position deviation and heading angle deviation is proposed. Moreover, a linear active
disturbance rejection controller (LADRC) is designed based on the guidance law to allow the parafoil
system to track the desired path under internal unmodeled dynamics or external environmental
disturbances. For the adaptive tuning of the controller parameters, a deep Q-network (DQN) is
applied to the LADRC-based path-following control system, and the controller parameters can be
adjusted in real time according to the system’s states. Finally, the effectiveness of the proposed method
is applied to a parafoil system following circular and straight paths in an environment with wind
disturbances. The simulation results show that the proposed method is an effective means to realize
the lateral path-following control of the parafoil system, and it can also promote the development of
intelligent controllers.

Keywords: path-following control; parafoil system; linear active disturbance rejection control; deep
Q-network; parameter optimization

1. Introduction

A parafoil system is a unique aircraft consisting of a parafoil canopy, connecting rope,
and payload. With its excellent gliding ability and payload characteristics, the parafoil
system is currently widely used in aerospace, military, and civil fields. However, the
parafoil system applies a flexible canopy to provide the lift force, so it has complicated
dynamic characteristics and strong nonlinearity [1]. During flight, the parafoil can be
affected by unpredictable wind disturbances. Therefore, determining how to overcome
these disturbances and accurately control the parafoil system to follow the desired path is
the key to completing missions.

Limited by actual flight tests, which require considerable preparation work and are
time-consuming and expensive, a mathematical model is a prerequisite for analyzing the
motion characteristics of the parafoil system. To the best of our knowledge, according
to the division of the DOFs, the current existing modeling methods include longitudinal
four-DOF [2], six-DOF [3,4], eight-DOF [5,6], and nine-DOF [7] models. These models
were all obtained through force analysis of the parafoil system. In this paper, considering
the relative pitch and yaw motions between the parafoil canopy and the payload, we
constructed an eight-DOF model based on a six-DOF model [5].

There have been some research results for the path-following control of the parafoil
system. For example, Tao et al. [8] applied a generalized predictive control (GPC)-based
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method for a parafoil system to follow the designed path for a better control effect, where
the guidance law was based on a combination of tracking errors. Zhao et al. [9] introduced a
model-free adaptive control method based on iterative feedback tuning (IFT-MFAC) method
for parafoil systems, where only the input/output data are needed during the construction.
Guo et al. [10] proposed an improved adaptive path-following guidance law to reduce the
effect of time-varying wind disturbances, where the convergence rate was improved by
replacing the function. Li et al. [11] designed three proportional–integral–derivative (PID)
controllers for the lateral motion, longitudinal motion, and velocity on the basis of the mo-
tion characteristics of the parafoil system, which overcame the limitations of the traditional
guidance-based tracking strategy. As for actual airdrop scenarios, the PID controller still
occupies a dominant position, but the PID controller cannot achieve high tracking accuracy,
especially under the disturbances of a complex environment. Tao et al. [12,13] used linear
active disturbance rejection control (LADRC) to realize the accurate trajectory tracking of
the parafoil system. LADRC is currently the most widely used control strategy in practice
besides PID; however, the adjustment of the LADRC parameters remains a challenging
problem to be studied.

Active disturbance rejection control (ADRC) [14] was first proposed by Han [15], which
combines the state observer in modern theory with the error-based ideas in PID. Specifically,
ADRC uses an extended state observer (ESO) to observe the unknown disturbances in the
system and uses a state error feedback (SEF) control law to eliminate the disturbance. With
model-free characteristics and good control effects, ADRC has attracted the attention of
many scholars. Gao [16] developed LADRC through the linearization of the ESO and SEF,
which significantly promoted the theoretical and engineering application research of ADRC.
In terms of theory, Chen [17] and Wang [18] provided proof of the stability of LADRC.
LADRC has demonstrated its control advantages in applications such as power system load
frequency control (LFC) [19], heading angle control [20], path-following control [21,22],
and an electromechanical servo system [23]. For example, Li et al. [24] proposed a guidance
law based on a ship’s nonlinear combination of lateral error and heading angle error, and
LADRC was used to estimate and eliminate the disturbances. However, this guidance
law could only realize path tracking in the y-direction. Inspired by this result, this paper
proposes a new guidance law.

Although the number of parameters that need to be adjusted in the LADRC controller
has significantly been reduced compared to that in the ADRC, parameter optimization
is still a non-negligible part of the controller design process. In most cases, researchers
will manually adjust the controller parameters, which makes it challenging to achieve the
system’s optimal performance. Therefore, various optimization algorithms have emerged
continually. The robustness of heuristic algorithms that can optimize a set of fixed parame-
ters, such as the particle swarm optimization (PSO) algorithm [25] and genetic algorithm
(GA) [26], is somewhat limited. For algorithms that can achieve adaptive optimization, such
as neural networks [27] and fuzzy control [28], these algorithms have difficulty achieving
better results when encountering unknown emergencies.

