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Abstract: This study systematically analyzes the impact of China’s maize Green Total Factor Produc-
tivity (GTFP) and mechanization on GTFP, providing a reference for reasonably playing the role of
mechanization and improving China’s agricultural GTFP. Based on the difference in crop types and
regional applicability of agricultural mechanization, this study selects maize as the research crop to
analyze the impact of agricultural mechanization level on GTFP. In this study, the SBM-ML model
is used to measure China’s maize GTFP, reveal the temporal and regional change characteristics of
maize GTFP, and clarify the optimization direction of maize GTFP from the perspective of regional
differences and resource endowment differences. This study uses the threshold regression model to
systematically analyze the impact of agricultural mechanization on GTFP and its mechanism. Results
are given as follows: (1) The growth of China’s maize production GTFP fluctuates greatly in each
year, and the growth of maize GTFP depends on the alternate promotion of technical efficiency and
technical progress. Greenhouse gas emissions have a significant impact on GTFP. Excessive use of
pesticides and fertilizers is the biggest obstacle to the improvement of maize GTFP. (2) There are also
specific regional differences in the factors that affect the improvement of maize GTFP efficiency in
different regions. The impact of mechanization on agricultural GTFP varies among regions. (3) The
development level of agricultural mechanization at different stages has different promotion effects
on maize GTFP. Agricultural mechanization has a two-way effect on maize GTFP. The factors of
land type and land area will not limit the promotion of agricultural mechanization to maize GTFP.
(4) Agricultural financial investment, environmental pollution control efforts, agricultural science
and technology expenditure and other factors play a positive role in improving GTFP. (5) In future
production, we should pay attention to the combination of agricultural mechanization and regional
production characteristics, optimize the allocation of agricultural machinery, and strengthen the
coordination between agricultural mechanization and moderate scale operation. The findings of our
study provide useful policy implications for the promotion and development of agriculture in China.

Keywords: agricultural mechanization; green total factor productivity; SBM-ML model; threshold effect

1. Introduction

Agriculture is the foundation of the national economy. China is a large agricultural
country, and the development of agriculture is related to the food security of more than one
billion Chinese people. With advances in technology and productivity, China’s agriculture
has made great progress, but there are still many problems in the process of development.
China’s agriculture has been undergoing extensive growth for a long time, with prominent
constraints on agricultural resources and worsening environmental problems. China
has recognized the fragility of agricultural development. The 19th National Congress
of the Communist Party of China proposed promoting the construction of an ecological
civilization. The 20th CPC National Congress of the Communist Party of China made it clear
that we should adhere to sustainable development. Agricultural Total Factor Productivity
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(TFP) measures the ability of a production unit to convert agricultural inputs into outputs.
Agricultural TFP is a theoretical and statistical indicator for comprehensive measurement of
agricultural economic efficiency [1,2]. However, studies on the measurement of agricultural
TFP mainly consider capital, labor and other factors, and rarely involve the factors of
agricultural green development [3,4]. In the traditional TFP accounting framework system,
the resource and environmental constraint variables are fully considered, and the measured
TFP is defined as the Green Total Factor Productivity (GTFP). GTFP takes into account
production efficiency and ecological protection and is an important indicator to measure
the quality of agricultural green growth. The accurate measurement of agricultural GTFP
and analysis of the factors and mechanisms that promote its growth are key to achieving
sustainable agricultural development.

Agricultural mechanization is an important material basis for the construction of mod-
ern agriculture, and also an important symbol of realizing agricultural modernization [5].
According to the statistical scope of the China Statistical Yearbook, China’s agricultural ma-
chinery holdings include large tractors (including supporting agricultural tools) and small
tractors. In 2021, the comprehensive mechanization rate of cultivation and harvest of staple
grain crops in China exceeded 80%. As an advanced means of labor, agricultural machinery
can replace labor force, reduce labor input [6], and optimize the allocation of agricultural
production factors [7]. At the same time, scholars have noticed the effect of the agricultural
mechanization level on agricultural production. Only when agricultural mechanization
reaches a certain level can agricultural labor force be completely removed from agricultural
production [8,9]. In addition, with the continuous improvement in agricultural mecha-
nization, the marginal utility of agricultural GTFP promoted by technological progress
has shown a declining trend [10]. The economic structure of small farmers with farmers
as the unit can not produce an increasing marginal return mechanism with technological
innovation and knowledge spillover as the “medium” [11]. Areas with important ecological
microzones should be left fragmented [12].

As one of the important grain crops in China, maize plays a pivotal role in the country’s
agricultural development. In 2021, China’s grain-planting region reached 117.63 million
hectares; the maize planting region reached 43.32 million hectares, accounting for 36.83%.
Under the influence of natural and socioeconomic conditions, agricultural production
in the southern and northern parts of China exhibits great differences in terms of the
farming system, type and scale of cultivated land, mechanization and other aspects, and
maize production also shows great regional differences. Agriculture is an ecological
complex formed by crops and the growth environment. There are differences in agricultural
production conditions between regions, differences in the applicability of mechanization
between crop types and differences in the applicability of mechanization between regions.
Therefore, in this study, considering the heterogeneity of crop types and the applicability
of agricultural mechanization in production regions, maize was selected as the research
crop to investigate the effects of agricultural mechanization level on GTFP of the same crop
in different regions. This study defines the mechanical level according to the standards of
China Statistical Yearbook.

This study measures maize GTFP in China using the Slack Based Measure-Malmquist-
Luenberger (SBM-ML) model, reveals the temporal and regional variation characteristics
of maize GTFP, and identifies the optimization direction of maize GTFP according to the
causes of factor loss. The threshold regression model is applied to systematically analyze
the influence degree and mechanism of agricultural mechanization level on maize GTFP
from the perspective of regional and resource endowment differences. Compared with
previous studies, the innovative angle of this study is mainly in the following aspects:
based on considering the applicability of crop mechanization from the perspective of a
single crop category, the SBM-ML method is first used to measure the GTFP of maize
production. The effects of mechanization on GTFP production are systematically verified
from regional differences and land scale differences.
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The rest of this article is structured as follows: Section 2 reviews the relevant literature
and analyzes the mechanism of the influence of mechanization on agricultural GTFP.
Section 3 describes the sources of the methods and data. Section 4 presents the empirical
results, Section 5 analyzes them, and Section 6 summarizes our findings.

