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Abstract: Traffic crashes involving pedestrians have a high frequency in developing countries. Among
road users, pedestrians are the most vulnerable, as their involvement in traffic crashes is usually
followed by severe and fatal injuries. This study aims to identify pedestrian crash patterns and reveal
the random parameters in the dataset. A three-year (2015–2017) pedestrian crash dataset in Mashhad,
Iran, was employed to investigate the influence of a rich set of factors on pedestrian injury severity,
some of which have been less accounted for in previous studies (e.g., the vicinity to overpasses, the
existence of vegetated buffers, and park lanes). A two-step method integrating latent class cluster
analysis (LCA) and the mixed logit model was utilized to consider unobserved heterogeneity. The
results demonstrated that various factors related to the pedestrian, vehicle, temporal, environmental,
roadway, and built-environment characteristics are associated with pedestrian injuries. Furthermore,
it was found that integrated use of LCA and mixed logit models can considerably reduce the unob-
served heterogeneity and uncover the hidden effects influencing severity outcomes, leading to a more
profound perception of pedestrian crash causation. The findings of this research can act as a helpful
resource for implementing effective strategies by policymakers to reduce pedestrian casualties.

Keywords: pedestrian; traffic crashes; injury severity analysis; unobserved heterogeneity; latent class
cluster analysis; mixed logit model; developing country

1. Introduction

Traffic crashes result from human activities interacting with diverse cultural, socio-
economic, and geographic contexts, which disrupt the health system. Traffic crashes not
only injure people, they can also result in deaths. Every year, traffic crashes are responsible
for over 1.2 million deaths and 50 million injuries worldwide and are the eighth leading
cause of death [1]. Road safety advancements are associated with socioeconomic factors,
such as education, motorization level, and economic growth, which vary considerably
between developing and developed countries [2]. Moreover, road safety is much more
appreciated in developed countries, and they have a long history of applying road safety
measures [3]. Owing to these differences, the number of casualties and financial expenses
resulting from traffic crashes are significantly higher in developing countries.

Traffic crashes are the leading cause of mortality in developing countries, where 93% of
all road traffic fatalities occur, while they own only 54% of the world’s vehicles [3,4]. The
financial repercussions of traffic crash injuries are also substantial. In developing countries,
traffic crash consequences account for 2–7% of gross domestic product (GDP) [1,4].

The high rate of fatalities in traffic crashes has been a long-standing issue in Iran. In
2011, 20,068 people died, and 297,252 were injured in traffic crashes in Iran [5]. However,
due to the coordinated efforts from road agencies and other relevant stakeholders, traffic
casualties reached around 20.5 people per 100,000 population (17,000 people in total)
annually in recent years [6]. However, this number is still considerably higher than the
world average (18.2), European countries’ average (10.3), and the U.S. (11.1) [7,8]. The
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burden of traffic-related fatalities and injuries in Iran also created a number of economic
difficulties. For instance, the cost of traffic-related fatalities accounts for more than 5% of
Iran’s gross national product (GNP) each year, costing the nation about USD 6 billion [9].

Meanwhile, around half of the fatalities in traffic crashes are related to vulnerable road
users. Among them, pedestrians are the most vulnerable since they have the least protection
during a vehicle–pedestrian collision [10]. As a result of continued investments in road
safety research programs and countermeasures, pedestrian-related crashes in developed
countries are presently declining [11]. However, pedestrian deaths are increasing in Iran,
with the Iranian Legal Medicine Organization [12] reporting a 2.1% increase between
2018 and 2019. This increasing trend due to the high share of pedestrian fatalities needs
attention. On average, 23 percent of all traffic fatalities are pedestrians in Iran, which is
higher than the world average (22%) or developed countries such as Australia (13%) and
the U.S. (17%) [13]. This number is much worse in populated cities, where it is around
40 percent [12]. For example, in Mashhad, the second most populated city of Iran, this
number was more than 55% in 2018 [14].

For more than 30 years, considerable research has been conducted on pedestrian safety
in developed countries. In contrast, in developing countries, the literature on vulnerable
road users is at an early stage, and the number of studies in this field is limited [15,16].
Moreover, the focus of researchers and authorities is usually narrowed to motorized traffic
instead of pedestrians in developing countries [15,17]. The situation is similar in Iran, and
only a handful of studies have been conducted on pedestrian safety (e.g., [18–21]). Hence,
there is a need for comprehensive studies on pedestrian safety in Iran, especially in urban
environments that have a high share of pedestrian casualties.

Studies in pedestrian safety can generally be classified into two groups: some re-
searchers concentrated on the frequency of pedestrian crashes (e.g., [22–25]), while others
have studied the contributing factors affecting the injury severity of pedestrians involved
in crashes (e.g., [26–31]). Moreover, various types of datasets have been used to investigate
pedestrian safety. Many studies used crash databases collected by authorities, such as
police, and emergency services reports. These databases are then aggregated into macro,
meso, or micro geographic units [32]. This is the traditional type of data for pedestrian
crash analysis that covers crash reports in a certain area and is limited in the number of
observations. A more recent line of research employs naturalistic driving methodology,
which is an experimentation model that allows recognition of driving modes by observ-
ing the driver’s behavior at the wheel of a group of people in natural conditions over
extended observation periods. This methodology aims to increase the representativeness
of the acquired data, as opposed to data stemming from laboratory tests that are highly
controlled [33,34]. Naturalistic driving provides extensive data with various variables such
as vehicle kinematics, roadway geometry, traffic conditions, and environmental variables
compared to police and emergency report [32].

In the following paragraphs, methodological approaches of studies that mainly focused
on the severity of pedestrian injuries using traditional crash datasets are specifically reviewed.

It was found that several factors, including pedestrian’s age (e.g., [26,35,36]), pedes-
trian’s gender (e.g., [36,37]), driver’s age and gender (e.g., [28,36,38]), blood alcohol con-
sumption (e.g., [39,40]), vehicle type (e.g., [41,42]), road type (e.g., [27]), number of lanes
(e.g., [43]), time of crash (e.g., [26,40]), weather condition (e.g., [28,44]), speed (e.g., [36,45]),
pedestrian red light violation (e.g., [46]), traffic control (e.g., [28,41]), light condition
(e.g., [27,47]), and land use (e.g., [36,43]), can significantly affect the severity of pedes-
trian crashes. Various modelling approaches have been used over the years to understand
the effect of these factors.

Most of the early studies in this field analyzed the cash data by descriptive analysis. In
these studies, variables extracted from the crash dataset, such as pedestrian’s and driver’s
age, gender, alcohol consumption, or crash occurrence time, were compared across the
crash severity categories (see [48–50]).
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Over time, the use of multivariate analysis became prevalent among researchers.
Therefore, models such as logistic regression (e.g., [26,37,51]) and ordered response models
(e.g., [36,52]) have been widely adopted in many studies over the years.

In the social sciences, many researchers examine human dynamics and social behaviors
by considering very particular scales and settings. Moreover, in a networked society, the
complexity and spatial heterogeneity of these dynamics and behaviors are obscured by
the absence of a holistic perspective in many studies [53]. Addressing heterogeneity is
crucial in social sciences, and there are various methodologies and approaches for dealing
with this issue. However, the main aspect of that is understanding the heterogeneity in
the right context. For example, differences in environmental settings (urban or rural),
culture, and financial level (developed or developing country) can trace very different
social behaviors [53].

Traffic crashes are highly heterogeneous due to their spatiotemporal nature and
because they are outcomes of human activities interacting with diverse cultural, socio-
economic and geographic contexts. In other words, crashes can occur in different cir-
cumstances, and the influence of various factors could be hidden in the chain of events
that lead to a crash. Thereby, some latent relationships may exist between crashes and
influential factors that are hard to detect [29]. These hidden relationships show themselves
as heterogeneity in crash datasets. The unobserved heterogeneity has been identified as a
critical problem for traffic safety modelling [54]. For instance, it can cause the same factor
to affect crash severity inconsistently or even oppositely under different conditions [55,56].

Accordingly, researchers in this area have tried to consider heterogeneity issues by
using different approaches to investigate pedestrian crash datasets. Some studies concen-
trated on distinct influential variables or crash patterns. For example, specific pedestrian
age groups such as children [57,58], pedestrian crashes with specific vehicles such as
trucks [50,59], buses [60], and taxies [61], specific location such as intersections [36,62], and
so on. The segmentation of data by focusing on specific parameters provides beneficial
information and may lower the heterogeneity, but they do not necessarily lead to complete
homogeneity in each segment [63].

One of the measures to reduce heterogeneity is to use data mining approaches such
as cluster analysis [63,64]. The cluster analysis has been used in crash data analysis with
different frameworks, such as k-means clustering [65], kernel density estimation [66], and
latent class clustering [29,30].

Some studies used cluster analysis to reach homogenous groups, and, for each sub-
data group, severity models were then applied to evaluate the risk factors associated with
pedestrian crash severity. Severity models such as ordered probit [28], binary logit [29],
and multinomial logit [30] were used after clustering to investigate the explanatory factors
affecting pedestrian crash severity. For instance, Sasidharan et al. [29] first applied a latent
class analysis to classify pedestrian crash datasets into homogenous clusters. A binary
logistic regression model was then used to investigate variables associated with severity
in each subgroup. The results revealed that the binary logistic regression model in terms
of clusters is more accurate than utilizing a single binary logistic regression model to the
whole data [29]. It was also found that some variables that are not significant in the whole
data severity analysis could become significant in specific crash patterns [29].

The cluster analysis can decrease the heterogeneity of the data to some extent, yet
it is still expected to remain within each identified cluster [56,67]. Other than clustering
methods, another alternative for capturing the unobserved heterogeneity is to use discrete
choice models that can address heterogeneity. The mixed (random parameter) logit model
is one of the approaches that can meet the requirements mentioned above. This model is a
more flexible version of multinomial logistic regression that allows parameters to differ
across observations. With the development of computer power for modelling, it became
easier to use such time-consuming models. Therefore, traffic safety researchers have been
able to conduct the mixed logit model in recent years to investigate the injury severity
of pedestrian-involved crashes [27,38,68]. The traditional mixed logit model evaluates
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random parameters individually and independently without considering the correlations
among random parameters. A more recent line of research in crash analysis extended
the approach to the correlated mixed logit models [69–71]. The correlation between the
variables could offer more profound insights into how some combinations can influence
safety [70]. Moreover, the correlated RPL model was found to be statistically superior
compared to the contemporary ones, such as random-effects models and uncorrelated
random parameters models [71]. However, correlated random parameter logit models are
computationally more complex than uncorrelated random parameter logit models. RPL
models with correlated random parameters require the estimate of a much larger number
of parameters, which increases not only the calculation time but also the probability of local
maxima [72]. Correlated RPL model has still been used less frequently in severity analysis
due to its computational complexity [72].