Deep reinforcement learning (DRL) is a combination of reinforcement learning (RL)
and neural networks that uses the computing power of neural networks and encompasses
the decision-making ability of RL. With the intelligent characteristics of not relying on
models and being able to make decisions autonomously, similar to the human brain, DRL
is favored by many scholars. The deep Q-network (DQN) [29] is one of the most classical
algorithms in DRL, and it overcomes the shortcomings of the Q table in Q-learning of RL
whereby it is difficult to express all states. In other words, the DQN can handle systems
with continuous states. The application of DQN in path-following control is mainly to make
direct decisions in terms of the control variable. For example, Zhao et al. [30] used DQN to
determine the rudder angle and propeller speed during the path tracking of an unmanned
surface vessel (USV), which completely separated decision-making and control theory. At
present, there are few studies on the application of RL in parafoil systems. Therefore, to
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promote the development of intelligent controllers in parafoil systems, this paper uses the
DQN algorithm to optimize the parameters of the LADRC controller.

Inspired by the previous research, we proposed a DQN-optimized LADRC method for
lateral path-following control of the parafoil system in this paper. The main contributions
of this paper are summarized as follows:

• A new guidance law for the lateral path-following control of the parafoil system
is proposed.

• Based on the guidance law, an LADRC controller is designed to overcome the influence
of unknown disturbances during parafoil flight.

• The DQN algorithm of RL is applied to obtain the real-time parameters of the controller
based on the parafoil flight states.

The rest of the paper is organized as follows. The eight-DOF parafoil system model
is established in Section 2. Section 3 introduces the guidance law and provides the corre-
sponding design process of the LADRC-based path-following controller. Section 4 presents
the design process of the DQN-optimized LADRC. The simulation results are given in
Section 5, and Section 6 concludes this paper.

2. Dynamic Model of Parafoil System

In the six-DOF parafoil model, the parafoil canopy and payload are regarded as rigid
connections, and the relative motion between the two is ignored. In order to describe the
motion characteristics of the parafoil more accurately, an eight-DOF dynamic model is
established in this paper. The slew, sway, yaw, heave, pitch, and roll motions of the parafoil
canopy, and the relative pitch and relative yaw motion between the parafoil canopy and
the payload are considered. In this way, we can better observe the attitude of the parafoil
system during the movement. Three coordinate systems are established to facilitate parafoil
system modeling: the ground coordinate system Odxdydzd, the parafoil coordinate system
Osxsyszs, and the payload coordinate system Owxwywzw, as shown in Figure 1.

. .

dO dx

dy

dz

wO

wx

wy

wz

sO

sxsz

sy

.2c 0c
1c

Parafoil canopy

Payload

Figure 1. Schematic diagram of parafoil system coordinates.
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Furthermore, since the actual model is very complex, in the process of building the
model in this paper, the following three assumptions are adopted, and certain simplifica-
tions are made:

• The mass center of the parafoil canopy coincides with the aerodynamic pressure center
but does not coincide with the gravity center.

• The lift of the payload is ignored and only the aerodynamic drag is considered.
• The elastic deformation of the connecting ropes is ignored.

2.1. Motion Equation of Payload

In this paper, the payload is regarded as a rigid body subjected to aerodynamic forces,
gravity, and the pulling force of the connecting rope. The force and moment balance
equations of the payload are expressed as{

∂Pw
∂t + Ww × Pw = Faero

w + FG
w + Ft

w
∂Hw

∂t + Ww × Hw = Maero
w + M f

w + Mt
w

, (1)

where P and H represent the momentum and angular momentum, defined below. The
superscripts aero, G, t, and f represent the aerodynamic force, gravity, connecting rope
tension, and friction, respectively. Vw = [uw, vw, ww]

T denotes the velocity vector, and
Ww = [pw, qw, rw]

T denotes the angular velocity vector. The momentum and angular
momentum are defined, respectively, as follows:{

Pw = mwVw
Hw = JwWw

. (2)

The tension and tension moment of the connecting rope are expressed as{
Ft

w = F1 + F2

Mt
w =

[
Lw1 Lw2

][
FT

w1 FT
w2
]T , (3)

where F1 and F2 represent the tension at points c1 and c2, respectively. Lw1 = l2

 0 1 0
−1 0 0
0 0 0

,

Lw2 = l1
2

 0 0 1
0 0 0
−1 0 0

, and l1 refers to the distance between the connection points c1 and

c2. l2 is the distance between the Ow of the payload coordinate system and the midpoint c0
of the two connecting points.