2. Literature Review and Mechanism Analysis
2.1. Calculation of Agricultural GTFP

Agricultural GTFP emphasizes the trade-off among input, expected output and non-
expected output in agricultural production. It considers economic benefits (expected
output) and negative environmental impacts (unexpected output) while analyzing the
development of agricultural production [13,14]. There are two main types of calculation
methods for GTFP in academic circles: one is parametric methods, including stochastic
frontier analysis (SFA), Cobb–Douglas (C-D) function, transcendental logarithmic function,
etc.; the other is nonparametric, mainly calculated by using data envelopment analysis
(DEA) in combination with exponents. The FSA method needs to set the probability
distribution from the random error term, and the frontier production function is easily
affected by individual regions [15,16]. The DEA method has relatively loose requirements
for production forms and does not need to set specific production functions. It is applicable
to the boundary production function of multi-input and multi-output [17,18]. For example,
Wang et al. [19] used DEA to calculate the GTFP index of Chinese provinces from 2004 to
2015. Liu et al. [4] calculated the GTFP of Chinese agriculture by using provincial panel
data. Since the Malmquist index of the traditional DEA method cannot measure the part
containing the unexpected output, some scholars use the Malmquist–Luenberger (ML)
index to measure the agricultural GTFP [20]. When calculating agricultural GTFP, input
variables generally include labor, land, and capital, while output variables include expected
output and non-expected output. The output yield and value of agriculture are generally
regarded as the expected output, while unexpected outputs usually include greenhouse
gas emissions [4,21,22] and agricultural non-point source pollution [22].

2.2. Influencing Factors of Agricultural GTFP

With the continuous improvement of measurement methods, scholars have begun to
pay attention to the influencing factors of GTFP. For example, Zhan et al. [23] found that the
input of agricultural science and technology and labor capital had a positive impact on the
growth of agricultural productivity. Liu et al. [24] determined that labor force, machinery,
pesticides and agricultural film are important factors affecting agricultural productivity.
Liu et al. [25] tested the significant double-threshold effect between human capital and
agricultural GTFP under different levels of agricultural material capital and agricultural
economic development. Fang et al. [26] found that agricultural insurance had a signifi-
cantly positive impact on GTFP. In summary, the factors influencing agricultural GTFP
can be divided into two categories: agricultural factor endowments (internal factors) and
regional characteristics (external factors). Agricultural factor endowments (internal factors)
include the agricultural economic development level, agricultural production structure,
agricultural technology level, planting structure, land management, mechanization level,
natural conditions, and other factors [27–29]. Regional characteristics (external factors)
include the regional economic development level, urbanization level, regional openness,
financial factors and other factors [30,31].

2.3. Impact of Mechanization on Agricultural GTFP

There is consensus that mechanization is an important factor influencing agricultural
production. Many scholars have confirmed the importance of agricultural mechanization
from the perspectives of production quality [32–36], economic benefits [37–43], ecological
benefits [44–49] and social benefits [50,51]. Some scholars have noticed that the effect of
mechanization on agricultural production is different. Xue et al. [8] and Zhang et al. [9]
believe that only when the level of agricultural mechanization reaches a certain level can
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the agricultural labor force be completely released from production. Lv et al. [10] believe
that, with the continuous improvement of the level of agricultural mechanization, there
is a trend of diminishing marginal utility in the improvement of agricultural production
efficiency through the path of technological progress. In addition, agricultural production
conditions, including terrain characteristics and agricultural land management scale, will
also affect the effect of machinery. Xue et al. [52] believe that terrain conditions affect
agricultural GTFP by affecting the feasibility of agricultural machinery operation. It is
considered that machinery requires a lot of land [53–55].

2.4. Research Assumptions

Agricultural mechanization will affect factor input and utilization efficiency. Agricul-
tural mechanization improves agricultural GTFP by optimizing the allocation of agricultural
production factors. As an advanced means of labor, agricultural machinery can replace
labor and reduce labor input [5,6]. Substitution of agricultural machinery for manual
operations in agricultural production can alleviate the negative impact of agricultural labor
transfer on agricultural production, maintain a weak labor force, and improve agricul-
tural production efficiency [56]. Agricultural mechanization can improve the efficiency of
agricultural technology. Technical efficiency improvement is critical for improving total
factor productivity [57]. Agricultural mechanization can improve agricultural productiv-
ity [58,59]. According to the essential role of agricultural mechanization, the productivity of
land and the labor efficiency of farmers will be improved [33]. Agricultural mechanization
runs through the whole process of agricultural production by promoting standardization
and normalization [60]. Through the introduction of technology, advanced agricultural
machinery is introduced into the production chain to improve efficiency [61].

However, different stages of agricultural mechanization have different effects on the
improvement of agricultural total factor productivity. Only when agricultural mechaniza-
tion reaches a certain level can agricultural labor be completely removed from agricultural
production [8,9]. From the perspective of improving agricultural technical efficiency, when
agricultural mechanization is at a low level, the improvement of agricultural mechanization
has a greater effect on the improvement of GTFP. The reason is that, when the level of agri-
cultural mechanization is low, the use of agricultural machinery in agricultural production
is lower. Farmers choose agricultural machinery that can effectively reduce the input of
factors or improve the output, and the effect of the technological progress brought about by
agricultural mechanization is relatively large. With the continuous improvement in the level
of agricultural mechanization, there is a trend of diminishing marginal utility in the pro-
motion of agricultural GTFP through technological progress [10]. Agricultural production
conditions include terrain characteristics, agricultural land management scale, etc. Terrain
conditions affect agricultural GTFP by affecting the feasibility of agricultural machinery
operation [53–55]. Agricultural machinery has certain requirements for the “intensiveness”
and “scale” of land [11]. The popularization of agricultural machinery and equipment must
involve proper planning and layout. Small parcels of scattered arable land are not conducive
to the large-scale operation of agricultural machinery [62]. If agricultural machinery is to be
operated on a small area of land, the operating costs of machinery and equipment (including
labor and fuel) will increase, and machinery cost will increase significantly [63,64]. Land
fragmentation will hinder farmers from adopting agricultural machinery technology [12],
and cause diseconomies of scale in the use of agricultural machinery.