In general, using random parameter models has its own limitations. For example, the
pre-specified parameter distributions in mixed logit models may not reveal the unobserved
heterogeneity for some parameters across observations [54]. In other words, some param-
eters could show different influences in some specific crash patterns, which may remain
unseen when working with the whole dataset. One way to overcome this problem is to
categorize data into sub-datasets with maximum homogeneity.

According to the explanations given, it can be concluded that the integrated use of the
mixed logit models and cluster analysis can significantly alleviate the drawbacks of both
approaches and minimize the heterogeneity. A two-step method incorporating both LCA
and the uncorrelated mixed logit model has been used lately on crash datasets [54,56,67,73].

Objectives and Scope of the Study

This study aims to identify pedestrian crash patterns, reveal the random parameters
in the dataset, and investigate the influence of various factors on the injury severity of
pedestrian-involved crashes. This is achieved by utilizing pedestrian crash data from Iran,
a developing country with a considerably high rate of pedestrian casualties.

To analyze the pedestrian crash dataset, a two-step method using latent class cluster
analysis (LCA) and the mixed logit model is followed. In the first step, the LCA was
conducted to classify pedestrian crash data into homogenous clusters. Afterward, the
mixed logit model was utilized as a severity model to determine risk factors in each
sub-dataset by considering the possible remaining heterogeneity within each identified
cluster. The integrated use of the mixed logit model and cluster analysis can substantially
alleviate the limitations of both approaches and minimize the heterogeneity. To test this, the
effectiveness of the integrated model on segmentation and reduction of the heterogeneity
of pedestrian crash data was also evaluated.

Given that very few studies have been conducted on the comprehensive analysis of
pedestrian injury severity in Iran, the results of this study can be a valuable reference to
help policymakers prioritize designated investments in traffic safety. It can also assist in
executing effective strategies to decrease the high rate of pedestrian casualties.

The rest of the paper is organized as follows. In the next section, the pedestrian crash
dataset analyzed for this study is presented. Section 3 explains the methodology adopted
in this study. Results and discussion are presented in Section 4. It is then followed by the
final section, which contains conclusions and recommendations.

2. Data

The injury severities of pedestrians in traffic crashes in Mashhad were investigated
in this study. Mashhad is the second most populated city in Iran, with a population of
approximately 3 million [74]. The three-year pedestrian crash data from 2015–2017 was
obtained from the Mashhad Department of Transportation. This department is responsible
for gathering police, emergency, and forensic medicine organization crash-related reports.
The data includes crashes with fatal injuries, major injuries, minor injuries, and no injuries.
It should be noted that crashes with property damage only (no injury) were removed due
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to their very small share and potential underreporting cases. Further, crashes with missing
information were also excluded for further analysis in this study.

Finally, a total of 6215 pedestrian-involved crashes was obtained from crash data, with
3192 (51.36%) minor injury crashes, 2517 (40.5%) major injury crashes, and 506 (8.14%) fatal
crashes. The extracted data contains various factors such as pedestrian, vehicle, temporal,
environmental, roadway, and built environment characteristics. To illustrate contributing
factors and heterogeneity more efficiently, numeric variables were categorized based on
previous research experience in this field (e.g., [27–29]). An overview of variables used in
this study and descriptive statistics of the dataset are presented in Table 1.

Table 1. Descriptive analysis of the pedestrian crash dataset.

Variables Description No. of Crashes
Injury Severity (%)

Minor Major Fatal

Pedestrian crashes 6215 51.36% 40.50% 8.14%
Pedestrian characteristics
Pedestrian gender Women (ref.) 2489 55.16% 38.37% 6.47%

Men 3726 48.82% 41.92% 9.26%
Pedestrian age <15 1115 58.83% 36.95% 4.22%

15–30 (ref.) 1847 56.96% 40.44% 2.60%
30–45 1292 54.80% 39.24% 5.96%
45–65 1239 43.99% 46.17% 9.85%
>65 722 31.99% 38.64% 29.36%

Involved party characteristics
Involved vehicle type Motorcycle 1710 59.30% 36.73% 3.98%

Heavy vehicle, bus 261 21.46% 43.30% 35.25%
Minibus, van 62 17.74% 54.84% 27.42%

Pickup 210 31.90% 45.24% 22.86%
Bicycle 32 68.75% 25.00% 6.25%

Passenger car (ref.) 3940 51.32% 41.60% 7.08%
Hit and run No (ref.) 5332 54.08% 37.79% 8.12%

Yes 883 34.88% 56.85% 8.26%
Temporal characteristics
Time of crash 6–10 988 49.80% 39.27% 10.93%

10–14 1525 56.79% 38.62% 4.59%
14–18 1570 53.31% 40.51% 6.18%
18–22 1498 50.20% 43.39% 6.41%

22–6 (ref.) 634 38.64% 40.06% 21.29%
Day type Weekday(ref.) 2533 50.02% 41.33% 8.65%

Weekend 3682 52.28% 39.92% 7.79%
Environmental characteristics
Weather Adverse 506 41.90% 47.83% 10.28%

Clear (ref.) 5709 52.20% 39.85% 7.95%
Season Spring 1531 52.12% 39.91% 7.97%

Summer 1878 51.65% 40.73% 7.60%
Autumn 1540 51.33% 40.36% 8.31%

Winter (ref.) 1266 50.08% 41.00% 8.93%
Roadway and built-environment characteristics
Posted speed 40–60 km/h 2043 50.56% 41.16% 8.27%

<40 km/h 1937 55.14% 37.07% 7.80%
>60 km/h (ref.) 2235 48.81% 42.86% 8.32%

Junction No (ref.) 4588 50.00% 40.80% 9.20%
Yes 1627 55.19% 39.64% 5.16%

Traffic control None (ref.) 1792 48.05% 42.91% 9.04%
Signal 861 54.01% 40.30% 5.69%
Sign 3562 52.40% 39.33% 8.28%
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Table 1. Cont.

Variables Description No. of Crashes
Injury Severity (%)

Minor Major Fatal

Road type Divided two-way 3885 52.48% 40.18% 7.34%
Undivided two-way 1736 48.50% 41.19% 10.31%

One-way (ref.) 594 52.36% 40.57% 7.07%
Road width <20 m (ref.) 3366 49.35% 42.96% 7.69%

>20 m 2849 53.74% 37.59% 8.67%
Sidewalk No (ref.) 1956 46.27% 45.30% 8.44%

Yes 4259 53.69% 38.30% 8.01%
Vegetation No (ref.) 2750 49.60% 39.85% 10.55%

Yes 3465 52.76% 41.01% 6.23%
Park lane No (ref.) 2744 54.05% 37.76% 8.19%

Yes 3471 49.24% 42.67% 8.10%
Overpass/underpass
(in 300 m)

No (ref.) 3825 56.31% 36.24% 7.45%
Yes 2390 43.43% 47.32% 9.25%

AADT High (>30,000) 1656 52.72% 39.98% 7.31%
Medium (15,000–30,000) 1987 50.63% 42.93% 6.44%

Low (<15,000)(ref.) 2572 51.05% 38.96% 9.99%
Population density <100 person/km2 (ref.) 1164 44.16% 41.32% 14.52%

>200 person/km2 3738 54.25% 40.10% 5.64%
100–200 person/km2 1313 49.50% 40.90% 9.60%

Land use Other 1207 45.15% 41.51% 13.34%
Residential 3088 53.21% 39.73% 7.06%

Commercial (ref.) 1920 52.29% 41.09% 6.61%

3. Methodology
3.1. Latent Class Clustering Analysis

In the present study, the latent class cluster analysis (LCA) was conducted to address
the heterogeneity issue. LCA is a probability model based on the cluster analysis method
that can be considered an unsupervised learning and data mining technique due to the
unknown number and form of clusters (e.g., [63,75]). In this method, the entire dataset is
classified into exclusive latent classes, each representing specific traits of that data [30,76].
The main goal of cluster analysis is to maximize the similarity within each cluster and
minimize the similarity between clusters [77].

LCA assumes that there exists a latent categorical variable that classifies the dataset
into mutually exclusive and comprehensive subgroups [29,76,78]. In LCA, the likelihoods
of each crash to be included in different clusters are specified based on different models
developed for various values of clusters defined. After specifying the likelihood of a crash
in every cluster, the cluster with the highest probability of including that crash is labeled
as the best index cluster [29,67]. LCA has several advantages in comparison with the
conventional clustering approaches (e.g., k-means clustering). These include: (a) In latent
class clustering, there is no need to predetermine the number of clusters. Different statistical
measures can be applied to identify the optimized number of clusters [29]; (b) LCA can
handle various types of variables, including nominal, continuous, counts, and categorical
variables without a standardization process [28,63,64].

The LCA plugin for Stata developed by the Penn State methodology center is applied
to conduct latent class analysis in this study [79]. In light of Lanza and Rhoades’s [79]
study, a latent class analysis was carried out to divide the pedestrian crash dataset into
several clusters.

The LCA Stata plugin estimates two sets of parameters (γ and ρ). Gamma (γ) param-
eters are the basis for interpreting the latent classes, which are latent class membership
probabilities. Rho (ρ) parameters indicate the item-response probabilities conditional on
latent class membership. The assumption is there are C latent classes, and each crash i
consists of M crash characteristics. The vector Zi = (Zi1, . . . , ZiM) presents crash i’s response
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to M attributes. Accordingly, crash i’s attribute of characteristic m is represented by Zim,
which is a categorical variable with one possible value of 1, . . . , rm. Li = 1,2, . . . , C is crash
i’s latent class membership. The indicator function, I(Zm = rm), equals 1 if the attribute
of the characteristic m equals to rm and equals zero, otherwise. Accordingly, ρ

I(Zm=rm)
m, rm |c

indicates the likelihood that a crash has the attribute rm of characteristic m, conditional
on membership in the latent class c. γc represents the probability of membership in latent
class c. Consequently, the probability of observing a particular vector of responses is [76]:

P(Z = z) =
C

∑
c=1

γc

M

∏
m=1

Rm

∏
rm=1

ρ
I(Zm=rm)
m,rm |c (1)

Equation (1) shows how the likelihood of observing a particular vector of responses is
a function of both the probabilities of each latent class’ membership (the γ’s) and the proba-
bilities of observing each response conditional on latent class membership (the ρ’s) [78].