2.2. Motion Equation of Parafoil Canopy

When the canopy is fully inflated and unfolded, the force on the canopy includes
aerodynamic forces, gravity, and the pulling force of the connecting rope. The equations of
the conservation of linear and angular momentum of the parafoil canopy are expressed,
respectively, as {

∂Ps
∂t + Ws × Ps = Faero

s + FG
s + Ft

s
∂Hs
∂t + Ws × Hs + Vs × Ps = Maero

s + MG
s + M f

s + Mt
s

. (4)

Similarly, the velocity vector Vs = [us, vs, ws]
T and angular velocity vector Ws = [ps, qs, rs]

T

are defined. It should be pointed out that the movement of the parafoil canopy in the air can
be approximately regarded as the movement in an ideal fluid. Hence, the influence of the
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additional mass on the system needs to be considered. Therefore, the linear momentum and
angular momentum of the parafoil canopy considering the additional mass are described as[

Ps
Hs

]
= [Aa + Ar]

[
Vs
Ws

]
, (5)

where Aa denotes the inertia matrix of the additional mass, and Ar represents the inertia
matrix of the canopy’s real mass.

Similarly, in the parafoil coordinate system, there is an expression of the tension of the
connecting rope relative to the moment of the parasol center of mass:

Mt
s =

[
Ls1Tw−s Ls2Tw−s

][
FT

w1 FT
w2
]T , (6)

where Tw−s is defined below. Ls1 = l3

 0 1 0
−1 0 0
0 0 0

, Ls2 = l1
2

 0 0 − cos ψr
0 0 − sin ψr

cos ψr sin ψr 0

,

and l3 represents the distance between the Os of the payload coordinate system and c0.

2.3. Constraints of Velocity and Angular Velocity

As shown in Figure 1, the canopy and the payload are connected by ropes at two
connection points, c1 and c2, and then the midpoint c0 of the two points can be regarded as
the total connection point. At this point, there is the following velocity constraint:

Vw + Ww × Lw−c = Vs + Ws × Ls−c, (7)

where Lw−c and Ls−c represent the distance from the payload centroid to c0 and the distance
from the parafoil canopy centroid to c0, respectively. Differentiation of Equation (7) can
yield the following formula:

V̇s − Ls−c × Ẇs − Tw−sV̇w + Tw−sLw−c × Ẇw
= Tw−sWw × (Vw + Ww × Lw−c)−Ws × (Vs + Ws × Ls−c),

(8)

where Tw−s is the conversion matrix from the payload coordinate system to the canopy
coordinate system. Tw−s is expressed as follows:

Tw−s =

 cos θr cos ψr − sin ψr sin θr cos ψr
cos θr sin ψr cos ψr sin θr sin ψr
− sin θr 0 cos θr

, (9)

where θr and ψr denote the relative pitch angle and relative yaw angle, respectively.
As for the relative rotation between the payload and the canopy, the following angular

velocity constraint is satisfied:
Ww = Ws + τs + κw, (10)

where τs = [0, 0, ψ̇r]
T , and κw =

[
0, θ̇r, 0

]T . The derivative of Equation (10) is as follows:

Tw−sẆw − Ẇs − Tw−sκ̇w − τ̇s = (Ws − Tw−sWw)×Ws − (Tw−sκw)× τs . (11)

Define the state variable as xs =
[
VT

w , WT
w , VT

s , WT
s , ψ̇r, θ̇r

]T . Then, by combining
Equations (1)–(4), (8) and (11), the eight-DOF dynamic model of the parafoil can be ex-
pressed as follows:

ẋs =

([
DT

1 , DT
2 , DT

3 , DT
4

]T
)−1[

ET
1 , ET

2 , ET
3 , ET

4

]T
. (12)

Refer to [4] for a more detailed modeling process.
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By denoting sinθ as sθ and cosθ as cθ, the following equation can be obtained: ẋ
ẏ
ż

 =

 cθcψ cθsψ −sθ
sφsθcψ− cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ− sφcψ cφcθ

T

Vs, (13)

where φ, θ, and ψ are three Euler angles, i.e., the roll angle, pitch angle, and yaw angle,
respectively. Based on Equations (12) and (13), the position of the parafoil can be obtained.