According to the abovementioned analysis, agricultural mechanization can improve
agricultural GTFP. However, in different stages of agricultural mechanization development,
the level of agricultural mechanization has different effects on the improvement of agri-
cultural GTFP. Factors such as terrain features and land management scale will also affect
the rational use of agricultural machinery power, resulting in uncertainty about the role of
agricultural mechanization in improving the agricultural GTFP in different regions. Finally,
the following hypotheses are proposed:
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H1. Agricultural mechanization has the effect of increasing the GTFP of maize. There are differences
in the promotion effect of the agricultural mechanization level on maize GTFP at different stages.

H2. Compared with plains areas, agricultural mechanization has less effect on the GTFP of maize in
hilly and mountainous areas with undulating terrain.

H3. The larger the scale of land management, the more significant the effect of agricultural
mechanization on GTFP of maize; on the contrary, the smaller the scale of land management, the
smaller the effect of agricultural mechanization on GTFP of maize.

The research framework of this study is shown in Figure 1.
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3. Materials and Methods
3.1. Methods
3.1.1. Super-Efficient SBM

This study uses a Super SBM model to calculate China’s maize production GTFP.
The Super-SBM model is a DEA model that combines super efficiency with the SBM
model. The Super-SBM model can reflect the relaxation improvement in the efficiency
measurement, and can also compare the efficiency values between the effective decision-
making units [65,66]. This study uses the nonradial and nonangular super-efficiency SBM
model combined with the ML index to calculate the efficiency value and its growth rate.
The SBM-ML model can evaluate the effective decision-making unit (efficiency value = 1)
and analyze the slack problem of production factors.

Each major maize-producing province is regarded as a decision-making unit (DMU); each
DMU has L inputs X = {x1, x2, x3, . . . , xL} ∈ R+

L and produces M expected output
Y = {y1, y2, y3, . . . , yM} ∈ R+

M and N kinds of undesired outputs Z = {z1, z2, z3, . . . , zN} ∈ R+
N ,

thus constructing the SBM function expression of a province in year t containing both ex-
pected and undesired outputs:
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Dt
V means the directional distance function under variable returns to scale.xt

i , yt
i , zt

i
represents the input–output collection of provinces. The objective function p̂ represents
the overall efficiency of the decision-making unit. The numerator and denominator of the
expression represent the average distance between the actual production of the decision-
making unit and the production frontier. The inefficiency of input and output are expressed
by the numerator and denominator of the expression. The closer p̂ gets to 1 decision
unit, the more efficient the production is. When p̂ = 1, the decision unit is at the frontier
of production, and there is no shortage of input and output. sx

l , sy
m, sz

n means the slack
variables of input, expected output, and undesired output; ut

i means the weight vector of
each decision-making unit.

3.1.2. Malmquist–Luenberger Index

The Malmquist index measures the growth rate of total factor productivity and is an
indicator of dynamic changes in efficiency. A directional distance function that includes
bad output is applied in the Malmquist index, called the Malmquist–Luenberger index [20].
This study uses the geometric mean of the two ML indices to obtain the change in total
factor productivity from period t as the base period to the t + 1 period. We decomposed
the measurement results into technological progress and technological efficiency through
the ML index. The study uses the ML index to analyze the changing trend of maize GTFP
in each province. The ML index from period t to period t + 1 is:

MLt+1
t = ECt+1
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t =
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In the formula, EC means technical efficiency and TC means technological progress.
MLt+1

t = 1 means that there is no change in productivity from period t to period t + 1.
A value greater than 1 indicates an increase in productivity. ECt+1

t means the technical
efficiency change index. ECt+1

t measures the degree of production technology change of
production system from period t to period t + 1. ECt+1

t greater than 1 indicates that the
technical efficiency has improved; otherwise, the technical efficiency has decreased. TCt+1

t
means the technology change index. TCt+1

t measures the degree of production technology
change of the production system from t to t + 1. TCt+1

t is greater than 1, indicating that the
production technology has progressed; otherwise, the production technology has regressed.

3.1.3. Threshold Regression

This study analyzes the possible nonlinear effects of agricultural mechanization on the
GTFP of maize. Based on Hayes and Andrew’s research methods [67], the study applied
the panel threshold regression model proposed by Hansen to verify the threshold effect of
agricultural mechanization on each maize production area. The model uses logarithmic
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variables to reduce heteroscedastic data. The sample interval is divided according to the
data characteristics and the estimated threshold value. The single-threshold panel threshold
regression model constructed in this study is:

ln GTFP = u1 + a0 + a1 ln MECH × 1(ln MECH ≤ c) + a2 ln MECH × 1(ln MECH > c) + b ln x (6)

ln GTFP represents the green total factor productivity of maize. u1 denotes the random
error term. a0 represents the individual effect. The value is 1 when the conditions in the
parentheses are satisfied. According to whether the agricultural mechanization (ln MECH)
is greater than the threshold value (c), the sample interval is divided into two zones. The
two zones are distinguished by slope values a1 and a2. x represents the control variable.

Considering that there may be multiple threshold values in the model, taking the
double threshold model as an example:

ln GTFP = u1 + α0 + α1 ln MECH · 1(ln MECH ≤ c1) + α2 ln MECH · 1(c1 ≤ ln MECH ≤ c2)
+α3 ln MECH · 1(ln MECH ≥ c2) + β ln x

(7)

3.2. Definition of Variables
3.2.1. GTFP Measurement: Input and Output Variables

This study follows the traditional literature to select inputs and outputs for the
model [4,19,20]. The input variables select labor input and material data input. The
labor index selects the number of working days; seeds are the foundation, and chemical
fertilizers and pesticides are the main factors for increasing maize production. Machinery
plays a significant role in improving maize production efficiency. In order to reduce the
calculation error of pesticide costs and mechanical action costs, this study uses the input
and output factor data per unit area as indicators.

