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Abstract: In rail transit traction, synchronous reluctance machines (SynRMs) are potential alternatives
to traditional AC motors due to their energy-saving and low-cost characteristics. However, the
nonlinearities of SynRMs are more severe than permanent magnet synchronous motors (PMSM)
and induction motors (IM), which means the characteristics of SynRMs are challenging to model
accurately. The parameter identification directly influences the modeling of nonlinearity, while
the existing algorithms tend to converge prematurely. To overcome this problem, in this paper, a
hybrid optimizer combining the SCA with the SSO algorithm is proposed to obtain the parameters of
SynRMs, and the proposed Sine-Cosine self-adaptive synergistic optimization (SCSSO) algorithm
preserves the self-adaptive characteristic of SSO and the exploration ability of SCA. Comprehensive
numerical simulation and experimental tests have fully demonstrated that the proposed method has
obviously improved parameter identification accuracy and robustness. In the dq-axis flux linkage,
the mismatch between reference and estimated data of proposed algorithm is below 1% and 6%,
respectively. Moreover, the best d-axis RMSE of SCSSO is 50% of the well-known algorithm CLPSO
and 25% of BLPSO and its performance has improved by two orders of magnitude compared to
traditional simple algorithms. In the q-axis, the best RMSE is 10% of CLPSO and 50% of Rao-3 and
Jaya. Moreover, the performance of the proposed algorithm has improved nearly 90 times compared
to traditional simple algorithms.

Keywords: rail transit traction; synchronous reluctance machines; nonlinear magnetic model;
parameters identification; optimization problem

1. Introduction

Due to their high efficiency, simple structure, low cost, wide speed range, and high
environmental adaptability, Synchronous Reluctance Machines (SynRMs) are good al-
ternatives to induction motors (IM) in fans, pumps, and compressors [1] and powerful
competitors of permanent magnet synchronous machines (PMSM) in traction applica-
tions [2]. SynRMs are a highly nonlinear and strongly coupled system due to their self- and
cross-saturation effects, which directly affect the torque output, power factor, excitation
level, and stable operation area. To control SynRMs effectively, it is critical to evaluate the
actual nonlinear behaviors of magnetic circuits based on accurate models [3–5]. Therefore,
a nonlinear magnetic model [6] that satisfies the reciprocity conditions and inherent proper-
ties is introduced. However, the accuracy of the model is still limited by the rationality of
the parameter identification algorithm because of the multimodal problems.

Many researchers have contributed to the parameter identification algorithms to obtain
optimal solutions in recent decades [7], such as genetic algorithm (GA) [8], ant colony opti-
mizer (ACO) [9], particle swarm optimization (PSO) [10], monarch butterfly optimization
(MBO) [11], and grey wolf optimization (GWO) [12]. These metaheuristic algorithms have
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achieved satisfactory results in single objective optimization. However, the multimodality
of parameter identification places more stringent requirements on traditional metaheuristic
algorithms. To cope with the problems mentioned above of traditional metaheuristic al-
gorithms in multimodality, various algorithms have been developed. In [13], multistage
ant colony optimization (MSACO) was raised for direct instantaneous torque control of
switched reluctance motor drives. This algorithm considered the multi-dimension condi-
tion. However, it overemphasized the exploitation ability, similar to the original ant colony
optimization, which induced the solution trapped into pause best solution. Paper [14]
combined Harris Hawks optimization with a Sine-Cosine algorithm and applied it to a
hybrid renewable energy system. Paper [15] mixed biogeography-based optimization with
a Sine-Cosine algorithm to satisfy high-dimensional global optimization problems [16].
Mohamed I. Abdelwanis mixed Particle Swarm Optimization (PSO) with Jaya optimiza-
tion to fit the rapid response demand of induction motors [17]. Rahimi, A. promoted
a Bat-inspired algorithms by considering chaotic behavior of PMSM [18]. Dalia Yousri
promoted Grey Wolf Optimization (GWO) by introducing a chao map for applications
to PMSM [19].Moreover, researchers made many efforts to promote the stochastic opti-
mization algorithms applied in the parameter identification for induction motors [20,21].
However, their mutation directions are uncertain, and their mutation strategies are based
on gradient. Thus, their calculation speed is relatively slow, and they tend to converge
prematurely when dealing with multimodal problems. Additionally, an uncomplicated
but valid algorithm named the Rao algorithm is proposed [22]. The distinguishing feature
of Rao algorithms from other metaheuristic algorithms is the novel update mechanism of
the optimal solution search path. The interaction of the algorithm among individuals was
guided by fitness evaluation, which enhanced the exploitability. However, the interaction
process ignored diversity’s value, which also induced premature convergence.

To solve the problem of early convergence, a self-adaptive synergistic optimization
(SSO) was proposed to identify the parameters of the SynRM magnetic model [23]. The
mutation strategy of the algorithm is guided by introduced parameters based on prob-
ability, which could offer updated directions in the global scope and avoid falling into
local optimums. However, when the current solutions are certainly not at the global opti-
mum, the searchability is provided by algorithm Rao-3 [24]. The searchability of Rao-3 is
relatively weak, so it is hard to get rid of the current worst solutions. Recently, a simple
yet effective metaheuristics method named the Sine-Cosine algorithm (SCA) has attracted
much attention [14] due to its strong exploration ability, simple structure and self-adaptive
balance capability.

However, SCA tends to get stuck in adjacent optima and uneven exploitation [25],
resulting from its weak exploitability. In [26], SCA was used in urban traffic light schedul-
ing. In [27], SCA was applied to constrained engineering optimization problems. However,
when the complexity of the problem increased, SCA will over-consume calculation re-
sources in exploration, also inducing premature convergence.