To fit a latent class model to a dataset, it is necessary to estimate γ and ρ param-
eters based on the data. The LCA Stata plugin estimates parameters by expectation–
maximization (EM) algorithm. This algorithm is an iterative method to find maximum
likelihood estimates of parameters in statistical models, where the model depends on
unobserved latent variables.

By using Bayes’ theorem (Equation (2)), posterior probabilities or, in other words,
classification probabilities of each crash in LCA (Equation (3)) can be obtained [78]:

P(A|B) = P(B|A)P(A)

P(B)
(2)

P(L = c|Z = z) =
(∏M

m=1 ∏Rm
rm=1 ρ

I(Zm=rm)
m,rm |c )γc

∑C
c=1 γc ∏M

m=1 ∏Rm
rm=1 ρ

I(Zm=rm)
m,rm |c

(3)

After obtaining classification probabilities, each observation could then be allocated to
the cluster with the highest probability.

However, the most appropriate number of clusters (C) is not known in LCA from the
beginning. The most appropriate number can be found by testing different models with a
different number of clusters. The assignment error of assigning a crash to a latent class can
be minimized by choosing the optimal number of clusters [78]. This number can be decided
by some methods to measure assignment accuracy. A popular method is to use information
criteria, including the Akaike information criterion (AIC), consistent Akaike information
criterion (CAIC), Bayesian information criteria (BIC), and entropy-based measures [30].

The cluster number that minimizes the score of AIC, BIC, and CAIC is considered as
the most appropriate one. It was suggested that BIC is a more reliable criterion compared to
AIC and CAIC when the data is large [80]. Furthermore, increasing the number of clusters
might not always cause information criteria to reach the lowest value [81]. So, computing
the percentage reduction in BIC values between different models is preferred [30,82].

An entropy measure ranging between 0 and 1 demonstrates the quality of the cluster-
ing solution. It is essentially a weighted average of posterior membership probabilities for
each case. Closer values of entropy to 1 indicate a better clustering [83].

3.2. Mixed Logit Model

In this study, the uncorrelated mixed logit model is conducted for the whole sample
and each sub-sample generated by LCA to identify the contributing factors and understand
their effect on pedestrian injury severity. The utility function is linear in the mixed logit
(random parameter) model with crash severity as the dependent variable. This function
determines the pedestrian severity injury level k for observation n and is defined as:

Ukn = βkXkn + εkn (4)
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where Xkn is the vector of explanatory (independent) variables, βk is the vector of estimable
parameters, which could vary among observations, εkn represents the error term and shows
the unobservable effects on severity. εkn is assumed to follow generalized extreme value
distribution [84]. Consequently, the probability of nth individual to be involved in the
severity of k can be given as follows:

Pkn =
exp(βkXkn)

∑∀k∈K exp(βkXkn)
(5)

where K represents the set of injury severity levels (in this study K = 3). In order to let
the parameters vary across individuals and capture unobserved heterogeneity, a mixing
distribution is introduced [85]:

Pkn|ϕ =
∫ exp(βkXkn)

∑∀k∈K exp(βkXkn)
f (β|ϕ)dβ (6)

f (β|ϕ) denotes the probability density function (PDF) of randomly distributed pa-
rameter β, and ϕ indicates a vector for describing parameters of the probability density
function (mean and variance).

The normal distribution is set for the density function. In a normal distribution, βi is
specified as [86]:

βk = βi + σivi, vi ∼ N(0, 1) (7)

where βi is the mean, σi is the standard deviation of the distribution, and vi is the individual-
specific heterogeneity, with mean equal to zero and standard deviation equal to one [86].
Considering the above formulation, if σi is not significantly different from zero, βk will
become equal to βi, and the variable can be considered fixed.

A simulation-based maximum likelihood distribution estimation method was carried
out for mixed logit model estimation regarding computational cost-efficiency. It has been
shown that 200 Halton draws can provide adequate distribution of draws [85]; therefore,
200 Halton draws were used for model estimation. Following previous studies (e.g., [87,88]),
a stepwise variable selection process was used. In the first step, it was considered that
variables have random effects. In the next step, the insignificant random variables (variables
with insignificant SD) were considered fixed parameters for the next run. This process
was repeated until all of the random parameters in the model had significant standard
deviations. This stepwise process was conducted for the overall sample and each of the
four clusters exclusively.

3.3. Marginal Effects

Many studies suggested that, in the case of models with multinomial severity out-
comes, estimated parameters might not illustrate the accurate association of the indepen-
dent variables on the severity [54,87,89]. The marginal effect analysis is utilized to estimate
the impact of significant explanatory variables in the mixed logit models on pedestrian
injury severity probabilities. Considering that in this study, all explanatory variables are
coded in binary form (dummy variables); marginal effects are obtained as follows:

EPkn
Xkni

= Pkn(Xkni = 1)− Pkn(Xkni = 0) (8)

The probabilities (Pkn) for the nth individual having the kth injury severity level are
calculated when X equals 1 and 0. To calculate the marginal effect of random parameter
variables, the mean value of the coefficients is applied in the utility function. By averag-
ing the marginal effects of all observations, the marginal effects for each parameter are
then estimated.
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4. Results and Discussions
4.1. Latent Class Clustering Results

Pedestrian crashes were divided into clusters by LCA using variables in Table 1. In
order to identify the most appropriate number of clusters, models with different numbers
of clusters (ranging from one to ten) were conducted. AIC, BIC, CAIC, and entropy
measures of these models are shown in Figure 1. It can be seen that all of the information
criteria decreased by an increase in the number of clusters (Figure 1). As mentioned
before, increasing the number of clusters does not necessarily minimize the information
criteria values [81], so the percentage decrease in these criteria is computed in this study.
The results indicate that the percentage difference of AIC, BIC, and CAIC declines below
1% from the four clusters. Furthermore, the entropy measure of the four clusters is 0.97,
which indicates the clear separation between clusters and satisfactory fitness of the model.
Accordingly, four clusters were selected for dividing the pedestrian crash dataset. The
number of observations is 646, 2320, 1675, and 1574 for clusters 1–4, respectively. Table 2
shows the size of each cluster.
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Table 2. Cluster summary.

Dataset Proportion of Whole Dataset Number of Observations

Cluster 1 10.39% 646
Cluster 2 37.32% 2320
Cluster 3 26.96% 1675
Cluster 4 25.33% 1574

Overall sample 100% 6215

Following previous works (e.g., [29,30,54,56,63,67]), the univariate skewed distribu-
tion of variables within clusters was calculated. The differences in variable proportions
between clusters can reveal new information and show crash patterns for each cluster.
Moreover, each cluster can be characterized and named by the skewed distribution of
certain variables [63]. For instance, if in one cluster, crashes that occurred at night are
over-represented, while the other clusters have a more balanced distribution over this
variable, one can describe this cluster as the ‘nighttime crashes’ cluster.

Important variables with an unbalanced and skewed distribution that were used
for profiling clusters are presented in Table 3. In cluster 1, 98% of crashes occurred in
commercial land uses, and 99.7% of them occurred in high-density areas. From the results,
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it can be concluded that this cluster also includes crashes in specific road characteristics.
All crashes in this cluster happened on undivided two-way roadways wider than 20 m
with vegetated buffers. So, cluster 1 can refer to crashes that occurred in the mentioned
type of road design in high-density commercial areas.

Table 3. Distribution of featured variables describing cluster characteristics.

Variables C 1 C 2 C 3 C 4 O.S.

Aged 15–30 19.81% 25.43% 44.18% 24.71% 29.72%
Motorcycle 15.79% 47.46% 18.03% 13.02% 27.51%

No traffic control 15.63% 0.26% 93.43% 7.62% 28.83%
Undivided two-way 100.00% 2.84% 59.88% 1.33% 27.93%
Road width: >20 m 100.00% 41.72% 28.12% 48.54% 45.84%

Without usable sidewalk 15.48% 12.93% 22.81% 74.59% 31.47%
Vegetated buffer 99.38% 40.91% 57.37% 58.01% 55.75%

Without park lane 49.23% 15.69% 91.82% 33.29% 44.15%
With park lane 50.77% 84.31% 8.18% 66.71% 55.85%

Near overpass/underpass 60.53% 16.72% 71.88% 25.86% 38.46%
Low AADT 32.66% 47.76% 3.22% 76.18% 41.38%

High density (>200 person/km2) 99.69% 96.29% 51.34% 0.00% 60.14%
Low density (<100 person/km2) 0.31% 0.00% 9.85% 63.34% 18.73%

Commercial land use 97.99% 24.09% 22.63% 22.17% 30.89%
Other land uses 0.00% 0.00% 20.66% 54.70% 19.42%

Note: O.S. stands for the overall sample and C1 to C4 for clusters 1 to 4.

Cluster 2 overlaps with cluster 1 on high population density, but it differs in over-
representation of motorcyclist vehicle type. Moreover, 84.31% of the crashes in cluster
2 happened in places that park lanes existed. So, considering the skewed distribution
of these three variables, this cluster can be identified as motorcycle-involved crashes in
densely populated areas on roadways with park lanes. Cluster 3 is overrepresented in
terms of young pedestrians (15–30), while other clusters have a more balanced distribu-
tion over this variable. Moreover, most crashes in this cluster occurred in places with
no traffic control. Furthermore, over 70% of crashes in this cluster happened near pedes-
trian overpasses/underpasses, and most crashes occurred in paths without park lanes.
Therefore, this cluster can be described as young pedestrian crashes near pedestrian over-
passes/underpasses with no traffic control and park lanes. Cluster 4 contains crashes that
are overrepresented in other land uses (e.g., recreational, vacant, industrial). Crashes in this
cluster mainly occurred in low-density areas. In addition, around 75% of crashes happened
in places with no usable sidewalks, and 76.2% of crashes were in low traffic volume days.
Cluster 4 can, therefore, be identified as crashes that occurred in low density, low traffic
volume, not commercial or residential land uses, in paths with no proper sidewalks.