The output variables include expected output and undesired output, and the maize
yield per unit area of each province is taken as the expected output, which represents the
positive effect in the maize production process. According to FAO statistics, agricultural
production has become the second-largest source of greenhouse gas emissions in the
world. Fertilizer application, chemical oxygen demand and greenhouse gas emissions are
important sources of agricultural pollution. This study follows the traditional literature to
select greenhouse gas emissions in agricultural production as the unexpected output [21,22].
The CO2 emissions are calculated according to the formula C = ∑ Ei×θi to calculate
the total carbon emissions in the maize production process, with Ei representing the
number of θi carbon emission sources and the coefficient of carbon emission sources. The
carbon emission coefficients of fertilizers, pesticides and diesel refer to Oak Ridge National
Laboratory (2009), China Agricultural University College of Biological Sciences and the
IPCC (Intergovernmental Panel on Climate Change). N2O is the main greenhouse gas
emitted by agricultural activities. The radiation intensity of N2O is 298 times that of CO2
of the same mass. The direct emission of N2O from agricultural land mainly comes from
nitrogenous fertilizers and straw returning to the fields. The indirect emission of N2O
mainly comes from atmospheric nitrogen deposition and nitrogen leaching runoff loss. The
direct emission of N2O has an absolute position. The direct emission of N2O is calculated
by reference to Zhang [68], by summing the products of various nitrogen sources and N2O
direct emission factors. Specific variables are described in Table 1.

3.2.2. Influence Factor Variables

The level of agricultural mechanization is used as the threshold variable and the core
explanatory variable. The ratio of the total power of agricultural machinery to the total
sown area of crops is used to measure the level of agricultural mechanization. This study
follows the traditional literature to select the factors that affect maize GTFP [23–31]. Seven
control variables are added to the model: maize planting structure, agricultural financial input,
crop disaster rate, urbanization rate, agricultural industry agglomeration, environmental
pollution control, and agricultural science and technology input. The maize planting structure



Sustainability 2023, 15, 1 8 of 24

uses the ratio of maize sown area to total crop sown area. The agricultural financial input
is measured by the ratio of agriculture, forestry, and water affairs expenditure to the total
financial expenditure. The disaster rate of maize is measured by the ratio of the affected area
of crops to the total sown area of crops. The urbanization rate is measured by the ratio of
the urban population to the total population. The proportion of environmental pollution
control investment in GDP is assessed for environmental pollution control. The study uses the
proportion of agricultural science and technology expenditure to the total fiscal expenditure
to measure the agricultural science and technology input. The location entropy index is
used to measure the level of agricultural industry agglomeration, calculated by the formula
AGGL = (xij/xi)/(xj/x), where xij and xi represent the total agricultural output value and
regional GDP of i, and xj and x represent the national agricultural output value and the
national GDP, respectively. The greater the value calculated by the formula, the higher the
degree of agricultural industry aggregation. Specific variables are described in Table 2.

Table 1. Description of input–output variables.

Variable Category Variable Description Unit

Output
Expected Main product yield kg/hm2

Undesired
CO2 emissions kg/hm2

N2O emissions kg/hm2

Input

Labor Working days D/hm2

Material data

Seed dosage kg/hm2

Amount of chemical fertilizer kg/hm2

Pesticide cost Yuan/hm2

Mechanical work fee Yuan/hm2

Table 2. Description of influential factor variables.

Variable Category Variable Name Variable Symbol

Explained variable GTFP of maize GTFP

Threshold variable Level of agricultural mechanization MECH

Control variable

Maize planting structure STRU
Agricultural financial input FINA

Crop damage rate DISA
Urbanization rate URBA

Agricultural industry agglomeration AGGL
Environmental pollution governance, ENVI

Agricultural science and technology input SCTE

3.3. Samples and Data Sources

This study divides the regions according to the distribution of maize planting eco-
logical zones in China. The northern spring sowing region includes Heilongjiang, Jilin,
Liaoning, Inner Mongolia and Ningxia. The Huang–Huai–Hai summer sowing region
includes Hebei, Shanxi, Jiangsu, Anhui, Shandong, Henan and Hubei. The southwest
mountain sowing region includes Guangxi, Sichuan, Guizhou, Yunnan and Chongqing.
The northwest irrigation sowing region includes Shaanxi, Gansu, and Xinjiang.

The four maize-growing regions have different characteristics. In the northern spring
sowing region, the terrain is flat, the soil layer is deep, and the light and heat resources are
rich. The maize production region in this area is concentrated, and the land management
scale is large. The Huang–Huai–Hai summer sowing region is the largest concentrated
maize production area in China. The Huang–Huai–Hai Plain is flat and generally less than
50 m above sea level. In this area, the temperature is high, the evaporation is large, the
rainfall is concentrated, and the natural conditions are very favorable to the growth of
maize. More than 90% of the land in the southwest mountain sowing region is hilly and
plateau, and the degree of land use is low. The northwest irrigation sowing region is located
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in the diluvial impact plains area, with flat terrain and fertile soil, which is convenient for
cultivation and large-scale agricultural land management.

The time span was from 2001 to 2020. The data on the number of working days,
the amount of seeds, the amount of chemical fertilizer, the cost of pesticides and the
cost of mechanical action were from the “National Agricultural Product Cost and Benefit
Data Compilation (2001–2021).” The missing data were filled in by interpolation. The
total power data of agricultural machinery come from the China Agricultural Machinery
Industry Yearbook (2001–2021). The total crop sown area, maize sown area, expenditure on
agriculture, forestry and water affairs, total financial expenditure, urban population, total
population, GDP data and agricultural science and technology input data come from the
China Statistical Yearbook (2001–2021). The crop disaster area comes from the China Rural
Statistical Yearbook (2001–2021). Environmental pollution control investment data come
from the China Environmental Statistical Yearbook (2001–2021).