Based on the above factors, a hybrid optimizer for the parameter identification of
SynRM is proposed in this paper, with superior exploration and exploitation. The main
contributions of this paper can be summarized as follows:

1) An improved position updating mechanism with hybridized SCA, weighted fitness
values, and personal historical best is designed in SSO search;

2) A collaboration-based hybrid SSO-SCA optimizer (SCSSO) is developed.

The rest of the paper is organized as follows. Section 2 presents the magnetic model
of SynRMs. Sections 3 and 4 briefly introduced the SSO algorithm and SCA, respectively.
The working principle of the proposed SCSSO algorithm has been illustrated in Section 5.
Section 6 revealed the statistical results of SCSSO and other compared algorithms. Finally,
the conclusions are drawn in Section 7.
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2. Problem Formulation

This section introduces a magnetic model of SynRMs expressed only by currents to
simplify the equation. Objective functions considering self-saturation and cross-saturation
are introduced. We focus on the model in the d-q reference frame (the d-axis aligns to the
direction of maximum permeance) synchronous to the rotor. Additionally, the magnetic
energy change caused by the iron loss change is minimal compared to that caused by the
current change. Thus, the magnetic model is established under three hypotheses: (1) The
iron loss has been omitted. (2) The stator flux linkages only relate to the stator current.
(3) The effect of temperature on stator resistance is neglected.

2.1. Nonlinear Model of SynRMs Magnetic Behaviors

The electromagnetic torque of SynRMs is generated by an anisotropic rotor with a
magnetic barrier in the coupled magnetic field [28]. The main rotor topologies are axial
lamination (ALA) and transverse lamination (TLA). In general, the two rotor structures’
internal mechanism of the torque generated is the same. As shown in Figure 1, due to
the material properties of the rotor, there is inevitably a self-saturation effect in the d-axis
and q-axis magnetic circuits. In addition, due to the sharing of magnetic circuits, there is a
cross-coupling effect between the d- and q-axis magnetic linkages. The nonlinear behavior
mechanism of the two rotors is the same, and the following general modeling method can
be used.
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Figure 1. The magnetic circuit of the SynRMs rotor.

As Hypothesis (2), the stator flux linkages can be expressed by stator currents, which
means the mapping can characterize magnetic circuit nonlinearity among magnetic linkages
(ψs) and stator currents (is) as follows [29]:{

ψd = ψd
(
id, iq

)
ψq = ψq

(
id, iq

) (1)

where is =
(
id, iq

)T , ψs =
(
ψd, ψq

)T are stator currents and flux linkages, respectively. The
subscripts d and q represent the d- and q-axis.

The energy conversion mechanism determines the nonlinearity for modeling the mag-
netic model. As illustrated in Figure 2, SynRMs is a typical singly excited electromechanical
energy conversion device. It can be observed that the electrical and mechanical systems are
coupled by the magnetic energy (Wm) transformation.
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The mechanical work of SynRMs merely originates from electric energy, while electric
energy transfers to three main parts: stator resistance loss, electronic-magnetic resistance,
and mechanical. Thus, energy conserved in SynRMs can be expressed as follows:

iT
s us = Rs‖is‖2 +

dWm

dt
+ Te(is)ωm (2)

where us =
(
ud, uq

)T , Rs, Te(is), Wm, ωm are stator voltage, stator winding resistance,
electromagnetic torque, magnetic energy and mechanical velocity of the motor, respectively.

In the coupling field, the change of magnetic energy mediates energy conversion. For
simplifying the calculation, the variation of magnetic energy can be expressed equivalently
by the co-magnetic energy (Wc) [30].

dWc

dt
= ψd

(
id, iq

)diq
dt

+ ψq
(
id, iq

)did
dt

(3)

Resulting from a shared magnetic circuit, the flux linkage on the d- and q-axis has
a redistribution in the working process, which is the main reason for self-saturation and
cross-saturation [23]. In other words, the saturation phenomenon is from the magnetic
field, a typical conservative field. Under the concept of the traditional field, the relationship
between ψs and is can be formulated as

∂ψd
(
id, iq

)
∂iq

=
∂ψq
(
id, iq

)
∂id

(4)

Combining (2) and (3), the cross saturation-flux linkage is as follows:ψd
(
id, iq

)
= ψd(id)− ∂∆Wc

∂id

ψq
(
id, iq

)
= ψq

(
iq
)
− ∂∆Wc

∂iq

(5)

where ψd(id), ψq
(
iq
)

are merely the flux linkage under self-saturation, and ∆W represents
co-magnetic energy converted between the d- and q-axis [31]. Under restrictions (4) and (3),
the flux linkage model based on the Gaussian’s function is established asψd(id, iq) = αd(2− e−γdid − e−γd1i2d) + βdid − k

(
2Wide−Wid2

)(
V1i2q − iqe−Viq + κqiq − e−Viq

)
ψq(id, iq) = αq(2− e−γqiq − e−γq1i2q ) + βqiq − k

(
1− e−Wid2

)(
2V1iq + Viqe−Viq + κq

) (6)

where {α, γ, β} are non-negative self-saturation coefficients for the d-, and q-axis, and
{k, W, V, V1, κq} are cross-saturation coefficients. The subscripts d and q represent the d-axis
and the q-axis. Based on (3), (4), and (5), the reciprocity condition and ∆Wc are expressed as
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∂ψd(id, iq)

∂iq
=

∂ψq(id, iq)

∂id
= −k

(
2Wide−Wid2

)(
2V1iq + Viqe−Viq + κq

)
(7)

∆Wc = k
(

e−Wi2d − 1
)(

V1i2q − iqe−Viq + κqiq − e−Viq
)

(8)

Therefore, the analytical expressions of apparent inductances and incremental induc-
tances can be obtained as

Lai
d (id, iq) =

αd(2−e−γdid−e−γd1 i2d )
id

+ βd − k
(

2We−Wid2
)(

V1i2q − iqe−Viq + κqiq − e−Viq
)