From these results, it can be concluded that each cluster shows a certain crash pattern,
and investigating cluster characteristics can provide important information. An interesting
point here is that the trace of some hidden factors in the causation of crashes can be
perceived by focusing on the crash patterns of each cluster. For example, in cluster 3, the
trace of pedestrians’ risky behavior (violations in crossing from an inappropriate place)
can be noticed. As such, in cluster 4, the weakness of pedestrian facilities is more evident
compared to other clusters. Moreover, it can be understood that in some regions of the city
(low population density, not commercial or residential land uses, low AADT), the necessary
measures to ensure the safety of pedestrians have not been sufficiently deployed.

Profiling clusters and assigning specific crash patterns to each cluster were only
proceeded to reach a more profound perception of each cluster. This understanding can
further help to describe severity analysis results for each cluster more precisely. However, it
should be noted that the variables used to define the clusters are not necessarily associated
with the significant parameters in the crash severity model.
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4.2. Mixed Logit Models Results

In this study, the mixed logit model for whole data and all of the clusters were
conducted to explore the influence of different factors on pedestrian injury severity. These
models were developed with Nlogit software. Minor injury severity is selected as the
referent outcome category in all models. The modelling estimation results of significant
variables for all five mixed logit models are shown in Table 4, while the marginal effects
of these estimations are presented in Table A1 (see Appendix A). In Table 4, standard
deviations (SDs) show the random distribution of the variables. In correspondence with
some previous studies [28–30,63,89], a confidence level of 90% is used in the present study.
In the following sub-sections, the impact of contributing factors on pedestrian injury
severity, mainly the fatal injury, will be discussed thoroughly.

Table 4. Mixed logit estimation results for whole data and clusters.

Variables Overall Sample Cluster1 Cluster2 Cluster3 Cluster4

Severity Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Constant Major −0.17 0.40 −4.77 *** 1.71 −5.02 ** 1.96 −0.90 0.62 0.70 0.78
Fatal −3.28 ** 1.45 −2.28 * 1.28 −3.88 ** 1.56 −3.59 *** 1.03 −2.80 ** 1.37

Gender (ref. female)
Male Major 0.31 *** 0.11 0.34 ** 0.13

Fatal 0.76 ** 0.36 1.49 *** 0.54
Age (ref. 15–30)

<15 Fatal 2.27 *** 0.82 2.65 *** 0.69
SD 2.37 *** 0.71

30–45 Major 0.28 * 0.17
Fatal 2.22 ** 0.87 1.01 *** 0.39

45–65 Major 0.71 *** 0.15 1.60 ** 0.71 1.32 *** 0.48 0.51 *** 0.17
Fatal 4.25 *** 0.71 3.06 *** 1.10 3.25 *** 0.96 1.69 *** 0.39 2.19 *** 0.66

>65 Major 0.88 *** 0.20 3.78 *** 0.96 0.98 ** 0.46 0.70 ** 0.27
Fatal 4.39 *** 0.95 4.49 *** 1.28 6.08 *** 1.57 2.85 *** 0.44 4.63 *** 0.74

Vehicle (ref.
passenger car)

Motorcycle Major −0.40 *** 0.12 −0.37 ** 0.15 −0.42 ** 0.19
Fatal −1.04 ** 0.48 −2.28 ** 0.98 −1.25 ** 0.61

Heavy vehicle, bus Major 1.62 *** 0.32 1.91 ** 0.91 1.30 *** 0.39 1.24 *** 0.42
Fatal 5.89 *** 0.78 4.75 *** 1.45 2.94 *** 0.47 3.77 *** 0.67

Minibus, van Major 2.50 *** 0.66 2.69 * 1.55 1.76 * 0.93 1.79 ** 0.78
Fatal 5.47 *** 1.17 5.54 *** 2.01 3.63 *** 1.03

Pickup Major 0.79 *** 0.30 1.68 ** 0.84 0.93 *** 0.36
Fatal 3.47 *** 0.75 2.55 ** 1.01 2.24 *** 0.48 1.65 ** 0.79

Bicycle Major −1.36 * 0.79 −2.91 ** 1.46
Time (ref. 22–6)

6–10 Major −0.41 * 0.20 −0.45 * 0.24
Fatal −2.36 *** 0.59 −2.55 ** 1.27 −2.89 *** 0.92 −0.76 ** 0.38

10–14 Major −0.51 *** 0.19 3.36 ** 1.51 −0.49 ** 0.22
Fatal −3.27 *** 0.64 −3.87 *** 1.29 −3.59 *** 1.03 −1.94 *** 0.43 −1.80 *** 0.65

14–18 Major −0.38 ** 0.19 2.88 * 1.51
Fatal −4.62 *** 0.86 −3.44 ** 1.46 −3.80 *** 1.11 −1.02 *** 0.39 −2.37 *** 0.67
SD 2.87 *** 0.61

18–22 Major 3.67 ** 1.55
Fatal −2.81 *** 0.60 −2.18 * 1.12 −3.62 *** 1.07 −1.62 *** 0.40

Day type (ref. weekday)
Weekend Fatal −0.79 ** 0.34 −0.92 ** 0.38

Weather (ref. clear)
Adverse Major 0.65 *** 0.19 1.83 ** 0.79

Fatal 1.30 * 0.77 0.91 ** 0.42
Season (ref. winter)

Spring Major −1.40 * 0.77
Summer Fatal −0.67 * 0.38

Junction (ref. no)
Yes Major −1.14 *** 0.18 −0.75 *** 0.18

SD 1.94 *** 0.48
Fatal −1.15 *** 0.20 −1.97 *** 0.40 −6.43 *** 0.67

Hit and run (ref. no)
Yes Major 1.47 *** 0.21 3.58 * 1.99 3.19 ** 1.38 1.01 *** 0.18 1.19 *** 0.30

SD 3.30 *** 0.69 10.04 * 5.93 6.39 * 3.55
Fatal 1.52 *** 0.50 1.33 ** 0.65 0.90 ** 0.36 1.05 * 0.55

Posted speed (ref.
60 km/h)

40–60 km/h Major −0.31 *** 0.12 −2.30 *** 0.79 −0.35 * 0.20
Fatal −1.24 ** 0.63

<40 km/h Major −0.88 *** 0.20 −1.02 ** 0.45 −0.69 *** 0.22 −1.33 ** 0.56
SD 2.37 *** 0.65 1.71 ** 0.70 3.76 ** 1.46

Fatal −0.89 ** 0.44 −2.03 *** 0.74 −0.85 ** 0.37
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Table 4. Cont.

Variables Overall Sample Cluster1 Cluster2 Cluster3 Cluster4

Severity Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Traffic control (ref. none)
Signals Major −1.47 *** 0.30 −0.98 ** 0.49

Fatal −2.64 *** 0.49
SD 3.44 *** 1.01

Signs/Surface markings
Major −0.67 ** 0.33

SD 3.64 *** 1.04
Fatal −2.32 *** 0.74 −1.47 * 0.89
SD 2.79 *** 0.66

Road type (ref. one-way)
Divided two-way Major 1.38 * 0.71

Fatal 0.98 * 0.54 −1.32 ** 0.62
Undivided two-way Fatal 3.34 *** 0.85 5.30 *** 1.57

Road width (ref. <20 m)
>20 m Fatal 0.99 * 0.60 2.77 *** 0.66

Sidewalk (ref. no)
Yes Major −0.94 *** 0.25 −1.13 * 0.62

Fatal −1.66 *** 0.63 −1.70 ** 0.74
Vegetation (ref. no)

Yes Major 0.60 *** 0.18
Fatal −0.96 ** 0.39 −2.09 *** 0.65

Park lane (ref. no)
Yes Major 0.31 * 0.17 2.58 ** 1.01 1.61 *** 0.54

Fatal 5.08 *** 0.79
Overpass/Underpass

(ref. no)
Yes Major 1.49 *** 0.23 2.10 *** 0.68 3.23 *** 1.02 1.77 *** 0.19 1.32 *** 0.33

Fatal 1.74 *** 0.45 3.11 *** 0.85 2.23 *** 0.46 1.47 *** 0.44
AADT (ref. low)
High (>30,000) Major −1.32 ** 0.51 1.47 ** 0.63

Fatal −2.59 ** 1.11 −2.37 *** 0.67 3.93 *** 0.85
Medium (15,000–30,000) Major −0.98 * 0.51

Fatal −1.68 *** 0.50 −1.83 *** 0.61
Density (ref.

<100 person/km2

100–200 person/km2 Fatal −1.12 * 0.61 −1.35 *** 0.49 0.83 * 0.48
>200 person/km2 Fatal −0.96 ** 0.40

Land use (ref.
commercial)

Other Major 0.40 ** 0.19
Fatal 2.41 *** 0.65 0.88 * 0.50

Residential Major 1.64 ** 0.67 −0.59 * 0.31
Fatal 3.44 ** 1.38 −3.11 *** 0.76
SD 2.05 *** 0.71

Model performance
Restricted log likelihood −6827.87 −709.70 −2548.78 −1840.18 −1729.22

Log likelihood at
convergence −4572.91 −435.63 −1708.99 −1191.74 −1030.65

AIC 9327.83 969.30 3578.00 2525.50 2225.30
Pseudo r2 0.33 0.39 0.33 0.35 0.40

Note: Only significant variables shown in the table. SD = Standard deviation. S.E. = Standard error. * Significant
at 90% confidence level. ** Significant at 95% confidence level. *** Significant at 99% confidence level.

4.2.1. Pedestrian Characteristics

The results indicate that pedestrian gender significantly affects the severity in the over-
all sample and certain clusters. Based on the results in Tables 4 and A1, male pedestrians
are more likely to be involved in crashes with major injuries in the overall sample and
cluster 3. Male pedestrians are also more exposed to fatal injuries in the overall sample and
cluster 2. According to marginal effects, the probability of major injury can be increased
by 3.6% and 5.4% in the overall sample and cluster 3, respectively. The probability of fatal
injuries can be increased by 1.24% and 3.24% in the overall sample and cluster 2.

This result is in line with some previous studies [26,39,48,90,91], and it can be explained
through behavioral differences between men and women. According to previous findings,
men are more likely to engage in risky behaviors, while women have more sensitivity
toward traffic safety [92,93].