4. Empirical Results
4.1. Measurement Results of GTFP of Maize
4.1.1. Characteristics of GTFP of Maize

Figure 2 shows the measurement results of GTFP of maize using MAX-DEA software.
ML represents the growth rate of maize GTFP between adjacent years. EC means the
growth rate of technical efficiency, and TC means the growth rate of technological progress.
On the whole, the growth rate of GTFP growth of maize production in China varies greatly
in different years. The growth of GTFP of maize depends on the alternating promotion of
technical efficiency and technological progress.
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Figure 2. Growth rate and decomposition trend of China’s GTFP of maize 2001–2020.

Table 3 shows the values of maize GTFP in each province and region of China. The
GTFP of maize in China has the characteristics of regional imbalance, and the efficiency
values of the four regions are quite different. From the perspective of the overall level of
maize GTFP in each region, the southwest mountain sowing region (1.002) > the northern
spring sowing region (0.957) > the Huang–Huai–Hai summer sowing region (0.943) > the
northwest irrigation sowing region (0.917).

From the perspective of provinces, the GTFP gap among provinces was large. The
average efficiency of six provinces reached the effective level, accounting for 30% of the total
main producing provinces, namely Shanxi, Xinjiang, Sichuan, Ningxia, Inner Mongolia and
Guangxi. Shanxi had the best maize production situation, with an average efficiency of 1.23.
The efficiency of 11 provinces was lower than the average level of the main maize-producing
regions in China, and most of them were distributed in the “Sickle Bay area”.
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Table 3. Measurement results of maize GTFP in various provinces and regions in China.

Area 2001 2005 2010 2015 2020 Average

The northern
springsowing region

Heilongjiang 0.805 1.220 1.141 1.005 0.915 0.983
Jilin 1.007 0.887 0.895 0.915 0.991 0.874

Liaoning 1.094 1.027 0.705 0.744 0.828 0.859
Inner Mongolia 1.064 1.018 1.068 1.009 1.064 1.023

Ningxia 1.101 1.047 1.020 1.013 1.019 1.048
Average 1.014 1.040 0.966 0.937 0.963 0.957

The Huang-Huai-Hai summer
sowing region

Hebei 0.779 0.752 0.811 0.907 0.871 0.868
Shanxi 1.249 1.001 1.427 1.347 1.073 1.230
Jiangsu 0.828 0.790 0.909 0.955 0.859 0.818
Anhui 1.066 0.917 0.880 1.009 0.970 0.940

Shandong 0.923 0.740 0.795 0.883 0.814 0.854
Henan 0.805 1.034 1.003 1.137 1.011 0.997
Hubei 0.935 1.036 1.033 0.809 0.921 0.893

Average 0.941 0.896 0.980 1.007 0.931 0.943

The southwest mountain
sowing region

Guangxi 0.796 1.293 1.038 1.230 0.979 1.007
Sichuan 1.067 1.556 0.731 1.108 0.734 1.192
Guizhou 0.719 1.004 1.140 0.794 1.037 0.902
Yunnan 1.164 0.624 1.035 0.679 0.627 0.965

Chongqing 0.727 1.009 0.842 0.779 0.931 0.945
Average 0.895 1.097 0.957 0.918 0.862 1.002

The northwest irrigation
sowing region

Shaanxi 1.011 1.012 0.879 0.820 1.000 0.787
Gansu 0.735 0.830 0.723 0.833 0.917 0.770

Xinjiang 1.091 1.122 1.076 1.142 1.258 1.195
Average 0.946 0.988 0.893 0.932 1.058 0.917

4.1.2. Optimization of GTFP of Maize

This study regards provinces with efficiency values lower than the average level of
the main producing areas as relatively ineffective. A total of 11 provinces are relatively
ineffective. From Table 4, it can be seen that the relatively ineffective area has different
degrees of redundancy in terms of input and undesired output, and the CO2 emissions
and N2O emissions redundancy rates are both high. Therefore, greenhouse gas emissions
have a significant impact on GTFP. Among the input elements, pesticides and fertilizers
have the highest redundancies. The redundancy of pesticide cost reaches −27.328%. The
provinces with the highest redundancy are Gansu, Shaanxi, Jiangsu and Shandong. These
four provinces are located in different maize-producing areas. There are differences in the
influencing factors restricting the improvement of efficiency in different regions.

4.2. Threshold Effect of Agricultural Mechanization on GTFP of Maize
4.2.1. Stationarity Test

Due to the existence of unit root process instability in the series, there may be spurious
regression in the regression analysis. In this study, all variables were tested by a unit root
test, and the stationarity of variables was tested by the same root test (LLC) and a different
root test (IPS). According to the p-value judgment stationarity of data, if the p-value is
greater than 0.1, the panel data are not stable. The results are shown in Table 5. The
variables all directly passed the unit root test, except that the maize planting structure
(LnSTRU) and agricultural science and technology expenditure (LnSCTE) were stable after
the first difference. Therefore, all variables in the model are stationary.
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Table 4. Input-output redundancy ratio of provinces and regions.

Province

Input Redundancy Rate (%) Output Redundancy Rate (%)

Employment
Quantity

Seed
Dosage

Pure Fertilizer
Consumption

Mechanical
Fee

Pesticide
Cost

Product
Yield

CO2
Emissions

N2O
Emissions

Jilin −6.650 −1.410 −14.125 −6.140 −34.951 0 −19.838 −42.825
Liaoning −9.347 −14.476 −16.369 −0.324 −30.137 0 −29.197 −45.401

Hebei −11.658 −9.983 −4.266 −4.143 −35.871 0 −37.583 −45.564
Chongqing −2.216 1.975 −3.233 −17.587 −6.264 0 −4.538 −4.291

Jiangsu −15.139 −12.998 −23.771 −1.624 −37.601 0 −29.971 −35.086
Anhui −2.397 −9.898 −7.130 10.602 −21.035 0 −12.272 −32.899

Shandong −10.397 −9.932 −14.612 1.979 −39.913 0 −30.158 −3.229
Hubei −0.452 −10.275 −13.368 −2.973 −26.303 0 −27.809 −23.411

Guizhou −12.158 −8.521 −13.369 −2.948 −12.465 0 −8.049 −21.390
Shaanxi −25.684 −30.560 −21.119 −4.249 −25.013 0 −31.999 −8.568
Gansu −36.292 −12.828 −18.894 −15.975 −31.059 0 −19.161 −7.885

The northern
springsowing region −7.999 −7.943 −15.247 −3.232 −32.544 0 −24.518 −44.113

The Huang-Huai-Hai
summer sowing region −8.009 −10.617 −12.629 0.768 −32.145 0 −27.559 −28.038

The southwest mountain
sowing region −7.187 −3.273 −8.301 −10.268 −9.3645 0 −6.2935 −12.8405

The northwest irrigation
sowing region −30.988 −21.694 −20.007 −10.112 −28.036 0 −25.580 −8.227

Mean −12.035 −10.810 −13.660 −3.944 −27.328 0 −22.780 −24.595

Note: Redundancy rate = Redundancy/Original input.