Lai
q (id, iq) =

αq(2−e−γqiq−e−γq1 i2q )
iq + βq − k

(
1− e−Wid2

)(
2V1 + Ve−Viq +

κq
iq

) (9)



Lii
d (id, iq) = αd

(
γde−γdid + 2γd1ide−γd1i2d

)
+ βd

−2kW
(

e−Wid2 − 2Wi2de−Wid2
)(

V1i2q − iqe−Viq + κqiq − e−Viq
)

Lii
q (id, iq) = αq

(
γqe−γqiq + 2γq1iqe−γq1i2q

)
+ βq

−k
(

1− e−Wid2
)(

2V1 + Ve−Viq −V2iqe−Viq
)

Lii
dq(id, iq) = Lii

qd(id, iq) = −k
(

2Wide−Wid2
)(

2V1iq + Viqe−Viq + κq

)
(10)

where Lai and Lii are apparent inductance and incremental inductances, respectively.

2.2. Objective Function

To extract model parameters effectively, parameter extraction needs to be transformed
into an optimization problem by solving the objective function between the proposed
model and the flux linkage-current dataset. The cross-saturation parameters shared by
the d- and the q-axis model are the premise of the optimization problem. The algorithm
should be able to identify the no-load characteristics, self-saturation and cross-saturation
characteristics cooperatively. Some researchers applied the least square (LS) method in
the extraction of magnetic model parameters [29], but it is sensitive to initial solution and
dataset noise. Alternatively, Root Mean Square Error (RMSE) is introduced for this objective
function.

In this paper, the reference dataset was d- and q-axis flux linkage. As deduced above,
ψd(id), ψq

(
iq
)

are set as an intermediate function, as in following:
f d
k (ψ

d
FE, id

FE, iq
FE, xd) = αd

(
2− e−γdidFE − e−γd1(idFE)

2
)
+ βdid

FE

−k
(

2Wid
FEe−W(idFE)

2
)(

V1

(
iq
FE

)2
− iq

FEe−V(iqFE)
2
+ κqiq

FE − e−ViqFE

)
− ψd

FE

xd = {αd, γd, βd, k, W, V, V1, κd}

(11)


f q
k (ψ

q
FE, id

FE, iq
FE, xq) = αq

(
2− e−γqiqFE − e−γq1(i

q
FE)

2
)
+ βqiq

FE

−k
(

1− e−W(idFE)
2
)(

2Viq
FE + Viq

FEe−ViqFE + κq

)
− ψ

q
FE

xq =
{

αq, γq, βq, k, W, V, V1, κq
} (12)

The objective function was transferred to RMSE

RMSEd(xd) =

√√√√ 1
N

N

∑
k=1

f k
d (ψ

FE
d , iFE

d , iFE
d , xd)

2 (13)
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RMSEq
(
xq
)
=

√√√√ 1
N

N

∑
k=1

f k
q (ψ

FE
q , iFE

q , iFE
q , xq)

2 (14)

where x is the decision variable, N is the sample number, ψFE, iFE are stator flux linkages
and currents in the collected FEA dataset. xd, xq are the obtained parameter vectors, where
xd = [xd1, xc], and xq = [xq1, xc]. xd1 and xq1 are the unique parameters involved in xd and
xq, respectively, and xc = [k, W, V, κd, κq] is the common parameter sub-vector. Here, the
subscripts “d” and “q” represent d- and q-axis respectively. N is the number of FEA data.

3. SSO Algorithm

Yuanzhe Zhao and Linjie Ren proposed SSO in 2021.The basic idea is to introduce a
self-adaptive mechanism to balance the exploration and exploitation [23]. In this section,
the framework of SSO algorithm is briefly provided. P. Guglielmi concludes that in the
evolution of a population, exploitation and exploration are often in a trade-off relation-
ship [32]. For evaluating the probability of exploration and exploitation, a probability-based
synergistic performance (SP) for the kth candidate solution xk is defined as

Ps(xk, NP) = Pd(xk, NP) · ck,s + Pf (xk, NP) · (1− ck,s) (15)

where, Ps(xk, NP), Pf (xk, NP), Pd(xk, NP), represent the SP, fitness performance (FP) and
diversity performance (DP) for the candidate, respectively. ck,s is a random number in the
range [0, 1].

3.1. Core Parameters Calculation

The objective function ( f (xk)) is selected as the fitness function ( f f itness(xk)) for each
candidate solution.

ffitness(xk) = f (xk) (16)

Then the candidates are sorted in ascending order according to the value of ffitness(xk),
and finally we calculate probability by the sorting results.

Rfitness (xk, N) = NP + 1− ik, ik = 1, 2, . . . , NP (17)

Pk, f (xk, NP) =
(

Rfitness (xk, NP)
NP

)2
(18)

where ik represents the fitness ranking of xk in the population.
On the other hand, owing to avoiding local optima, diversity should guarantee the

ability to search a wider range. Therefore, the diversity function based on Euclidean
distance between candidates [27] is defined as

fdiversity(xk) = −
NP

∑
w=1
‖xk − xw‖, w = 1, 2, . . . , NP (19)

where ‖xk − xw‖ represents the Euclidean distance between xk and xw. The diversity
ranking and DP are presented as follows.