In this paper, the parafoil system is described by the dynamic and kinematic param-
eters. The dynamic parameters of the parafoil system are the parameters that describe
the forces and moments in Equations (1) and (4), which are mainly used to express the
relationship between the force of the parafoil system and its motion. The kinematic pa-
rameters of the parafoil system are the parameters describing the speed, Euler angles, and
acceleration of the parafoil system in Equation (13), which reflects the variation of the
position of the parafoil system with time. It is worth mentioning that during the movement
of the parafoil, unmodeled dynamics and disturbances in the external environment will
cause unpredictable effects. Therefore, the mismatch between theory and reality challenges
the controller design.

3. Linear Active Disturbance Rejection Controller (LADRC)-Based Path-Following Control

As mentioned above, the direction of the parafoil system is manipulated by control
ropes connecting two sides of the canopy. Specifically, the left control rope is pulled
downward to realize a left turn and the right control rope is pulled down to realize a right
turn. That is, by controlling the control ropes on both sides, the position and heading
angle of the parafoil system are changed simultaneously to track the desired path. Overall,
the control command produced by the control system will result in the increase in the
force of one of the ropes. Moreover, in the actual control process, the control signal is
usually transmitted to the rope in the form of a differential or pulse (1/0), which also brings
difficulty to the control system.

3.1. Guidance Law

To achieve convergence of the parafoil position deviation and heading angle deviation
to zero simultaneously, according to a guidance law designed in Reference [24], a new
guidance law is established as follows:

g = g0 tanh(g1 · ∆d) + ψ− ψd, (14)

where g0 and g1 are adjustable parameters (g0 > 0, g1 > 0). ψ and ψd represent the true
value and the planned value of the parafoil’s heading angle (yaw angle), respectively. ∆d is
the position tracking error, as shown in Figure 2, expressed as follows:{

∆d = x̂∆y − ŷ∆x√
∆x2 + ∆y2

ψd = arc tan(∆y/∆x)
. (15)

As shown in Figure 2, the red point (x(t), y(t)) represents the current position of the
parafoil, and the blue points (xr(i− 1), yr(i− 1)) and (xr(i), yr(i)) are the two adjacent
points in the desired path. Define

∆x = xr(i)− xr(i− 1)
∆y = yr(i)− yr(i− 1)
x̂ = xr(i)− x(t)
ŷ = yr(i)− y(t)

. (16)

The idea of this article is to directly control the flight direction by controlling the
tension of the connecting rope so that ∆d can be 0. From Equation (14), it can be seen that
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the path tracking error and heading angle tracking error are nonlinearly combined, and
we hope that both ∆d and (ψ− ψd) can be stabilized to 0, that is, g = 0. There exists the
following theorem.

.

.

.
( ) ( )( ),x t y t

d

x

y

x̂

ŷ

( ) ( )( )1 , 1r rx i y i− −

( ) ( )( ),r rx i y i
sx

sy

dx

dy



d

su
sU

sv

Figure 2. Schematic diagram of path following.

Theorem 1. There exists a g0 such that ∆d converges to 0 in the case of g = 0.

Proof of Theorem 1. We construct the Lyapunov function as V = 1
2 ∆d2. Furthermore, we

can obtain
V̇ = ∆d · ∆ḋ. (17)

By combining Equations (15) and (16), we can obtain ∆d in the following form:

∆d = (xr(i)− x(t)) sin ψd − (yr(i)− y(t)) cos ψd, (18)

with the derivative
∆ḋ = −ẋ(t) sin ψd + ẏ(t) cos ψd. (19)

By ignoring the influence of the pitch angle and the roll angle, Equation (13) can be
simplified to obtain the following expressions:{

ẋ = us cos ψ− vs sin ψ
ẏ = us sin ψ + vs cos ψ

. (20)

Then, Equation (19) can be rearranged as

∆ḋ = −(us cos ψ− vs sin ψ) sin ψd + (us sin ψ + vs cos ψ) cos ψd

=
√

u2
s + v2

s sin(β + ψ− ψd),
(21)

where β = arctan(us/vs). During the forward flight of the parafoil, it can be approximated
that us � vs, that is, β ≈ 0. Then, Equation (17) has the following expression:

V̇ = ∆d ·
√

u2
s + v2

s sin(ψ− ψd). (22)
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In the case of g = 0, by substituting Equation (14) into Equation (22), we have

V̇ = ∆d ·
√

u2
s + v2

s sin(−g0 tanh(g1 · ∆d)). (23)

There are the following three situations:
(a) ∆d = 0. In this case, V̇ = 0.
(b) ∆d > 0. In this case, −g0 < −g0 tanh(g1 · ∆d) < 0. Then, 0 < g0 < π, and thus,

V̇ < 0.
(c) ∆d < 0. In this case, 0 < −g0 tanh(g1 · ∆d) < g0. Then, 0 < g0 < π, and thus,

V̇ < 0.