The estimation results reveal that age can significantly impact injury severities. For
pedestrians under 15 years old, there is a significant increase in fatal crash probabilities
for the overall sample and cluster 4 by 1.61% and 1.89%, respectively. This is in line with
previous findings [26,41]. This result can be justified by the weaker physical strength of this
age group compared to young adult pedestrians (15 to 30 years old). Additionally, children
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have lower risk perception and experience, which can lead to more severe crashes. For
instance, it was found that children are more likely to dart and dash into the streets [94] or
be solely at fault in crashes [47].

As reported in Table 4, it was found that in the overall sample, age under 15 has
random effects on fatal injury level. This may reflect differences in that age group and
the impact of many observed or unobserved factors on the injury outcome of this age
group. For instance, pedestrians under 15 can vary considerably in terms of factors such
as physical strength, behaviors, and risk perception. The presence of children’s parents
at the time of the crash can also affect the injury severity of this age group. This variable
has a fixed effect on all other clusters, indicating that the latent class analysis effectively
diminished the corresponding heterogeneity for this variable.

The results show that pedestrians aged 30–45 are significantly more likely to suffer
from fatal injuries in cluster 2 and cluster 3 by 1.28% and 1.32%. For pedestrians aged
between 45 and 65, a significant increase in fatal severity was observed for whole data
and clusters 1–4 by 2.43%, 3.47%, 2.33%, 2.52%, and 2.00%, respectively. Similarly, for
pedestrians aged over 65 years, the probability of fatal pedestrian crashes was increased in
whole data and clusters 1–4 (4.29%, 3.33%, 5.52%, 2.12%, and 6.02%, respectively). Similar
results have been found in many previous studies [27,28,35,42,43,90]. Although older
pedestrians are more risk-averse and have higher risk perception in roadway networks [92],
their weakened physical attributes can cause critical injuries for this age group. Physical
attributes include higher reaction time and lower elasticity of muscles and bones, leading
to more severe injuries in traffic crashes than younger pedestrians [95,96].

4.2.2. Involved Party Characteristics

As illustrated in Table 4, with regard to passenger cars, the other types of involved ve-
hicles are significantly associated with injury severity. Pedestrian crashes with motorcycles
tend to have a significantly lower probability of fatal injury severity in the overall sample
(−0.48%), cluster 1 (−1.47%), and cluster 2 (−0.62%). The lighter weight, lower speed, and
higher maneuverability of motorcycles than passenger cars lead to lower injury severities.
This justification can be applied to bicycles, which also have a lower probability of major
injuries in the overall sample and cluster 1. The estimation results of the overall sample and
clusters 2–4 showed that heavy vehicles, busses, and pickup crashes with pedestrians have
a significantly higher probability of fatal injuries than passenger cars. Similar results were
also observed for minibuses and vans in the overall sample and clusters 2 and 3. Heavier
weight and lower maneuverability endanger pedestrians to severe injuries in these types of
vehicles compared to passenger cars [35,38]. Moreover, these vehicles are more likely to
injure vital organs such as the head because of their larger dimensions and higher bumper
altitude [10,41,42].

The severity of pedestrian injuries when the driver leaves the crash scene (hit and
run) was investigated in the present study. In correspondence with previous studies, the
results confirmed that injuries are more severe when the crash is hit and run [31,40,97].
As presented in Table A1, crashes where drivers leave the crash scene without reporting
tend to have more likelihood of major injuries in the overall sample, and clusters 1–4 by
4.31%, 1.36%, 2.04%, 3.81%, and 2.63%, respectively. Furthermore, hit and run crashes have
a higher probability of fatal injuries in the overall sample and clusters 2–4 by 0.48%, 0.32%,
0.20%, and 0.21%, respectively. The reason could be that, in these types of crashes, the much-
needed crucial medical attention can be delayed [97]. This variable has a random effect
through observations specific to major injuries in the overall sample and clusters 1 and 2.
This result denotes that this parameter has unobserved heterogeneity across observations
and its effect on injury severity is not always constant. Many factors, including crash
characteristics, place of injury, distance from emergency departments, etc., can affect the
injury outcome of this crash type.
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4.2.3. Temporal Characteristics

Regarding the time of day, injury severities are higher in mid-nights (10 p.m.–6 a.m.)
than other times of the day. Marginal effects show that, in the overall sample and clusters
1–3, the probability of pedestrian involvement in fatal crashes significantly decreases when
the crash occurs at 6–10, 10–14, 14–18, and 18–22, and in cluster 4, the probability of fatal
crashes significantly decreases when the crash occurs at 10–18 (Table A1). This result is in
line with previous findings (e.g., [37,98]).

The estimation result for the time between 14–18 (evening peak) indicates that this
variable has random effects on fatal injuries in the overall sample, which specify unobserved
heterogeneity in this period. Many unobserved conditions could affect crash severity and
cause heterogeneity in observations at this time frame. For instance, at this time of the day
on weekdays, most trips are from work to home, and road users often encounter traffic
blockage; hence, factors such as fatigue and aggression can appear among some drivers,
which lead to crashes with more severe injuries [99]. Additionally, the time of traffic peak
and traffic volume can alter drastically on holidays and weekends in this period, and, as a
result, the behavior pattern of road users can also change. Moreover, sun glare can occur in
certain circumstances during this time and reduce visibility [100]. It was found that sun
glare can lead to more severe injuries in pedestrian-related crashes [101]. This variable
has a fixed effect in all other clusters, which shows the clustering method’s efficacy in
eliminating the heterogeneity for this variable.

It was found that injury severity can be affected by the type of day. As reported in
Table A1, weekend crashes have a significantly lower probability of fatal injuries than
weekday crashes by −0.72% in the overall sample and −2.01% in cluster 4. The differences
in trip characteristics between weekdays and weekends may explain this result. On
weekdays, trips are often commuting, while trips on weekends are usually related to
recreational purposes. Previous findings denote that commuter trips are expected to be
followed by drowsiness and inattentiveness, which may cause severe accidents [102,103].
Unlike weekdays, trips are usually for shopping or entertainment and away from stress
and fatigue after work on weekends. In addition, on weekends, pedestrians usually spend
time in recreational areas (such as parks, malls), and, in these places, where pedestrian
activity is high, the traffic speed is lower. A similar result was also observed in previous
studies [10,49].

4.2.4. Environmental Characteristics

With regard to the weather condition, the results imply that, when the crash occurs in
adverse weather, the likelihood of major injuries significantly increases in the overall sample
and cluster 2 (marginal effects being 0.97% and 1.16%, respectively). Similarly, adverse
weather can significantly increase the probability of fatal injuries in clusters 2 and 3 by
0.24% and 0.57%, respectively. Furthermore, investigating the effect of seasonal changes
shows an association between this variable and pedestrian injury severity. Compared to
crashes in winter, crashes in spring significantly decrease the probability of major injuries in
cluster 1 by−3.08%. Furthermore, crashes in summer can significantly lower the probability
of fatal crashes in cluster 3 by −0.96%.

The result is in line with previous studies, which confirm that the risk of severe and
fatal injuries increases in winter [28,41]. Poor weather conditions can decrease visibility
and pavement friction. Moreover, pedestrians can underestimate the vehicle speed in rainy
weather [104]. Therefore, these aggravating factors can reduce the ability to appropriately
react in dangerous situations and increase crash injury severity. This result is reasonable
because Mashhad has the highest precipitation rate and the highest number of days with
adverse weather in winter [105].

4.2.5. Roadway and Built-Environment Characteristics

Based on the modelling results, posted speed is associated with pedestrian injury
severity. Compared to the reference category (>60 km/h), crashes that occurred in roadways
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with the 40–60 km/h speed limit can decrease the probability of major crashes in the overall
sample, cluster 1, and cluster 4 by −2.87%, −9.18%, and −1.76%, respectively, and decrease
the probability of fatal crashes by −1.16% in cluster 2. For speed limits below 40 km/h,
the probability of major injuries decreased in the overall sample and clusters 2−4 by
−2.61%, −2.52%, −2.85%, and −0.17%, respectively. Moreover, a posted speed below
40 km/h can decrease the probability of fatal injuries in the overall sample, cluster 2, and
cluster 3 (marginal effects being −0.40%, −1.26%, and −0.95%, respectively). Previous
international findings support this finding [26,27,37,38,61,95,106–108]. This result was
expected because even a slight increase in speed can result in longer stopping distance, less
decision time, less control on vehicles, and much more intense kinematic energy [106].

According to Table 4, for the speed limit below 40 km/h, there is a random effect on
fatal crashes in the overall sample analysis. Moradi et al. [109] showed that drivers in Iran
are far more likely to exceed the speed limit in the roadways with the lowest posted speed.
This risky behavior could be an unobserved factor that can alter injury severities in areas
with low posted speed and cause heterogeneity for this variable. Other factors such as the
path’s geometry (e.g., slope, curvature) can also change the severity of crashes at this speed.
As illustrated in Table 4, this variable has fixed effects in all other clusters, confirming that
the clustering analysis explicitly eliminated this variable’s heterogeneity.

The results show that pedestrian crashes at midblock tend to generate more severe
injuries than crashes at the junction of two or more paths. Crashes at junctions can decrease
the probability of fatal crashes in the overall sample and clusters 3 and 4 by−3.44%,−8.21%,
and −13.23%, respectively. This result aligns with previous studies [26–28,110]. The result
was expected since drivers are more likely to reduce speed and pay more attention when
they are in the vicinity of an intersection [10,28]. As shown in Table 4, this variable was
found to have random effects across observations in the overall sample, specific to major
injury severity. Various elements, such as junction geometry, presence of parked cars near
the junction, lack of proper walkway and median at the junction, type of traffic control, and
violation of the right of way and red-light, can affect pedestrian crashes and cause random
effects for intersection crashes.

Based on marginal effects reported in Table A1, the presence of traffic signals can
significantly reduce the probability of fatal crashes by −2.72% in the overall sample and
can lower the probability of major injuries in the whole data and cluster 4 (by −2.31% and
−1.58%, respectively). In the presence of traffic signs and/or surface markings (crosswalks),
crashes tend to have a lower probability of fatal crashes in the overall sample and cluster
2 (marginal effects being −0.46% and −0.99%). Similar findings could be found in the
study by Pour-Rouholamin and Zhou [96] that the presence of traffic control and crossing
at crosswalks are associated with lower probabilities of severe injuries.