Rdiversity (xk, NP) = NP + 1− jk, jk = 1, 2, . . . , NP (20)

Pk,d (xk, NP) =

(
Rdiversity (xk, NP)

NP

)2

(21)

where jk represents the fitness ranking of xk in the population.
The way to select best candidate needs to be redesigned, as Algorithm 1 shows.
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Algorithm 1 The Synergistic performance comparison method

1: if Ps(xk, NP) 6= Ps(xl , NP) then
2: if Ps(xk, NP) > Ps(xl , NP) then
3: return xk
4: else
5: return xl
6: end if
7: else
8: if Pd(xk, NP) 6= Pd(xl , NP) then
9: if Pd(xk, NP) > Pd(xl , NP) then
10: return xk
11: else
12: return xl
13: end if
14: else
15: if Pf (xk, NP) 6= Pf (xl , NP) then
16: if Pf (xk, NP) > Pf (xl , NP) then
17: return xk
18: else
19: return xl
20: end if
21: else
22: return xk
23: end if
24: end if
25: end if

3.2. Framework of SSO

SSO’s evolutionary strategy comes from three Rao Algorithms [22]. The mutation
processes are

x′ f best,v = x f best,v + r1, f best,v

(
xR

f b,v − xR
f w,v

)
(22)

where the superscript “R” represents the randomly selected candidate. xfb,v, xfw,v represent
the vth variable for the better and worse candidate, respectively. x′fbest,v is the updated
value of x′k,v. r1,fbest,v is random numbers for the vth variable in the range [0, 1].

x′k,v = xk,v + r1,k,v

(
xs

best,v − xs
worst,v

)
(23)

x′k,v = xk,v + r1,k,v
(∣∣xbest,v

∣∣− |xworst,v|
)
+ r2,k,v

(∣∣xk,vor xl,v
∣∣− ∣∣xl,vor xk,v

∣∣) (24)

where the superscript “s” represents the candidate for quantitative selection based on SP.
xbest,v, xworst,v represent the vth variable for the best and worst candidate, respectively. x′k,v
is the updated value of xk,v. r1,k,v and r2,k,v are the two random numbers for the vth variable
in the range [0, 1].

The pseudo code of SSO algorithm is shown in Algorithm 2.
The SSO algorithm has a simple structure and removes algorithm-specific parameters.

In the searching process, exploration and exploitation are dynamically balanced.
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Algorithm 2 Pseudo code of SSO algorithm

1: Initialize population size (NP) and maximum number of
function evaluations (Max_FES);
2: Generate the initial population randomly,
evaluate the objective function value of each individual;
3: FES = NP;
4: While FES < Max_FES do
5: Compute fitness performance Pf of each individual xk;
6: Compute diversity performance Pd of each individual xk;
7: Get fitness best individual xfbestand fitness worst individual xfworst;
8: For k = 1 to NP do
9: if k = fbest then
10: Modify the best solution by using (21);
11: else
12: Randomly select ck,s∈{0, 1};
13: Compute Ps each individual according to (14);
14: Get Ps bestindividual xs

best and Ps wrost individual xs
worst;

15: Select xl1, xl2 from population randomly (l1 6= l2);
16: Ps comparison of xl1and xl2by using Algorithm 1;
17: if rand > Ps(k)
18: Modify candidate solution by using (23);
19: else
20: Modify candidate solution by using (22);
21: end if
22: end if
23: Compute Pf of the updated individual;
24: FES = FES + 1;
25: Accept the new solution if it is better than the old one;
26: end for
27: End while

4. Sine-Cosine Algorithm

Seyedali Mirjalili proposed the Sine-Cosine algorithm in 2016. The algorithm in-
troduced a trigonometric function to stochastic population-based optimization [14] and
realized a wide range search and gradually approaching solutions in the exploitation
process. The working principle of SCA is introduced.

Its mutation strategy is as follow:

x′k,v =

 xk,v + r1,k,v sin(r2)×
∣∣∣r3xbest,v − xk,v

∣∣∣, i f r4 < 0.5

xk,v + r1,k,v cos(r2)×
∣∣∣r3xbest,v − xk,v

∣∣∣, i f r4 ≥ 0.5 (25)

r1,k,v = a− at
T

(26)

where x′k,v, xk,v, xbest,v are the same as ones in (21) to (23), a, t, T represents constant, the
current number of iteration and the maximum number of iteration, respectively. The range
of r1,k,v and search detail of SCA are as Figure 3 shows.

As Figure 3 shows, the value of r1,k,v decided the search direction of the SCA algorithm.
Additionally, four parameters decide the search path of SCA. r1,k,v defines the direction.
r2 dictates how far the movement should be towards or outwards the destination. r3
provides a random weight for the destination in order to stochastically emphasize (r3 > 1)
or deemphasize (r3 < 1) the effect of destination in defining the distance. Finally, the
parameter r4 equally switches between the sine and cosine components. As mentioned
above, SCA holds much randomness. Algorithm 3 shows the pseudo code of SCA.
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Algorithm 3 Pseudo code of Sine-Cosine algorithm

1: Initialize a set of serach agents (solutions)(X);
2: Do
3: Evaluate each of the search agents by the objective function;
4: Update the best solution obtained so far (P = X*);
5: Update r1, r2, r3, and r4;
6: Update the position of search agents using (24);
7: While (t < maximum number of iterations)
8: Return the best solution obtained so far as the global optimum.

In Algorithm 3, X* represents the best individual in current searching process. The
Sine-Cosine algorithm’s search process is adaptive. There is not another parameter that
needs to be trained. Moreover, it has a wider search range.

5. Sine-Cosine Self-Adaptive Synergistic Optimization

As stated above, when the current candidate is absolutely not the best solution, and the
value of Pf (xk, NP) is small, SSO uses Equation (24) to update the direction of exploration.
The searching process is shown as Figure 4.
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The next position region is restricted by two reasons. One is the worst solutions.
Another is the last candidates. Resulting from the two factors, the next position region is
the Rhombic region.

As stated above, the search region of SCA is relatively narrow. However, the search
range of SCA is a circle around current candidate, as shown in Figure 3. Moreover, SCA and
SSO both automatically balance exploration and exploitation, and SCA has a much wider
search range. Thus, if we combine SSO with SCA, the new SC-SSO remains self-adaptive.
In addition, SCA replaced Rao-3, offering stronger searching ability. Figure 5 shows the
framework of SC-SSO.
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Figure 5. Framework of SCSSO.