Table 5. Variable unit root test results.

The Northern Spring
Sowing Region

The Huang-Huai-Hai
Summer Sowing Region

The Southwest Mountain
Sowing Region

The Northwest Irrigation
Sowing Region

variable LLC IPS LLC IPS LLC IPS LLC IPS

LnGTFP 0.0000 0.0234 0.0000 0.0002 0.0000 0.0824 0.0264 0.0005
LnSTRU 0.0597 0.0474 0.1139 0.0232 0.4954 0.0943 0.0710 0.2417
LnFINA 0.0016 0.0040 0.0000 0.0735 0.0146 0.0120 0.0098 0.0052
LnDISA 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0106
LnURBA 0.0000 0.0069 0.0000 0.0650 0.0275 0.0938 0.0060 0.0006
LnAGGL 0.0070 0.0304 0.0733 0.0133 0.0181 0.0465 0.0912 0.0898
LnENVI 0.0104 0.0461 0.0004 0.0002 0.0000 0.0000 0.0000 0.0809
LnSCTE 0.0273 0.0296 0.4167 0.0347 0.2750 0.0559 0.2769 0.4226

LnMECH 0.0001 0.0250 0.0031 0.0000 0.0000 0.0019 0.0015 0.0032

4.2.2. Threshold Effect Test Results

Table 6 shows the test results of 1000 times repeated sampling by Stata 14.0 (College
Station, KSAT, USA) software. The threshold effect is judged by the p-value. The level of
agricultural mechanization had a threshold effect on the GTFP of four maize ecological
regions, which indicated that agricultural mechanization had a nonlinear effect on GTFP.
The effect of the agricultural mechanization development level was different at different
stages on maize GTFP. For the northern spring sowing region, the F statistic was significant
at least at 0.05 in the two-threshold model. If the p-value is less than 0.10, there are two
threshold values in the model. For the Huang–Huai–Hai summer sowing region, it is
significant at the 0.01 level. There are two threshold variables in the Huang–Huai–Hai
summer sowing region. For the southwest mountain sowing region, there are at least
two threshold variables at the 0.10 significance level. For the Northwest Irrigation sowing
region, there is one threshold variable at the 0.01 significance level.

4.2.3. Threshold Estimation Results

The threshold estimation results are shown in Table 7. The effect of agricultural mech-
anization on GTFP of maize varies by region. Except for the northwest irrigation sowing
region, which is a single-threshold type, the other three regions are all double-threshold
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types. There are differences in the threshold values of different regions. For the northern
spring sowing region, the double-threshold values of the maize mechanization level are
1.3420 and 1.4600. In the Huang–Huai–Hai summer sowing region, the double-threshold
values of mechanization level are 1.3473 and 1.3570. In the southwest mountain sowing
region, the double-threshold values of maize mechanization level are 0.8575 and 1.8374. In
the northwest irrigation sowing region, the single-threshold value of mechanization level
is 1.7335. Figures 3–6 show the likelihood ratio function of the estimated threshold value
under the 0.95 confidence interval for the four regions. The lowest point of the LR statistic
is the corresponding real threshold value and the dotted line represents the critical value.
Since the critical value is significantly larger than the threshold value, the threshold values
of each area passed the LR test. Therefore, the above thresholds are true and valid.

Table 6. Test results of threshold effect in each region.

Region Number of Thresholds F Value p Value 0.10 0.05 0.01

The northern spring
sowing region

1 10.96 0.022 8.1148 9.3548 14.1804
2 8.03 0.018 5.5991 6.8230 8.6451
3 3.01 0.8050 13.4942 15.8945 18.9082

The Huang-Huai-Hai
summer sowing region

1 14.10 0.0710 12.7956 15.2795 20.4469
2 25.77 0.0020 14.0010 16.8625 20.5256
3 8.28 0.3940 20.1435 25.7562 36.9362

The southwest mountain
sowing region

1 17.65 0.0110 11.9043 13.4385 17.4857
2 14.19 0.0630 11.7045 16.1474 24.2509
3 5.58 0.3540 10.0470 14.6726 28.7893

The northwest irrigation
sowing region

1 21.90 0.0000 5.8738 7.1177 7.1177
2 4.90 0.1800 5.8803 7.2234 8.2222
3 1.87 0.9370 7.0788 7.2442 8.3924

Table 7. Estimated results of threshold values in each region.

Region Threshold Type Threshold

The northern spring sowing region double threshold
1.3420
1.4600

The Huang-Huai-Hai summer sowing region double threshold
1.3473
1.3570

The southwest mountain sowing region double threshold
0.8575
1.8374

The northwest irrigation sowing region single threshold 1.7335

4.2.4. Threshold Regression Results

The parameter estimation results obtained by panel threshold regression are shown in
Table 8. The study judged whether it passed the significance test according to the |P| > t value.
The regression results of the southwest mountain sowing region and the Northwest Irrigation
sowing region confirm hypothesis H1. For the southwest mountain sowing region, the level of
agricultural mechanization had a positive effect on GTFP of maize. With the increasing level of
mechanization in the southwest mountain sowing region, the effect of maize GTFP weakened.
When the level of mechanization was less than 0.8575, the coefficient was 1.6265. When the
level of mechanization was between 0.8575 and 1.8374, the regression coefficient was 1.0159.
When the maize mechanization level crossed the second threshold of 1.3570, the coefficient
weakened to 0.1226. The above regression coefficient passed the significance test at the 0.10
level. For the northwest irrigated area, agricultural mechanization had a significant effect
on the GTFP of maize. Agricultural mechanization effectively relieved the agro-ecological
pressure in the process of maize production in the Northwest Irrigation sowing region. When
the level of mechanization was lower than the first threshold value (<1.7335), the regression
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coefficient was 0.3297. When the level of maize mechanization crossed the first threshold, the
regression coefficient weakened to 0.0805.
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Table 8. Estimated results of regression parameters for each region.