The variable traffic signal is a random parameter specific to the fatal severity level
in the overall sample. Factors such as pedestrian crossing volume, traffic volume, and
proximity of crossings to schools, bus stops, or subway stations can increase the pedestrian
crash risk [106,111]. Moreover, risky behaviors such as pedestrian and driver red-light
violations can influence pedestrian injury severity in signalized intersections [112].

Furthermore, the variable traffic sign also has a random effect on both major and
fatal severities. Similar to signalized crossing, unobserved factors, such as traffic volume,
pedestrian crossing volume, vicinity of crossings to school zones, bus stops, or other
facilities, can affect crash risk. In these types of crossings, ignoring the right of way can also
increase injury severities. Additionally, the severity of crashes in this type of traffic control
can vary depending on the crash location (midblock crossing or intersection crossing).
These variables are fixed on other clusters, which show that the random effects of these
variables are minimized by clustering.

The severity analysis for road type shows that, compared to one-way roadways,
divided two-way have a significantly higher probability of fatal injuries in the overall
sample by 1.52%. This result was not expected because the medians are supposed to be
a refuge for pedestrians. However, several studies have confirmed it [96,113]. This result



Sustainability 2023, 15, 185 16 of 29

shows that, because the overall sample is highly aggregated, many other factors can also
affect injuries besides the median presence in this type of roadway. For instance, the median
is generally utilized in roadways with higher speeds [96,113] or places with a higher volume
of a pedestrian crossing. This leads to a higher risk of severe injuries when a crash occurs.
However, the contradictory result can be seen in cluster 3. In this cluster, the probability of
fatal crashes in divided roadways decreases by −3.09%. This result reveals the advantage
of LCA in describing the crash data and illuminating the hidden effect of some factors
by maximizing the heterogeneity between clusters. As discussed above, for this type of
roadway in the overall sample, the aggregation of other aggravating factors (such as speed
and volume) made the effect of median existence inconspicuous. The explanation here
could be the vicinity of crashes in this cluster to pedestrian overpasses that are usually built
on roadways with higher speed and higher pedestrian crossing demand. Therefore, the
changes in pedestrian volume and vehicle’s speed are largely restricted in this cluster, and
the impact of the median’s presence can be seen more clearly.

According to obtained results, undivided two-way roadways can increase the prob-
ability of fatal crashes in the overall sample and cluster 4 by 2.42% and 0.74%. Similar
results were found by Zhai et al. [44]. The more complex traffic pattern in two-way paths
can raise the chance of interaction between vehicles and pedestrians and may also increase
pedestrian lapse or distraction, which can explain this finding [114].

Road width is associated with pedestrian injury severity. Accordingly, in roadways
wider than 20 m, there is an increase in the probability of fatal crashes in cluster 2 (0.96%),
and cluster 3 (4.79%). This result is supported by previous articles, which suggest that an
increase in the number of lanes can increase the risk of more severe crashes [26,28,37,96].
Designing wider roadways is linked with higher vehicular demand and higher speed. Ad-
ditionally, wider roadways need extra time to cross, raising the risk of crash for pedestrians,
especially older ones [96,115]. Moreover, the chance of improper crossing increases in
wider roadways [45].

The presence of usable sidewalks can significantly decrease the risk of major injuries
by −8.71% and −14.01% and decrease the risk of fatal injuries by −2.34% and −2.87% in
the overall sample and cluster 4. Researchers have reported similar results in previous
articles [23,61,116]. The lack of essential facilities for pedestrians, such as sidewalks, forces
pedestrians to use the street for walking, which can increase the risk of crashes.

In the present study, the influence of vegetated buffers in sideways or medians on
pedestrians’ injury severity was examined. Vegetated buffers can decrease the probability
of fatal crashes in the overall sample and cluster 2 by −0.86% and −2.4%. In Iran, vege-
tation is often set up in places with better infrastructure for pedestrians and a safer road
system, which may explain the lower injury severity of crashes that occur in roadways with
vegetation. As suggested by Hanson et al. [116], pedestrian crash injuries were reduced
by providing proper walkways and buffers. Increasing walkability by providing a safe
walking environment through appropriate pedestrian facilities is an essential policy to re-
duce traffic casualties in modern urban design [116]. However, unexpectedly, the vegetated
buffer can increase the risk of major injuries by 9.27% in cluster 3. This opposite result can
be explained by possible visibility obstruction caused by vegetation in certain situations.
According to some of the specifications of cluster 3 (vicinity to pedestrian bridges, no
traffic signal), it can be concluded that this cluster includes routes that are not adapted
for pedestrians. Therefore, vegetation in areas that are not pedestrian-friendly can act
as a visibility obstruction for drivers and cause more severe injuries when pedestrians
are involved in crashes. In line with this conclusion, Yue et al. [117] also suggested that
vegetation in sidewalks or medians can prevent drivers from seeing pedestrians in time.

The effect of the park lane presence was explored in the severity analysis. It can
be observed from Table A1 that the presence of parking lanes can significantly increase
the probability of major injuries in the overall sample, cluster 2, and cluster 3 by 4.03%,
13.34%, and 0.38%. The presence of parking lanes can significantly increase the risk of
fatal injuries in cluster 3 by 1.92%. Parking lanes can be considered as temporary visibility
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obstructions [117]. Accordingly, parked cars can cause drivers not to notice pedestrians
until the last moment in certain situations.

Since there are few studies about visibility obstructions, it is recommended that further
studies in this area explore the association of visibility obstructions, such as vegetation and
park lanes, with pedestrian severity.

In Iran, constructing pedestrian bridges or underpasses is a common precautionary
measure to increase safety in places with high pedestrian casualties. Accordingly, the
number of pedestrian bridges in cities of Iran is relatively high and can be a burden for
a developing country, considering the high cost of building these facilities. For instance,
there are around 200 overpasses/underpasses constructed near pedestrian crash hotspots
throughout the city of Mashhad.

Unfortunately, despite all these efforts, the number of crashes near pedestrian bridges
is still high and thought-provoking. Therefore, the effect of the vicinity on pedestrian
overpass/underpasses (300 m), which can be an influential variable considering the urban
environment of Iran, was explored in this study. Estimation results show that crashes in the
vicinity of pedestrian overpasses/underpasses are strongly associated with more severe
injury for pedestrians. For major injuries, vicinity to pedestrian bridges or underpasses
can increase the probabilities in the overall sample and clusters 1–4 by 13.87%, 14.48%,
5.63%, 20.14%, and 5.82%, respectively. This factor can also significantly increase the
probability of fatal injuries in the overall sample and clusters 2–4 by 1.10%, 1.62%, 3.62%,
and 0.86%, respectively.

At first glance, this result may seem contradictory, considering that these facilities were
constructed to provide a safer environment for pedestrians. The potency of these facilities
depends on the pedestrians’ compliance with using them [118]. Many people may take risks
and cross the main road to avoid the extra effort of using bridges or underpasses [119]. This
decision can expose pedestrians, especially older ones, who may find it more challenging
to use the stairs, to a high risk of crashes.

Therefore, to confront this issue and decrease the risk of crashes, there is a need to
take extra preventive measures along with building pedestrian overpasses/underpasses.
These countermeasures include changes in the geometry of the road environment, such
as channelizing and segregating sidewalks from the main road by using barriers or fences
and utilizing ramps and escalators for the convenient use of the elderly or physically
disabled pedestrians. Likewise, informing people about the importance of using safe cross-
ings through targeted educational campaigns and applying more attractive and engaging
designs to encourage pedestrians to use them may also influence pedestrians to use the
overpasses or underpasses. Additionally, it is important to prevent possible breakdowns of
these facilities through constant maintenance and monitoring. In some situations, other
preventive solutions such as traffic calming, may be even more efficient than construct-
ing an expensive overpass or underpass, so safety agencies and experts should evaluate
different preventive scenarios beforehand.

Despite the importance of this facility, particularly in developing countries, its effect
on pedestrian crashes has not been sufficiently investigated in previous studies of this field.
Therefore, it is suggested that future studies investigate this effect more precisely.

Traffic characteristics such as traffic volumes can strongly affect pedestrian injuries in
crashes [31]. The time variable, which was investigated earlier in this study, provided a
helpful perception of the influence of temporal changes in traffic volumes on pedestrian
crash severities. In order to explore the effect of traffic volume on pedestrian injury
severities more profoundly, roadways’ annual average daily traffic (AADT) was obtained
from the Mashhad transportation department and allocated to each crash location for
further analysis. The severity analysis shows that, compared to low AADT, pedestrian
crashes that occurred in roadways with medium AADT tend to have a significantly lower
likelihood of fatal injuries by −0.78% in the overall sample and −4.17% in cluster 3. For
high AADT, the influence on injury severity is varied between clusters. This variable
can decrease the likelihood of fatal injuries in clusters 2 and 3 by −1.01% and −4.13%,
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respectively, and increase the likelihood of fatal injuries in cluster 4 by 1.25%. It was found
in previous literature that higher volume can increase the frequency and risk of pedestrian–
vehicle crashes [22,120]. However, for injury severity, opposing results were reported by
previous studies, and the effect of higher traffic volumes was found to both aggravate [121]
and alleviate [97] pedestrian injury severities.

The explanation could be that, in higher volumes, vehicle speed is lower. Moreover,
when traffic volume is high, pedestrians tend to be more alert and cross the road more
cautiously [122]. For instance, in cluster 3, considering some of the characteristics such
as no traffic control or vicinity to the pedestrian bridge, pedestrians are probably aware
that they are crossing from the wrong and high-risk place. Therefore, with the increase in
passing vehicles, pedestrians are extra careful in crossing the street. Careful crossing, along
with the slower speed of vehicles, can lead to lower injury severities of pedestrian–vehicle
crashes, as observed in cluster 3. However, this effect is the opposite in cluster 4. In this
cluster, most crashes occurred in places with no proper sidewalks. Therefore, a lack of
sidewalks can lead to improper crossing and lapses, and, considering the higher number of
cars, the risk of severe crashes can increase. Additionally, in high traffic volumes, drivers
may use the sides of the roadway and shoulder to overtake and may hit the pedestrians
standing or walking at the side of the roadway. This difference in the direction of estimation
results shows that, depending on the situation, the impact of traffic volume can be very
inconsistent, and many unobserved and observed factors (such as pedestrian volume, road
geometry, traffic violations) can affect traffic volume impact on injury severities.