As shown in Figure 5, Rao-3 was replaced after the random selection process. When
two individuals are randomly selected, a random number decides the equal to modify the
solution. If Ps > rand, it proves that current solutions are still valuable and thus continue to
exploit around the solution. However, Ps < rand proves that current solutions are worse
than surrounding candidates. Then, we use a method to explore.
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The standard SSO uses the Rao-3 algorithm to explore, while Rao-3’s search ability is
relatively weak. Therefore, SCA is a better alternative.

As shown in Figure 5, the structure of the self-organization mechanism is simple and
clear and has no extra parameters. During the operation of the algorithm, the direction
of evolution is automatically balanced, which means the convergence strength is self-
adaptively managed.

In SCSSO, Ps remains the index of evaluating the capability of current candidates.
When the xk is the best individual, the next searching direction is decided by Equation (21),
as Figure 6 shows.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 5. Framework of SCSSO. 

As shown in Figure 5, the structure of the self-organization mechanism is simple and 

clear and has no extra parameters. During the operation of the algorithm, the direction of 

evolution is automatically balanced, which means the convergence strength is self-adap-

tively managed. 

In SCSSO, Ps remains the index of evaluating the capability of current candidates. 

When the xk is the best individual, the next searching direction is decided by Equation 

(21), as Figure 6 shows. 

 

Figure 6. Searching direction when the the xk is the best individual. Figure 6. Searching direction when the the xk is the best individual.

When the xk is not the best solution, a method of comparing Ps with random numbers
has been carried out. If Ps is greater than a random number, we could use Equation (23)
to search the best solution around current solutions, but if Ps is smaller than a random
number, a much larger search region should be carried out. The search region of SCA is a
circle around the destination, as shown in Figure 3, so it could help to get rid of the current
worst solution.

6. Experimental Results

In the field of optimization using meta-heuristics and evolutionary algorithms, several
tests and experiments should be carried out in order to test the efficiency, accuracy, and
robustness of proposed algorithms. In these experiments, FEA data are selected as a
benchmark, while the error between the calculation results of object functions and reference
data are inferred to RMSE, so that the accuracy and robustness could be evaluated. The
analysis software used in this paper is MATLAB. Algorithms are compared by the best
RMSE values in 30 populations. Through the best (B), and worst (W) values, we can
evaluate the accuracy of them, and the standard deviation (SD) and mean (M) represent
the stability of them.

6.1. Reference Data

The reference data come from the finite element analysis of the designed 2 kW proto-
type SynRMs. The design parameters of the prototype are summarized in Table 1.

Table 1. Parameters of prototype.

Parameters Values Parameters Values

Rated Power (kw) 2 Rated Voltage (V) 60
Rated Speed (r·min−1) 1500 Rated Current (A) 30

Rated Torque (N·m) 12.7 Number of pole pairs 2
Stator resistance (Ω) 0.3 Moment of inertia (kg·m−2) 0.025

The result of FEA illustrated the nonlinearity of SynRMs flux linkage. As is increases,
the nonlinearity of ψs becomes increasingly obvious. As shown in Figure 7a, when id
reaches 10A, the curve of ψd rising becomes slower. The same phenomena appeared in ψq.
This is so-called self-saturation. Additionally, when id is fixed, the value of ψd decreases as
iq increases. In Figure 7b, the ψq decreases more rapidly than ψd in (a). This id, iq influencing
mutual flux linkage phenomena is called cross-saturation.



Sustainability 2023, 15, 397 12 of 19

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

When the xk is not the best solution, a method of comparing Ps with random numbers 

has been carried out. If Ps is greater than a random number, we could use Equation (23) to 

search the best solution around current solutions, but if Ps is smaller than a random num-

ber, a much larger search region should be carried out. The search region of SCA is a circle 

around the destination, as shown in Figure 3, so it could help to get rid of the current 

worst solution.  

6. Experimental Results 

In the field of optimization using meta-heuristics and evolutionary algorithms, sev-

eral tests and experiments should be carried out in order to test the efficiency, accuracy, 

and robustness of proposed algorithms. In these experiments, FEA data are selected as a 

benchmark, while the error between the calculation results of object functions and refer-

ence data are inferred to RMSE, so that the accuracy and robustness could be evaluated. 

The analysis software used in this paper is MATLAB. Algorithms are compared by the 

best RMSE values in 30 populations. Through the best (B), and worst (W) values, we can 

evaluate the accuracy of them, and the standard deviation (SD) and mean (M) represent 

the stability of them. 

6.1. Reference Data 

The reference data come from the finite element analysis of the designed 2 kW pro-

totype SynRMs. The design parameters of the prototype are summarized in Table 1. 

Table 1. Parameters of prototype. 

Parameters Values Parameters Values 

Rated Power (kw) 2 Rated Voltage (V) 60 

Rated Speed (r·min−1) 1500 Rated Current (A) 30 

Rated Torque (N·m) 12.7 Number of pole pairs 2 

Stator resistance (Ω) 0.3 Moment of inertia (kg·m−2) 0.025 

The result of FEA illustrated the nonlinearity of SynRMs flux linkage. As is increases, 

the nonlinearity of ψs becomes increasingly obvious. As shown in Figure 7a, when id 

reaches 10A, the curve of ψd rising becomes slower. The same phenomena appeared in ψq. 

This is so-called self-saturation. Additionally, when id is fixed, the value of ψd decreases as 

iq increases. In Figure 7b, the ψq decreases more rapidly than ψd in (a). This id, iq influencing 

mutual flux linkage phenomena is called cross-saturation. 

  
(a) (b) 

Figure 7. Flux linkage results of FEA. (a) Nonlinear flux linkage of d-axis. (b) Nonlinear flux linkage 

of q-axis. 