3.2. Design of LADRC

The design of the LADRC does not require the model of the system to be known, but
it requires the order information of the controlled plant. The guidance law in Equation (14)
can essentially be understood as controlling the position deviation through the heading
angle. Generally, there is the following relationship between the Euler angles and the
angular velocities:  φ̇

θ̇
ψ̇

 =

 1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 ps
qs
rs

. (24)

Further derivation yields the following:

ψ̈ = sin φ
cos θ q̇ + cos φ

cos θ ṙ + sin θ sin 2φ

cos2θ
q2 − sin θ sin 2φ

cos2θ
r2

+ cos φ
cos θ pq− sin φ

cos θ pr + 2 sin θ cos 2φ

cos2θ
qr.

(25)

By combining Equations (12) and (25), we can obtain the second-order relationship
between ψ and the control variable u:

ψ̈ = f1(·) + f2(u), (26)

where f1(·) represents the disturbance, including the internal state and external disturbance
information, and f2(u) is an expression of the control variable. u represents the deflection
of the left and right trailing edges of the canopy.

Since g and ψ have the same order, we can rearrange Equation (26) as

g̈ = f (·) + f2(u)− b0u + b0u = f + b0u , (27)

where f can be regarded as the total disturbances of the parafoil system containing unmod-
eled dynamics inside the system and disturbances in the external environment, and b0 is
an adjustable parameter.

Then, the states can be defined as x1 = g, x2 = ġ, and x3 = f . The linear ESO (LESO)
can be expressed as { ˙̂x = Ax̂ + Bu + L

( ˙̂y− ŷ
)

ŷ = Cx̂
, (28)

where A =

 0 1 0
0 0 0
0 0 0

, B =

 0
b0
0

, L =

 β01
β02
β03

, C =

 1
0
0

T

, and x̂ =

 x̂1
x̂2
x̂3

. In

addition, β01, β02, and β03 are observer gains, which are the prerequisite for realizing the
observed state x̂ to estimate the true value of the state x. Usually, the pole configuration
method is used to configure the observer gain at the pole −ωo, which is arranged as
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|sI − (A− LC)| = s3 + β01s2 + β02s + β03

= (s + ωo)
3.

(29)

Thus, β01 = 3ωo, β02 = 3ω2
o , and β03 = ω3

o . In this way, by adjusting the parameter ωo, the
total system disturbance f can be estimated.

Under the premise of x̂3 ≈ f , define u in Equation (27) as

u =
u0 − ẑ3

b0
. (30)

Then, Equation (31) can be obtained:
g̈ ≈ u0, (31)

where u0 follows the proportional–derivative (PD) controller:

u0 = kp(gd − x̂1)− kd x̂2. (32)

Since the target value of g is 0, gd is 0. By using the pole placement method in the
same way, we obtain kp = 2ωc and kd = ω2

c .
As seen from the above process, the parameters that need to be adjusted are g0, g1, ωo,

ωc, and b0. Here, g1 keeps the heading angle and ∆d at the same order of magnitude, and
g0 can limit the maximum heading angle of the system. Therefore, these two parameters
can be adjusted manually. In addition, Ref. [31] shows that b0 in the LADRC is not an
essential factor for suppressing interference. Therefore, the parameters to be adjusted are
ωo and ωc.

4. Deep Q-Network (DQN)-Optimized LADRC

We know that RL has the advantages of not relying on models and learning indepen-
dently, which has shown excellent results in solving sequential decision-making problems.
This paper uses the DQN in RL to optimize ωo and ωc for the LADRC.

4.1. Basics of DQN

If the entire parafoil system containing the LADRC-based path-following controller is
regarded as the environment, then an agent can be designed in RL, similar to the human
brain. A series of decisions can be completed through the continuous interaction between
the environment and the agent. Usually, the process of RL is described by the Markov
decision process (MDP): (S, A, P, R), where S and A are the environment state space and
the agent’s action space, respectively. P represents the probability of the state transition.
During the agent training process, the training target comes from the reward function R.
On this basis, the cumulative reward Rc can be obtained for each episode:

Rc =
∞

∑
t=0

γtRt+1, (33)

where γ is the discount factor. It can reflect the importance of the reward value at a
future moment. In Q-learning, the training goal of the agent is the evaluated value Q
corresponding to the state–action pair:

Q(s, a) = E[Rc|St = s, At = a ]. (34)

Equation (34) shows the expected value of the cumulative reward when the state is
s, and the action is selected as a at time t. In other words, when the agent is sufficiently
trained, and when the current system state is s, the action value a corresponding to the
maximum Q value can be selected according to the Q table.
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The dimensionality of the state space limits the Q-learning, and training is difficult
when the state space is large. Therefore, a DQN is generated based on Q-learning, which
uses a neural network to represent the Q table. That is, fµ(s, a) ≈ Q(s, a), where f is the
output of the neural network with weight µ. It should be pointed out that the input of
the neural network is the system state, and the output is the fµ(s, a) corresponding to the
actions. The structure diagram of the DQN is shown in Figure 3.