The city of Mashhad comprises 13 municipal districts. Demographic information
is available for each district. In this study, the population density was assigned to each
observation according to the district where the crash occurred. The results indicate that,
compared to crashes in low population density areas, areas with medium population
density (100–200 person/km2) have a lower probability of fatal injuries in the overall sample
and cluster 3 by −0.39% and −2.12%. Likewise, crashes in areas with high population
density (>200 person/km2) have a lower probability of fatal injuries in cluster 3 by −2.15%.
A similar result was also obtained in previous studies [29,52,123]. The population and
population density were considered a surrogate for pedestrian exposure and activity
in many studies (e.g., [22,24,124]). Accordingly, it can be assumed that higher density
represents higher pedestrian activity. In places with higher pedestrian activity, drivers are
more cautious and drive slower, which may explain the lower injury severity in places with
higher density.

However, a different result was estimated in cluster 4, which indicates that crashes
in medium-density areas have a higher likelihood of fatal injuries by 1.55% than those in
low-density areas. Lack of sidewalks and low volume roadways, which lead to higher
speeds, can explain the result for this cluster. This shows that higher pedestrian activity in
places with inadequate pedestrian facilities can lead to more severe injuries in pedestrian–
vehicle crashes.

It has been found that land use can significantly impact pedestrian injury severities
in crashes [27,28,38,43,114]. In this study, Mashhad land uses were classified into three
categories of residential, commercial, and other (e.g., recreational, industrial, vacant). Each
crash was then assigned to one of these categories according to the adjacent land use to
the crash location. Marginal effect analysis indicates that crashes in residential land use
have a higher likelihood of major injuries in cluster 2 by 13.85% and a higher likelihood of
fatal injuries in cluster 1 by 0.83%. Similarly, crashes in other land uses (e.g., recreational,
industrial, vacant) have a significantly higher likelihood of major and fatal injuries by
0.97% and 1.72% in the overall sample and a significantly higher probability of fatal injuries
(1.56%) in cluster 3.

Compared to residential and other land uses, in areas with commercial land use,
pedestrian activity is higher, and, accordingly, drivers are more careful, and traffic speed is
slower. Furthermore, lack of parking space, mainly for commercial land use, is always a
problem in populated cities of Iran. Therefore, the lack of parking space causes more traffic
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near commercial areas, which reduces vehicle speeds. Additionally, commercial areas
benefit from better lighting condition at night, which provides better visibility for drivers.

However, these justifications can be highly affected by other factors, including road
geometry, time of day, day type, quality of pedestrian facilities, type of travel (commuter
or not), and so on. As we can see in cluster 4, crashes in residential areas, tend to have a
significantly lower likelihood of major and fatal injuries by−1.53% and−2.58%. In addition,
this variable is found to have a random effect specific to fatal injuries in this cluster.

4.3. Model Evaluation

Besides investigating the factors affecting pedestrian-involved crash severity, one
of the objectives of this study was to evaluate the effectiveness of the performed model
on segmentation and reduce the heterogeneity of pedestrian crash data. Reviewing and
comparing the results of the models conducted on the overall sample and each cluster
revealed some important observations that will be discussed in this section. Table A2 (see
Appendix A) summarizes the differences between the two-step approach and the single
mixed logit model.

The following information about contributing variables of each cluster can be per-
ceived from this table: (a) The case that variable effect is significant in both overall and
the cluster model, (b) the case that variable effect is just significant in the cluster model,
(c) The case that variable effect in the cluster is opposite in the overall sample, (d) The case
that variable effect is random in the overall sample and fixed in the cluster (e) The case
that variable effect is fixed in the overall sample and random in the cluster. Cases a, b, and
c have been shown in previous studies (e.g., [28–30,67]). Additionally, cases d and e are
observed in the articles of Chang et al. [67] and Li et al. [86].

As illustrated in Table A2, some variables that are not significant in the pooled data
model are significant in cluster-based models. These results confirm this assumption
that some significant relations can be obscured because of the heterogeneous nature of
crash datasets [63]. Moreover, the results of each model have some differences in terms
of variables’ impact on injury severity levels, which implies that variables’ impact can be
changed in different or even opposite specific crash patterns.

In addition, while some variables have random effects in the overall sample, their
effect is fixed in segmented data. These results indicate that clustering eliminated the
heterogeneity that caused random effects in the whole data. Furthermore, the clustering
analysis reduced the heterogeneity of crash data, but some variables with random effects
can still be observed in sub-datasets. This finding suggests that unobserved heterogeneity
can still exist within each sub-dataset even after clustering, which shows the importance of
using mixed logit after clustering analysis.

Other than the above explanations, comparing goodness of fit measures indicates that
the proposed two-step approach performed better than the single mixed logit model in
terms of AIC and log-likelihood values (Table 4).

Overall, it can be said that the approach used in this study can appropriately minimize
the heterogeneity and provide more information about the contributing factors. It is
robust, considering that many unobserved factors can impact the outcome in such datasets.
Therefore, it provides a more reliable insight into the cause of crashes, and, accordingly,
effective strategies and policies can be implemented to reduce casualties in traffic crashes.

5. Conclusions and Recommendations

Pedestrians are the most vulnerable road users, and the high rate of severe injuries and
fatalities in pedestrian-involved crashes made pedestrian safety a public health concern.
Therefore, many researchers have attempted to understand the contributing factors to
pedestrian injury severities. However, considering the high number of pedestrian casualties
in developing countries, the number of studies in this field is insufficient, mainly due to
the lack of comprehensive and detailed data. Therefore, there is a need to conduct a
comprehensive analysis of pedestrian injury severity in developing countries.
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The present study explores the interaction between pedestrian injury severities and a
rich set of determinants representing the environment, demographics, geometric design,
traffic, pedestrian, and involved vehicle characteristics. Moreover, this study investigates
some variables that have been less accounted for in previous studies (e.g., the vicinity to
overpasses, the existence of vegetated buffers, and park lanes). Investigating the effect of
these variables helps to better understand the road traffic interactions in an environment
such as the urban context of Iran.

For this purpose, a two-step approach by combining latent class clustering analysis and
the mixed logit model was carried out. Subsequently, the performance of this approach was
compared with the single mixed logit model on the overall sample. The results indicated
that this method could reduce the heterogeneity in pedestrian crash data to a great extent.
Furthermore, several contributing factors were found to have an impact on the probability
of injury outcomes in pedestrian-involved crashes. Recognizing the underlying risk factors
and understanding their interaction in pedestrian-involved crashes is very important
from a practical viewpoint. Moreover, categorizing the data and determining the random
parameters led to a deeper understanding of the unseen factors and hidden relationships.
The robust approach provides reliable information for authorities in policy implications and
road safety agencies to enhance pedestrian safety with more effective countermeasures.

The findings from the study can assist authorities in developing specific strategies and
action plans to reduce pedestrian-involved crashes and improve the safety of pedestrians.
For example, certain promotional campaigns and educational interventions could be imple-
mented to increase awareness about traffic safety among pedestrians who are more prone
to severe crashes, such as male pedestrians and children. Furthermore, the results indicate
that the urban environment is not properly adapted for older pedestrians. Therefore, ac-
tions such as installing pedestrian signal countdowns [27], constructing medians in wide
crossings, and improving sidewalk conditions should be deployed to increase the safety of
this vulnerable group in the urban environment.

The educational campaigns could also target drivers of certain vehicles, such as
heavy vehicles, buses, and pickups, to make them more cautious and decrease their risky
behaviors. Furthermore, the exposure of pedestrians to heavy vehicles should be reduced
as much as possible [27,28]. For this purpose, heavy vehicles movement could be restricted
in certain areas and periods of time with high pedestrian activity. Additionally, increasing
the safety of bus routes for pedestrians, providing safe access to bus stops, and using safer
buses can reduce the risk of pedestrian–bus crashes.

Furthermore, providing consistent street lighting, especially at midnight in paths with
poor lighting conditions, can reduce the severity of crashes by enhancing visibility in dark
hours and adverse weather [10,28].

The higher injury severities in roadways with higher posted speeds reveal the im-
portance of speed reduction and traffic calming policies, especially in places with high
pedestrian activity and near crossings. Improving geometric design by installing facilities
such as chicanes and refuge islands or even reducing the speed limit in these areas could
result in lower injury severities.

In addition, as explained in the discussion section, the random effect of posted speed
lower than 40 km/h could show a possibility of speed violation in certain areas, especially
in paths with the lowest speed limits. Therefore, appropriate measures must be taken to
prevent this violation, such as educational and training campaigns for delinquent drivers
and stricter law enforcement and monitoring.

Crossing in places with no traffic control could lead to more severe injuries. By
warning pedestrians about the dangers of crossing from places with no traffic control,
they can be encouraged to cross from safer places. Furthermore, increasing the number
of crosswalks in midblock with high crossing demand is one of the preventive actions in
this regard. Moreover, restricting pedestrians from crossing in roadway sections with no
traffic controls (e.g., installing barriers or fencing) can reduce the number of casualties
caused by crossing from places with no traffic control. Moreover, it is recommended that
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authorities install signs and marked crosswalks or, if possible, signals at junctions with no
traffic control. Additionally, as the random effect of signal control was observed in this
study, policies and measures should be employed to prevent pedestrians and drivers from
red-light violations.

According to the results, the safety of unseparated two-way roadways and wide
roadways should be increased with geometric corrections such as constructing raised
medians or refugee islands and reducing the roadway width in the vicinity of crossing
points. The absence of usable sidewalks plays a vital role in increasing pedestrian accidents.
Therefore, installation of sidewalks in places without them, increasing the width of narrow
sidewalks, complete segregation of the sidewalks from the roadway by installing sidewalk
buffers, and proper paving of sidewalks are the measure that can considerably reduce the
severity of accidents [23,116].

Drivers’ inadequate information about subsequent legal consequences of crashes could
push their decision to leave the crash scene. In dealing with hit and run crashes, increasing
awareness of drivers through targeted educational campaigns could effectively decrease
this type of crash [125].