The Northern Spring
Sowing Region

The Huang-Huai-Hai
Summer Sowing Region

The Southwest Mountain
Sowing Region

The Northwest Irrigation
Sowing Region

Variable Return
Coefficient Variable Return

Coefficient Variable Return
Coefficient Variable Return

Coefficient

LnSTRU −0.1826 LnSTRU −0.3601 ** LnSTRU −0.2366 LnSTRU 0.3375 *
LnFINA 0.2715 ** LnFINA 0.1641 ** LnFINA 0.1552 LnFINA 0. 2018
LnDISA −0.1515 *** LnDISA −0.0869 *** LnDISA −0.1067 ** LnDISA 0.1028 **
LnURBA −0.2872 LnURBA −0.0543 LnURBA −0.1710 *** LnURBA 0.0878
LnAGGL 0.0263 LnAGGL −0.2180 LnAGGL −0.5137 LnAGGL 0.0913
LnENVI 0.1508 *** LnENVI 0.0973 ** LnENVI 0.0221 LnENVI 0. 1272 ***
LnSCTE 0.0501 LnSCTE 0.0239 LnSCTE 0.4236 *** LnSCTE 0.0929

LnMECH
≤ 1.3420 0.3655 * LnMECH

≤ 1.3473 0.2856 ** LnMECH
≤ 0.8575 1.6265 *** LnMECH

≤ 1.7335 0.3297 ***

1.3420 <
LnMECH
≤ 1.4600

−0.0654
1.3473 <

LnMECH
≤ 1.3570

−0.5533 ***
0.8575 <

LnMECH
≤ 1.8374

1.0159 *** LnMECH
> 1.7335 0.0805 ***

LnMECH > 1.
4600 0.0798 LnMECH

> 1.3570 0.1226 LnMECH
> 1.8374 0.7072 ***

Note: ***, ** and * represent passing the significance test at the 0.01, 0.05 and 0.10 levels, respectively, judged by
value |P| > t.

For the northern spring sowing region, when the level of mechanization was low
(lnMECH < 1.3420), there was a positive effect on the GTFP of maize with a coefficient
of 0.3655. The result passed the significance test at the 0.10 level. When the level of
mechanization was between the two thresholds, the regression coefficient was −0.0654.
The level of agricultural mechanization between the two thresholds had a negative impact
on GTFP. However, the results did not pass the significance test, so the inhibitory effect of
agricultural mechanization on GTFP has not been highlighted. When the level of maize
mechanization was high (lnMECH > 1.4600), there was a positive effect on GTFP with
a coefficient of 0.0798. The Huang–Huai–Hai summer sowing region has a high level of
agricultural mechanization, and agricultural technology is fully utilized. When the level
of mechanization was less than 1.3473, it had a positive impact on GTFP of maize. The
regression coefficient was 0.2856. The result passed the significance test at the 0.05 level.
When the mechanization level was between 1.3473 and 1.3570, the regression coefficient
was −0.5533. Agricultural mechanization had a negative effect on the GTFP of maize, and
the effect increased. The model passed the significance test at the 0.10 level. When the level
of agricultural mechanization crossed the second threshold, for every 0.01 increase in the
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level of agricultural mechanization, maize GTFP increased significantly by 0.1226%. The
regression results of the northern spring sowing region and the Huang–Huai–Hai summer
sowing region were contrary to hypothesis H1. The effect of agricultural mechanization on
maize GTFP has two sides. Agricultural mechanization has an inhibitory effect on maize
GTFP in specific regions.

In terms of terrain characteristics and the agricultural land management scale, the
southwest mountainous area has a high altitude, and the terrain conditions are mainly
plateau, basin, and mountain, with a high degree of land fragmentation and a small area of
cultivated land. The northwest irrigation area is characterized by small topographic relief,
sparsely populated land and a large scale of agricultural land management. The regression
results show that agricultural mechanization has the largest role in improving the GTFP of
maize in the southwest mountain area, and the empirical results are contrary to hypotheses
H2 and H3.

According to the estimation results of the control variables, agricultural financial input
(lnFINA), environmental pollution control intensity (lnENVI) and agricultural science and
technology expenditure (lnSCTE) have a significantly positive effect on the GTFP of maize.
The policy of regional financial support for agriculture can optimize maize production and
play a positive role in improving GTFP. The urbanization rate (lnURBA) and crop damage
rate (lnDISA) have inhibitory effects on maize GTFP.

4.2.5. Robustness Test

In order to ensure the robustness of the study results, we conducted tests shortening
the sample period and replacing the independent variable.

The sample period selected in this study was 2001–2020, but some data of crop disasters
before 2005 are missing. Although the missing data were supplemented by the interpolation
method in the study, in order to avoid the interference of the processed data with the
empirical results, the sample was adjusted to 2006–2020 and the threshold effect test was
conducted again.

According to Tables 9 and 10, the threshold effect test and threshold value estimation
results showed that, after shortening the sample period, the level of agricultural mecha-
nization still had the threshold effect on GTFP in the four maize-producing regions. The
number of threshold values in the northern spring sowing region, the Huang–Huai–Hai
summer sowing region and the northwest irrigation sowing region did not change. The
southwest mountain sowing region has changed from double threshold type to single
threshold type. The ecological environment of the southwest mountain sowing region is
relatively fragile. It is affected by earthquakes, typhoons and heavy rainfall from time to
time. Therefore, the number of crop disasters and the GTFP fluctuate greatly in different
periods, which leads to great differences in the impact of agricultural mechanization level
on GTFP in different years, so the test results have changed. According to the estimation
results (Table 11), the direction and significance of the estimation coefficient of agricultural
mechanization level in each region have not changed significantly. At the same time, the
direction of estimation coefficients of all control variables has not changed significantly. In
general, the test results are consistent with the above, the results are robust.