Loss function

-networkQ̂-networkQ̂

 -networkQ -networkQ

Replay bufferReplay buffer

EnvironmentEnvironment

a

Every      steps,

( , )s a

s

s

nT

( , )f s a

ˆmax ( , )
a

f s a


 

R

( , , , )Ras s

max ( , )
a

f s a

= 



Figure 3. Structure diagram of deep Q-network (DQN).

As shown in Figure 3, there are two neural networks in total, namely, the Q-network
and the target Q̂-network. The data for neural network training comes from the replay
buffer. The weight of the Q-network is µ, which is updated by the loss function

J = E(s,a,R,s′)∼D

[(
R + γ max

a′
fµ′
(
s′, a′

)
− fµ(s, a)

)2
]

, (35)

where s′ and a′ correspond to the state s and action a of the next moment, respectively. µ′ is
the weight of the target network, and it is updated periodically. In other words, the weight
of the target network does not need to be updated through training, while the weight of the
Q-network can be updated according to the gradient descent method, shown as follows:

_
µ = µ + α

[
R + γ max

a′
fµ′
(
s′, a′

)
− fµ(s, a)

]
∇ fµ(s, a), (36)

where α is the learning rate. In addition, Equation (35) can be understood as the cost func-
tion in DQN, which is to minimize the error between the actual Q(s, a) : R + γ max

a′
fµ′(s′, a′)

value and the estimated Q(s, a) : fµ(s, a). Then, the optimal parameters can be selected by
the estimated Q that is close to the true Q value.

4.2. Design of Agent Based on Parafoil System

According to the above description, we must first define the system’s state and provide
an action space. For the parafoil system, since we expect the parafoil system to fly along
the desired path, ∆d and ∆ḋ define the state of the environment. In other words, at time t,
the system will generate two state values:{

s01(t) = ∆d,
s02(t) = ∆ḋ

. (37)
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As for the action space, the parameters that need to be adjusted are ωo and ωc, so the
action space is obtained by permutation and combination based on these two parameters.
The action space of ωo and ωc is expressed as{

ωo ∈ [ωo min, ωo max]
ωc ∈ [ωc min, ωc min]

, (38)

where the sampling interval is h for the two parameters. This means that ωo and ωc
are Nωo = ωo max − ωo min

h + 1 and Nωc = ωc max − ωc min
h + 1, respectively. Therefore, the

dimension of the action space is Nωo ∗ Nωc .
The reward function is a direct factor that affects the agent’s training. In order to enable

the parafoil system to track the desired path better, we hope that when ∆d is relatively
small, the reward function can be significant. Therefore, the reward function in this paper
is designed as

R = −10sign(|s1| − 2)− |s2|. (39)

The reward function means that when ∆d is less than 2, the agent can obtain a reward
of 10. Otherwise, it can obtain a reward of −10. The smaller ∆ḋ is, the greater the reward
is. The training process of the DQN is described in Algorithm 1. The schematic diagram
of the parameter optimization based on the DQN is shown in Figure 4. It should be
pointed out that the process of optimizing the LADRC controller parameters by the DQN
algorithm includes two parts: offline training, shown in Algorithm 1, and online parameter
acquisition. During offline training, a Q-network is obtained, and the training time is related
to the simulation sample step and the number of iterations. The smaller the simulation
sample step is or the larger the number of iterations is, the longer the training time will be.
Moreover, by inputting the system state at the current moment into the trained Q-network,
the optimal action values can be obtained to realize adaptive controller parameters, which
is the online parameter selection process.

Algorithm 1 DQN algorithm.

1: Initialize the replay buffer; Initialize the Q-network with random weights µ; Initialize
the target Q̂-network with weights µ′ = µ.