To prove the performance metrics of the enhanced SC-SSO, comparative experiments 

are carried out with other well-performed algorithms, including original Rao algorithms, 

Ant Lion Optimization (ALO) algorithm[33], differential evolution with biogeography-

Figure 7. Flux linkage results of FEA. (a) Nonlinear flux linkage of d-axis. (b) Nonlinear flux linkage
of q-axis.

To prove the performance metrics of the enhanced SC-SSO, comparative experiments
are carried out with other well-performed algorithms, including original Rao algorithms,
Ant Lion Optimization (ALO) algorithm [33], differential evolution with biogeography-
based optimization (DE/BBO) [34] and JAYA algorithm [35]. For the sake of fairness,
different algorithms retain the same parameter configurations, as Table 2 shows.

Table 2. Parameter configurations.

Model Population Size Run Times Max_FES
Parameters Range

Lower Upper

q-axis flux linkage model NP = 30 30 30,000 0 2
d-axis flux linkage model NP = 30 30 30,000 0 2

6.2. Results on q-Axis Flux Linkage Model

For the q-axis flux linkage model, 11 algorithms are independently implemented
30 times to obtain their self-saturation and cross-saturation parameters. RMSEq is taken
as the index of accuracy evaluation. The best parameters and best RMSE are shown to
compare in Table 3.

Table 3. Comparison Among Different Algorithms on q-axis Flux Linkage Model.

Algorithm
Self-Saturation Coefficients Cross-Saturation Coefficients

RMSEq
αq βq γq γq1 k W V V1 κq

SCSSO 0.0071 0.8712 0.1336 7.8411 × 10−4 0.0255 0.0019 0.012184 0.2528 6.1885 2.2339 × 10−4

SSO 0.0071 0.7738 0.1345 7.8854 × 10−4 0.0060 0.0021 0.0106 0.3756 1.0311 3.5053 × 10−4

SCA 0.0071 0.8712 0.1336 7.8411 × 10−4 0.0255 0.1804 0.079904 0.0012 0 0.0021
GWO 0.0071 1.0610 0.1251 7.8437 × 10−4 0.0198 0.0021 0.0112 0.2685 0.1083 2.3034 × 10−4

ALO 0.0140 0.0014 0.3133 7.7888 × 10−4 0.0197 0.0033 0.0109 0.2151 0.0041 6.9356 × 10−4

BLPSO 0.0070 0.4307 0.4166 7.9459 × 10−4 0.0180 0.0021 0.0121 0.2915 0.1393 2.9613 × 10−4

CLPSO 0.0127 0.0218 0.6777 6.2413 × 10−4 0.0105 1.1194 0.0049 0.4572 0.1498 0.0022
DE/BBO 0.0072 0.4329 0.3368 7.7735 × 10−4 0.0212 0.0023 0.0450 0.2157 2.0000 2.6629 × 10−4

CMM-DE/BBO 0.0070 0.8631 0.2983 7.9557 × 10−4 0.0226 0.0020 0.01150 0.2808 0.0640 2.4377 × 10−4

Rao-1 0.0071 1.0297 0.1238 7.8393 × 10−4 0.0215 0.0020 0.0115 0.2633 0.0751 2.2443 × 10−4

Rao-2 0.0079 0.2632 0.6453 7.0144 × 10−4 0.0215 0.0020 0.0115 0.2633 0.0751 5.8524 × 10−4

Rao-3 0.0072 1.6691 0.0597 7.6864 × 10−4 0.0042 0.0016 0 2.0000 2.0000 7.0207 × 10−4

JAYA 0.0141 0.4671 0 7.6524 × 10−4 0.0050 0.0012 0.0072 0.9533 1.7820 6.9965 × 10−4

PSO 0.0214 0.5025 0.4511 0.0108 0.1847 0.4574 0.0431 0.0306 0.0750 0.1971
GA 0.0029 0.0026 0.0022 0.0013 0.0043 1.11 × 10−5 2.39 × 10−5 5.20 × 10−11 2.99 × 10−6 0.0052

In Table 4, B M and W mean the best mean and worst RMSE values in 30 populations.
SD represents standard deviation of 30 RMSE values for each algorithm. As Table 4
shows, the SCSSO offered the best RMSEq value (2.2339 × 10−4); the second-best value
(2.2443 × 10−4) was offered by RAO-1; and the worst value (0.0022) was offered by CLPSO,
which was ten times that of SCSSO. The best RMSEq of SSO and SCA was 1.56 times and
10 times that. of SCSSO. Compared with other well-known algorithms, SCSSO is highly
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performed. To further illustrate the excellent results of the parameter identification, the
q-axis flux linkage map is reconstructed using the best results of the SCSSO algorithm.
Table 4 explains the statistical results, and SCSSO ranks first in the comparison. Moreover,
the RAO-1 was the second best RMSE, but its mean value was 0.0017, nearly 20 times that
of SCSSO. The second-best mean value (4.8678 × 10−4) was provided by BLPSO, 1.76 times
that of the proposed algorithms. Additionally, SCSSO is superior to SCA in statistical
results. Although the standard deviation of SCSSO is inferior to SSO, the best RMSEq,
worst RMSEq and mean value are superior.

Table 4. Statistical Results of RMSE of Different Algorithms for q-axis Model.