Regarding pedestrian overpasses/underpasses, some strategies, such as restricting
access to the roadway by fencing, utilizing ramps and escalators, etc., can be implemented.
It was found that the existence of parking lanes could increase the risk of more severe
injuries. Therefore, removing the parking space in places that cause sight obstruction,
especially near the midblock crossing locations and intersections, and replacing it with
curb extensions can provide a better sightline for both pedestrians and drivers and shorten
pedestrians’ crossing distance. Additionally, the results showed that, in certain situations,
the presence of vegetation could increase injury severities, so in places where vegetation
restricts vision, the plants should be relocated or pruned.

Overall, this study presented some insightful results concerning pedestrian crashes in
a developing country such as Iran. These findings can act as a resource for employing safety
strategies by policymakers to reduce pedestrian casualties. However, some limitations
exist in this research, which is related to the crash database. The impact of some factors,
such as driver characteristics, was not considered in this study due to the unavailability
of these factors in the pedestrian crash dataset. The possibility of under-reporting cases
for crashes with minor injury severities is another limitation. Moreover, future studies can
use correlated random parameter models to investigate pedestrian crash injury severities.
Using correlated RPL models with clustering analysis may provide a deep understanding
of how some combinations can influence pedestrian safety. Furthermore, future research
can focus on temporal correlations or temporal instabilities for investigating pedestrian
injury severities as they could provide insight into the time trend of crashes over time.
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Appendix A

Table A1. Marginal effects of all models.

Variables Sev. O.S. (%) C1 (%) C2 (%) C3 (%) C4 (%)

Gender (ref. women) Men Min. −4.85 −1.19 −6.02
Maj. 3.61 −2.06 5.40
Fat. 1.24 3.24 0.62

Age (ref. 15–30) <15 Min. −0.51 −1.53
Maj. −1.09 −0.36
Fat. 1.61 1.89

30–45 Min. −0.08 −2.30
Maj. −1.20 0.96
Fat. 1.28 1.32

45–65 Min. −4.29 −5.72 −4.44 −3.69 −1.74
Maj. 1.87 2.27 2.12 1.17 −0.26
Fat. 2.43 3.47 2.33 2.52 2.00

>65 Min. −5.38 −5.36 −6.45 −3.18 −3.50
Maj. 1.08 2.03 0.93 1.07 −2.52
Fat. 4.29 3.33 5.52 2.12 6.02

Vehicle (ref. passenger car) Motorcycle Min. 2.66 1.52 1.61 2.39 1.76
Maj. −2.17 −0.03 −0.99 −2.12 −2.15
Fat. −0.48 −1.49 −0.62 −0.27 0.39

Heavy vehicle, bus Min. −1.87 −1.14 −1.31 −1.59
Maj. 0.23 0.08 −0.59 0.03
Fat. 1.64 1.07 1.89 1.55

Minibus, van Min. −0.88 −0.35 −0.31 −0.50
Maj. 0.22 0.03 −0.11 0.47
Fat. 0.66 0.30 0.42 0.03

Pickup Min. −0.76 −0.90 −1.04 −0.24
Maj. 0.22 0.50 −0.08 −0.23
Fat. 0.54 0.41 1.11 0.45

Bicycle Min. 0.09 0.44
Maj. −0.33 −0.42
Fat. 0.24 −0.02

Crash time (ref. 22–6) 6–10 Min. 1.93 −0.95 1.70 2.07
Maj. −1.11 4.17 −0.03 −1.37
Fat. −0.82 −3.23 −1.67 −0.71

10–14 Min. 3.60 −7.85 3.18 3.63 1.83
Maj. −2.53 9.93 −1.01 −2.06 −0.45
Fat. −1.08 −2.09 −2.18 −1.58 −1.38

14–18 Min. 2.93 −5.58 2.69 1.61 0.36
Maj. −1.59 8.33 −0.23 −0.44 1.83
Fat. −1.34 −2.75 −2.46 −1.17 −2.19

18–22 Min. 1.37 −7.88 0.48 2.94
Maj. −0.19 10.70 1.67 −1.34
Fat. −1.18 −2.82 −2.15 −1.61

Day type (ref. weekday) Weekend Min. 2.47 3.83
Maj. −1.75 −1.82
Fat. −0.72 −2.01

Weather (ref. clear) Adverse Min. −1.36 −1.40 −0.80
Maj. 0.97 1.16 0.23
Fat. 0.40 0.24 0.57

Season (ref. winter) Spring Min. 3.95
Maj. −3.08
Fat. −0.86

Summer Min. 1.14
Maj. −0.18
Fat. −0.96
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Table A1. Cont.

Variables Sev. O.S. (%) C1 (%) C2 (%) C3 (%) C4 (%)

Junction (ref. no) Yes Min. 5.11 16.14 19.88
Maj. −1.67 −7.94 −6.65
Fat. −3.44 −8.21 −13.23

Hit and run (ref. no) Yes Min. −4.79 −1.58 −2.37 −3.99 −2.84
Maj. 4.31 1.36 2.04 3.81 2.63
Fat. 0.48 0.21 0.32 0.20 0.21

Posted speed (ref.
60 km/h)

40–60 km/h Min. 2.53 7.67 1.94 1.14
Maj. −2.87 −9.18 −0.77 −1.76
Fat. 0.36 1.52 −1.16 0.62

<40 km/h Min. 3.01 3.78 3.80 0.63
Maj. −2.61 −2.52 −2.85 −0.17
Fat. −0.40 −1.26 −0.95 −0.45

Traffic control (ref. none) Signal Min. 5.02 1.53
Maj. −2.31 −1.58
Fat. −2.72 0.05

Signs and surface
marking Min. 0.23 1.37

Maj. 0.25 −0.36
Fat. −0.46 −0.99

Road type (ref. one-way) Divided two-way Min. −3.39 −10.53 −0.86
Maj. 1.87 11.79 3.95
Fat. 1.52 −1.26 −3.09

Undivided two-way Min. −0.47 −0.30
Maj. −1.95 −0.44
Fat. 2.42 0.74

Road width (ref. <20 m) >20m Min. −5.12 −4.62
Maj. 4.16 −0.17
Fat. 0.96 4.79

Sidewalk (ref. no) Yes Min. 11.04 16.89
Maj. −8.71 −14.01
Fat. −2.34 −2.87

Vegetation (ref. no) Yes Min. 1.29 4.70 −9.00
Maj. −0.43 −2.30 9.27
Fat. −0.86 −2.40 −0.26

Park lane (ref. no) Yes Min. −3.51 −13.26 −2.30
Maj. 4.03 13.34 0.38
Fat. −0.52 −0.08 1.92

Overpass/underpass
(ref. no)

Yes Min. −14.97 −13.13 −7.23 −23.77 −6.68
Maj. 13.87 14.48 5.63 20.14 5.82
Fat. 1.10 −1.35 1.62 3.62 0.86

AADT (ref. low) High (>30,000) Min. 3.53 17.13 −0.92
Maj. −2.52 −13.01 −0.35
Fat. −1.01 −4.13 1.25

Medium
(15,000–30,000) Min. 2.09 14.84

Maj. −1.31 −10.67
Fat. −0.78 −4.17

Population density (ref.
<100 person/km2)

100−200 Min. 0.11 4.52 −2.48
Maj. 0.28 −2.39 0.92
Fat. −0.39 −2.12 1.55

>200 Min. 3.65
Maj. −1.52
Fat. −2.15
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Table A1. Cont.

Variables Sev. O.S. (%) C1 (%) C2 (%) C3 (%) C4 (%)

Land use (ref. commercial) Other Min. −2.68 0.50
Maj. 0.97 −2.06
Fat. 1.72 1.56

Residential Min. −0.95 −14.88 4.13
Maj. 0.12 13.85 −1.53
Fat. 0.83 1.04 −2.58

Table A2. Summary of significant variables in each cluster.

Cluster #
Effect on

Probability
Major Injuries Fatal Injuries

Significant in Both Overall
and Cluster Models

Significant Just in
Cluster Models

Significant in Both Overall
and Cluster Models

Significant Just in
Cluster Models

Cluster1 Increase Aged 45–65; aged > 65; crash
time 10–14 *; 14–18 *; hit and
run; near overpass

Crash time 18–22 Aged 45–65; aged > 65 Residential

Decrease Bicycle; posted speed
40–60 km/h

Spring Motorcycle; crash time at 6–10;
crash time 6–10; 10–14;
14–18 **; 18–22

Cluster2 Increase Aged 45–65; aged >65; heavy
vehicle, bus; minibus, van;
pickup; hit and run; with park
lane; near overpass;
adverse weather

Divided two-way;
residential

Men; aged 45–65; aged > 65;
heavy vehicle, bus; minibus,
van; pickup; hit and run;
near overpass

Aged 30–45;
road width > 20 m;
adverse weather

Decrease Posted speed < 40 km/h ** Motorcycle; crash time at 6–10;
10–14; 14–18 **; 18–22; posted
speed < 40; control with signs
and surface markings **; with
vegetated buffer

Posted speed 40–60;
high AADT

Cluster3 Increase Men; aged 45–65; >65; heavy
vehicle, bus; minibus, van;
pickup; hit and run **; with
park lane; near overpass

Aged 30–45; with
vegetated buffer

Aged 45–65; aged > 65; heavy
vehicle, bus; minibus, van;
pickup; hit and run; near
overpass; other land uses

Aged 30–45;
road width > 20 m;
with park lane;
adverse weather

Decrease Motorcycle; crash time at 6–10;
10–14; at junction **; posted
speed < 40 km/h

Medium AADT;
high AADT

Crash time at 6–10; 10–14;
14–18 **; 18–22; at junction;
posted speed < 40 km/h;
divided two-way *; medium
AADT; medium density

Summer; high AADT;
high density

Cluster4 Increase Heavy vehicle, bus; minibus,
van; hit and run **;
near overpass

High AADT Aged < 15 **; 45–65; >65; heavy
vehicle, bus; pickup; hit and
run; undivided two-way;
near overpasses;
medium density *

High AADT

Decrease Motorcycle; posted speed
40–60 km/h; <40 km/h;
control with signals;
with sidewalk

Residential Crash time at 10–14; 14–18 **;
weekend; at junction;
with sidewalk

Residential ***

* Variable effect is opposite in the overall sample. ** Variable is random in the overall sample and fixed in the
cluster. *** Variable is fixed in the overall sample and random in the cluster.
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