2: for episode =1:M do
3: Initialize the states s1 = s01, s02;
4: for t =1:T do
5: Select a random action at = ωo, ωc with the probability ε; otherwise, select

at = arg max
a

fµ(st, a);
6: Execute action at in the LADRC and observe the reward Rt and st+1;
7: Set st+1 = st;
8: Store (st, at, Rt, st+1) in the replay buffer D;
9: Randomly extract m sets of data (sj, aj, Rj, sj+1) from the replay buffer D;

10: Set yj =

{
Rj, if episode terminates at step j + 1
Rj + γ max

a′
fµ′
(
sj+1, aj+1

)
, otherwise

11: Perform a gradient descent step according to Equation (36);
12: Every Tn steps, reset µ′ = µ.
13: end for
14: end for
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Figure 4. DQN-based linear active disturbance rejection controller (LADRC) control structure diagram.

5. Simulation and Analysis
5.1. Environment Setting

In this section, the effectiveness of the proposed DQN-LADRC method is verified
by simulations. The parafoil system’s parameters are shown in Table 1. In addition,
the parameters involved in the DQN training process are shown in Table 2, where the
Q-network is a fully connected neural network with two hidden layers. The network’s
inputs are the state values shown in Equation (37), and the outputs are the parameters
to be optimized. Both hidden layers have 500 neurons. In addition, the learning rate
value was fixed during training, and its value was small enough to ensure convergence of
the networks.

Table 1. Physical parameters of the parafoil system.

Parameter Description Value

Wing span 4.5 m
Mean aerodynamic chord 1.3 m

Mass of parafoil 1.7 kg
Mass of payload 20 kg

Wing area 6.5 m2

Rope length 3 m

Table 2. Parameter settings of DQN.

Parameter Description Value

Simulation sample step 0.02 s
Number of iterations 300

Learning rate of Q-network 10−4

Discount factor 0.99

Furthermore, the range limits of the parameter tuning in this paper were artificially
selected to ensure that the simulation could proceed smoothly within the selected range.
The change of the parameter range size, on the one hand, could cause the system to directly
stop the training when the “bad” parameters were explored; on the other hand, if the
parameter range was too large, it would greatly increase the training time unnecessarily.

It should also be noted that, since the state observer will have extreme values in the
transient response, to avoid adverse effects on equipment caused by extreme values, the
control quantity generated by the motor connecting the control rope of the dynamic parafoil
is limited: −1 ≤ u ≤ 1 [32].
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5.2. Performance Study of DQN-LADRC under Wind Disturbances
5.2.1. Circular Path Following

In order to verify the effectiveness of the proposed method, the DNQ-LADRC-based
lateral path-following control of the parafoil system was conducted under wind distur-
bances. The desired path was set as a circle with a center of (0 m, 0 m) and a radius of 200 m.
In the initial state, the three coordinates coincided, and the initial velocity and angular
velocity of the parafoil were Vs = [14.9, 0, 2.1]T m/s and Ws = [0, 0, 0]T rad/s, respectively.
Furthermore, the parafoil’s initial plane position and initial heading angle were (0 m, 150 m)
and 0◦, respectively. In the simulation environment, the average wind speed of 2 m/s along
the y-axis square of the ground coordinate system was added at 50 s, and the duration was
20 s. g0, g1, and b0 were selected as 0.08, 0.2, and 0.2, respectively. This paper compares the
control effect of the proposed method with the traditional LADRC controller under a wind
disturbance of the same size and direction, in which the parameters of the LADRC were
selected from two sets of boundary values of the action space, as follows:

ωo ∈ [1.5, 2.7], ωc ∈ [0.4, 1], For DQN-LADRC, h = 0.01
ωo = 2.7, ωc = 1, For LADRC1
ωo = 1.5, ωc = 0.4, For LADRC2

. (40)

The abovementioned trained agent was used to obtain the parameters of ωo and ωc,
and the simulation results are shown in Figures 5–8.
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Figure 5. Circular-path-following control results. (a) Path-following trajectories. (b) Control variables.
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tion deviation.
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Figure 7. Variation process of Euler angles and controller parameters for circular-path-following control.
(a) Euler angles. (b) Adaptive parameters.
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Figure 8. Changing process of aerodynamic forces and moments of parafoil canopy and payload for
circular path following. (a) Fs

aero and Ms
aero in two conditions. C0: the system is not disturbed by

wind; C1: the system is disturbed by wind. (b) Fw
aero and Mw

aero in two conditions. C0: the system is
not disturbed by wind; C1: the system is disturbed by wind.