Model Population Size Algorithm
RMSE

B M W SD

q-axis flux
linkage model NP = 30

SCSSO 2.2339 × 10−4 2.7572 × 10−4 6.5841 × 10−4 5.7682 × 10−4

SSO 3.5053 × 10−4 4.7825 × 10−4 9.1071 × 10−4 1.2444 × 10−4

SCA 0.0021 0.0036 0.0086 0.0015
GWO 2.3034 × 10−4 0.0018 0.0050 0.0012
ALO 6.9356 × 10−4 0.0022 0.0049 0.0010

BLPSO 2.9613 × 10−4 4.8678 × 10−4 8.5550 × 10−4 6.3891 × 10−4

CLPSO 0.0022 0.0059 0.0420 0.0077
DE/BBO 2.6629 × 10−4 0.0012 0.0121 0.0024

CMM-DE/BBO 2.4377 × 10−4 7.4912 × 10−4 0.0024 6.7630 × 10−4

Rao-1 2.2443 × 10−4 0.0017 0.0238 0.0043
Rao-2 5.8524 × 10−4 0.0053 0.0238 0.0074
Rao-3 7.0207 × 10−4 0.0073 0.0238 0.0093
JAYA 6.9965 × 10−4 0.0031 0.0074 0.0016
PSO 0.1935 0.2346 0.9040 0.1270
GA 0.0052 0.1937 0.3833 0.1106

Figure 8 is the plots of the best RMSEq of the proposed algorithm and other compared
ones. As indicated above, the standard deviation of the new algorithm was the smallest in
the 11 algorithms, and the best value was the smallest in this comparison.
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It can be seen in Tables 3 and 4 that the best value, mean value and worst value of
traditional simple algorithms are one hundred times larger than other improved algorithms.
The standard deviation is at least ten times larger than the other 13 algorithms. This proved
that the traditional algorithms are not suitable for multidimensional problems.

Figure 9a takes FEA data as a surface and uses the SCSSO algorithm data as the fitting
ball to illustrate the accuracy of the SCSSO algorithm. Figure 9b illustrates the mismatch
between estimated data and FEA data.
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As shown in Figure 9b, the calculation results of the proposed algorithm have only a
6% mismatch with the reference data in the edge of the model, which is attributed to the
modeling method and the calculation error of FEA at the model boundary. Under many
circumstances, the error of mismatch does not exceed 1%, which means the model with the
identified parameters can be applied in actual engineering.

6.3. Results on d-Axis Flux Linkage Model

As the second stage of SynRMs magnetic model parameter identification, the extrac-
tion of the d-axis model parameters is similar to the process mentioned in the previous
subsection. The best cross-saturation coefficients are obtained in the previous process.
Therefore, only four self-saturation parameters need to be identified.

It can be seen from Figure 10 that the estimated data suit the reference perfectly.
Moreover, the errors of d-axis flux linkage are below 1%. Table 5 lists the best estimated
parameters and the best RMSEd (4.0816 × 10−4) of different algorithms. The SCSSO keeps
the best RMSEd value (4.0816 × 10−4). Table 6 illustrates that the best RMSE values of the
11 algorithms are resultant, but the mean value, the worst RMSE and standard deviation of
the 11 compared algorithms are orders of magnitude larger than the proposed algorithm.
Especially with DE\BBO, its mean value was almost 10 times that of SCSSO. The worst
RMSE value of GWO was nearly 20 times that of the proposed algorithms. Additionally,
the standard deviation of GWO was nearly 60 times that of SCSSO. The SCSSO has superior
performance to SCA and SSO in any aspect.

Figure 10. FEA data vs estimated data of d-axis. (a) Comparation between FEA and estimated data.
(b) Mismatch of d-axis flux linkage, estimated vs. FEA.

Figure 11 shows the plots of the best RMSEd of the proposed algorithm and other
compared algorithms. As shown above, the best and worst RMSE, mean value and standard
deviation were the smallest of all.
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Table 5. Comparison among different algorithms for d-axis flux linkage model.

Algorithm
Self-Saturation Coefficients RMSEd

αd βd γd γd1

SCSSO 0.0616 0.1495 0.0100 0.0013 4.0816 × 10−4

SSO 0.0615 0.1498 0.0100 0.0013 4.0854 × 10−4

SCA 0.0602 0.1587 0.0112 0.0015 4.8188 × 10−4

GWO 0.0615 0.1498 0.0100 0.0013 4.0818 × 10−4

ALO 0.0623 0.1484 0.0098 0.0013 4.2398 × 10−4

BLPSO 0.0595 0.1491 0.0108 0.0015 5.2488 × 10−4

CLPSO 0.0613 0.1665 0.0086 0.0014 9.0099 × 10−4

DE/BBO 0.0602 0.1509 0.0104 0.0014 4.5824 × 10−4

CMM-DE/BBO 0.0615 0.1498 0.0100 0.0013 4.0818 × 10−4

Rao-1 0.0615 0.1500 0.00995 0.0013 4.0866 × 10−4

Rao-2 0.0616 0.1497 0.0100 0.0013 4.0821 × 10−4

Rao-3 0.0615 0.1498 0.0100 0.0013 4.0817 × 10−4

JAYA 0.0619 0.1499 0.0099 0.0013 4.0828 × 10−4

PSO 0.0378 0.0745 0.3731 0.0033 0.0384
GA 0.0131 0.0675 1.9945 0.0704 0.0140

Table 6. Statistical results of RMSE of different algorithms for d-axis model.

Model Population Size Algorithm
RMSE

B M W SD

d-axis flux
linkage model NP = 30

SCSSO 4.0816 × 10−4 4.6754 × 10−4 7.5682 × 10−4 9.1699 × 10−5

SSO 4.0854 × 10−4 7.0770 × 10−4 0.0022 4.2779 × 10−4

SCA 4.8188 × 10−4 0.0012 0.0020 4.2928 × 10−4

GWO 4.0818 × 10−4 0.0029 0.0232 0.0056
ALO 4.2398 × 10−4 0.0032 0.0180 0.0017

BLPSO 5.2488 × 10−4 0.0012 0.0020 4.2742 × 10−4

CLPSO 9.0099 × 10−4 0.0036 0.0100 0.0018
DE/BBO 4.5824 × 10−4 0.0036 0.0079 0.0022

CMM-DE/BBO 4.0818 × 10−4 0.0021 0.0058 0.0016
Rao-1 4.0866 × 10−4 0.0010 0.0034 0.0014
Rao-2 4.0821 × 10−4 0.0028 0.0232 0.0041
Rao-3 4.0817 × 10−4 0.0023 0.0034 0.0012
JAYA 4.0828 × 10−4 0.0018 0.0036 0.0013
PSO 0.0384 0.0787 0.3728 0.0781
GA 0.0140 0.0784 0.6984 0.1395