Figure 5 shows the intuitive effect of the parafoil tracking of the desired path with
and without wind disturbances, respectively. We can see that both the DQN-LADRC and
the traditional LADRC could overcome disturbances and achieve circular path tracking.
Specifically, the proposed method achieved better results than the LADRC with the fixed
parameters in terms of the control variables, as shown in Figure 5b, and the tracking errors,
as shown in Figure 6. It can be found that when the smaller controller parameters were
taken, the overshoot of the tracking error obtained by the LADRC was more significant. For
more extensive controller parameters, although the overshoot became smaller, the system
shock could not be ignored, and such drastic changes in the flap deflection could not be
realized in practice. The Euler angles in Figure a show the flight attitude of the parafoil
during path tracking. From Figure b, we can observe that the agent had significantly
different action values under the influence of wind disturbances. This is also the core idea
of the proposed method: to adjust the controller parameters in real time according to the
system state. Figure 8 shows the aerodynamic forces and moments of parafoil canopy and
payload in three coordinate axes.

5.2.2. Straight Path Following

To prove that the above results were not accidental, the straight-path-following control
for the parafoil system was also studied. The desired path consisted of three line segments,
and the initial position of the parafoil was (0, 80 m). With the initial heading angle of 0◦

and b0 of 0.2, the simulation results by the DQN-LADRC are shown in Figures 9–12. In
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order to reflect the anti-interference performance of the proposed method, a south wind of
5 m/s was added at 150 s and continued until the end of the simulation.

Figure 9 shows the tracking effect of the straight path. It can be seen that the system
continuously adjusted the flight direction by controlling the rope after being affected by
the wind. It can be observed from Figure 10 that the parafoil could fly according to the
planned heading angle, and its attitude angles could finally be stabilized. That is, the
parafoil could smoothly follow the designed path. The path tracking error is shown in
Figure 11a, where the path tracking deviation was 0 at steady state. In addition, the parafoil
had large tracking deviations during sharp turns. The adaptive controller parameters are
given in Figure 11b, where ωo ∈ [0.5, 1.5] and ωc ∈ [0.2, 0.5], with sampling intervals of 0.01.
To demonstrate the proposed method’s effectiveness, the LADRC controller’s control effect
with fixed parameters of ωo = 1.5 and ωc = 0.5 was added to the results. The aerodynamic
forces and moments on the canopy and payload are shown in Figure 12 in three coordinate
axes. It can be seen that in the z-axis direction there are aerodynamic effects. This is because
in the eight-DOF model in this paper, we default that the parafoil is free-falling in the
longitudinal direction. Even so, the proposed method can enable the parafoil to track a
given path on the plane.
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Figure 9. Straight-path-following control results under wind disturbances. (a) Path-following
trajectories. (b) Control variables.
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Figure 10. Straight-path-following control results of attitude angles under wind disturbances.
(a) Heading angles. (b) Euler angles.
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Figure 11. Tracking error and adaptive controller parameters. (a) Position derivation. (b) Con-
troller parameters.
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Figure 12. Changing process of aerodynamic forces and moments of parafoil canopy and payload for
straight path following. (a) Fs
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By comparing the tracking effect of the circular path and the straight path, it can be
seen that the tracking effect of the straight path was better. This was because the guidance
law is based on the idea of tracking a straight line. In circular path tracking, a circle is
approximated as an infinite number of straight line segments.

6. Conclusions

This paper studied the lateral path-following control of the parafoil system. First, an
eight-DOF dynamic model of the parafoil system was constructed, considering the relative
motion between the parafoil canopy and the payload. Then, using the error conversion
between the parafoil system’s position information and the desired path, a guidance law
was proposed, which essentially converts the path following into the control of the parafoil
system’s heading angle. Furthermore, a second-order LADRC was designed based on the
guidance law, and the DQN was applied to optimize the controller parameters adaptively.
Finally, the proposed DNQ-LADRC was applied to control the parafoil system to follow
a circular path under environments with and without disturbances and a straight path
under wind disturbances. The simulation results demonstrated that the influence of wind
disturbances on the parafoil could not be ignored. The proposed method could overcome
the effect of wind disturbances and realize the tracking control of straight or circular
paths. Compared with the traditional LADRC controller, the proposed method has certain
advantages in terms of the settling time and overshoot.

In future work, we will simultaneously consider implementing lateral and longitudinal
path tracking control of the parafoil system and applying the proposed method to actual
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experiments for verification. In addition, the DQN can realize the optimization of controller
parameters, but it also requires human experience to divide the action space. The agent
training of the DQN will be difficult when the action space is too large. Therefore, one of our
goals is to explore a fully intelligent reinforcement learning algorithm. In this study, only
the disturbances caused by uniform wind were considered, but in the actual flight process,
the parafoil system will be affected by various complex wind fields. Thus, path-following
control of the parafoil based on wind field identification is what we hope to achieve.
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