An experiment in an SynRM prototype was carried out based on the 2 kW SynRM
prototype and MicroLabBox dSPACE experimental platform, as shown in Figure 12. Its
parameters are shown in Table 1. The hysteresis brake is used as the brake load. The torque
sensor is installed on the shaft between the SynRM prototype and the hysteresis brake to
measure the torque generated by the SynRM; the customized 55 kW three-phase inverter
is powered by the 9 kW DC power supply to drive the motor; a MicroLabBox dSPACE
ds1202 with a 2 GHz dual-core real-time processor and programmable FPGA is used as the
system controller for implementing the control algorithm, sending pulses to the inverter,
and sampling and analyzing information of the measured currents, position and torque of
the motor. In the experiment tests, the sampling time is chosen as 100 µs.

To verify the applicability of the proposed algorithm, the results of the proposed
algorithm obtained were compared with the traditional look-up table method.

The experimental results are shown in Figure 13.
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Figure 12. Experimental platform of SynRM prototype: (a) PC with software of dSPACE ControlDesk;
(b) Torquemeter; (c) 9 kW DC power supply; (d) MicroLabBox dSPACE ds1202; (e) Customized
three-phase inverter; (f) Oscilloscope; (g) 2 kW SynRM prototype with resolver; (h) Torque sensor;
(I) Hysteresis brake.
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It can be seen from Figure 13 that the flux linkages and incremental inductances can
highly fit the traditional method. Additionally, because of the differentiability of objective
function, the incremental inductances are continuous.
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6.4. Results Discussion

The comparison results demonstrate that the proposed SCSSO algorithm has much
better accuracy and effectiveness for solving the parameters identification problem of the
SynRMs magnetic model, and its performance is competitive in contrast with all compared
algorithms. The difference between the best RMSEd and the best RMSEq provided by the
proposed SCSSO algorithm can be clearly observed. On one hand, the accuracy of the
experimental results in the q-axis model is considerable, and the algorithm error is inevitably
introduced into the d-axis model with the application of cross-saturation parameters. On the
other hand, the energy loss of the rotor region corresponding to the d- and q-axis is different.
Those losses are not reflected in the cross-saturation parameters under conservative field
assumptions. This makes the influence of the loss contained in the standard datasets
equivalent to a kind of noise, which is accumulated and introduced into the identification
result of the d-axis self-saturation parameters. Fortunately, the values of best RMSEd and
RMSEq are in the same order of magnitude. Thus, the superior accuracy and robustness
of the proposed SCSSO algorithm can be explained in one aspect, while its stability was
contrasted by itself under a different NP. Thus, an experiment was carried out to test the
robustness and stability of SCSSO. In this experiment, the SCSSO algorithm with NP = 10,
20, 30, 40 and 50 was tested and compared, maintaining the Max_FES at 30,000. The
statistical results are presented in Table 7.

Table 7. Statistical results of SCSSO algorithm with varying NP for SynRMs magnetic model
(30,000 function evaluations).

Model RMSE
Population Size

NP = 10 NP = 20 NP = 30 NP = 40 NP = 50

q-axis flux
linkage model

B 3.15164 × 10−4 3.4644 × 10−4 2.2339 × 10−4 6.4685 × 10−4 8.7220 × 10−4

M 5.1534 × 10−4 4.5315 × 10−4 2.7572 × 10−4 0.0031 0.0045
W 0.0045 0.0053 6. 5841 × 10−4 0.0034 0.0045
SD 1.4531 × 10−3 1.4153 × 10−4 5.7682 × 10−4 6.4845 × 10−4 6.6546 × 10−4

d-axis flux
linkage model

B 4.0828 × 10−4 4.0925 × 10−4 4.0816 × 10−4 4.1557 × 10−4 5.4685 × 10−4

M 9.3769 × 10−4 4.9046 × 10−4 4.6754 × 10−4 6.4842 × 10−4 9.4531 × 10−4

W 0.0076 6.9249 × 10−4 7.5682 × 10−4 0.0048 0.0081
SD 1.5883 × 10−3 7.3260 × 10−4 9.1698 × 10−5 4.5151 × 10−4 0.0048

It can be clearly seen that due to the different dimensions of the problem, the optimal
population size for different problems is also different. Hence, the most appropriate
population size for the parameter identification of d- and q-axis flux models is set to 30.

7. Conclusions

In this paper, an SCSSO algorithm based on SSO and SCA is proposed to extract the
parameters of the SynRMs nonlinear magnetic model. Compared with traditional and
simple algorithms, the proposed algorithm has improved more than 80 times. Additionally,
the proposed algorithm has improved by 10% (even by 50% compared to some outstanding
algorithms). Experiment results elaborated that the SCSSO algorithm is effective enough
to solve the parameter identification problems of the SynRMs nonlinear magnetic model.
Moreover, through the verification of the proposed SynRMs model parameter identification,
it can be inferred that the proposed algorithm can be extended to the solution of the multi-
parameter and multi-peak problem. Furthermore, through the verification of SynRM
prototype, the practicability of the proposed method could better describe the nonlinearity
of the magnetic circle than the traditional method. In our future work, the iron loss and the
variation of resistance could be taken into consideration. On the basis of the research in this
study, in view of the noise characteristics of the measured reference data, it is necessary to
further study the evolution strategy of metaheuristic algorithms with higher robustness to
further improve the accuracy of SynRMs magnetic model parameter identification.
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