The level of agricultural mechanization in this study was measured by the mechanical
dynamics. Agricultural machinery costs cover all machinery used in the process of agri-
cultural production (expenditure and consumption). Generally speaking, the higher the
level of agricultural mechanization in a region, the greater the expenditure of farmers on
agricultural machinery. At the same time, based on the data availability, this study took the
mechanical action cost of planting maize per hectare as the explained variable to re-test the
threshold characteristics of the model.



Sustainability 2023, 15, 1 16 of 24

Table 9. Test results of threshold effect after shortening the sample period.

Region Number of Thresholds F Value p Value 0.10 0.05 0.01

The northern spring
sowing region

1 2.90 0.0900 11.2122 12.2836 19.1482
2 13.13 0.0500 10.6846 12.6891 22.1712
3 2.65 0.7100 8.3258 9.6570 13.7519

The Huang-Huai-Hai
summer sowing region

1 10.77 0.0200 7.8744 9.7850 11.0032
2 3.23 0.0900 7.8848 8.5515 11.6286
3 8.70 0.2600 11.6234 14.2047 22.3868

The southwest
mountain sowing region

1 15.28 0.0100 8.9966 11.2299 14.4563
2 3.03 0.6300 8.0172 9.4800 13.1324
3 2.66 0.7100 8.6024 9.8323 15.5177

The northwest irrigation
sowing region

1 14.83 0.0000 6.1892 6.4056 7.5565
2 3.96 0.3900 7.7704 7.9938 8.2403
3 1.36 0.8300 9.3622 10.4846 11.9482

Table 10. Estimated results of threshold values after shortening the sample period.

Region Threshold Type Threshold Region Threshold Type Threshold

The northern
Springsowing region

double
threshold

1.6005 The southwest
mountain sowing region

single
threshold

1.42511.6749
The Huang-Huai-Hai

summer sowing region
double

threshold
1.6218 The northwest

irrigation sowing region
single

threshold
1.73351.7581

Table 11. Estimated results of regression parameters after shortening the sample period.

The Northern Spring
Sowing Region

The Huang-Huai-Hai
Summer Sowing Region

The Southwest Mountain
Sowing Region

The Northwest Irrigation
Sowing Region

Variable Return
Coefficient Variable Return

Coefficient Variable Return
Coefficient Variable Return

Coefficient

LnSTRU −0.3448 LnSTRU −0.0245 LnSTRU −0.1180 LnSTRU −0.2460 *
LnFINA 0.3158 ** LnFINA 0.4447 *** LnFINA 0.6014 ** LnFINA 0.1365
LnDISA −0.1002 *** LnDISA −0.0714 ** LnDISA −0.0049 LnDISA −0.0430 **
LnURBA −0.6276 * LnURBA −0.2598 LnURBA −0.0419 ** LnURBA −0.4481
LnAGGL 0.5658 *** LnAGGL −0.1162 LnAGGL −0.1245 LnAGGL −0.2778
LnENVI 0.0536 LnENVI 0.0778 ** LnENVI 0.1418 * LnENVI 0.0796 ***
LnSCTE 0.0815 LnSCTE 0.1770 ** LnSCTE 0.4112 ** LnSCTE 0.0638

LnMECH
≤ 1.6005 0.2160 LnMECH

≤ 1.6218 0.0923 * LnMECH
≤ 1.4251 0.6508 ** LnMECH

≤ 1.7335 0.4718 ***

1.6005 <
LnMECH
≤ 1.6749

−0.5743 ***
1.6218 <

LnMECH
≤ 1.7581

−0.0817 ** LnMECH
> 1.4251 0.4702 * LnMECH

> 1.7335 0.6461 ***

LnMECH
> 1.6749 0.1980 LnMECH

> 1.7581 0.0026

Note: ***, ** and * represent passing the significance test at the 0.01, 0.05 and 0.10 levels, respectively, judged by
value |P| > t.

According to the threshold effect test and threshold value estimation results
(Tables 12 and 13), the number of threshold values in the four regions did not change after
replacing the independent variable. According to the regression parameters estimation
results (Table 14), the influence direction of agricultural mechanization level on GTFP
is basically consistent with the above, and the significance level has been improved. Al-
though the influence of control variables on GTFP is different from the above, the direction
of influence is basically the same. Therefore, this model is robust.
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Table 12. Test results of threshold effect after replacing the independent variable.

Region Number of Thresholds F Value p Value 0.10 0.05 0.01

The northern
springsowing region

1 2.90 0.0900 11.2122 12.2836 12.1988
2 13.13 0.0500 10.6846 12.6891 14.7445
3 2.65 0.7100 8.3258 9.6570 10.8404

The Huang-Huai-Hai
summer sowing region

1 4.71 0.0540 9.2488 10.0097 13.0876
2 16.72 0.0100 11.2332 13.6044 16.2485
3 15.16 0.9800 10.5395 11.3675 14.0178

The southwest mountain
sowing region

1 5.83 0.0400 8.7593 10.7098 14.4831
2 4.25 0.0400 7.6933 9.8916 12.5103
3 2.55 0.6500 7.1737 8.9246 13.5153

The northwest irrigation
sowing region

1 16.85 0.0160 8.0472 9.6753 10.6076
2 14.00 0.4100 6.2956 9.8986 9.8986
3 11.73 0.8800 10.6925 10.0396 10.2984

Table 13. Estimated results of threshold values after replacing the independent variable.

Region Threshold Type Threshold Region Threshold Type Threshold

The northern
Springsowing region

double
threshold

5.7728 The southwest
mountain sowing region

double
threshold

3.8199
6.8735 4.0110

The Huang-Huai-Hai
summer sowing region

double
threshold

5.5102 The northwest irrigation
sowing region

single
threshold

7.41876.0740

Table 14. Estimated results of regression parameters after replacing the independent variable.

The Northern Spring
Sowing Region

The Huang-Huai-Hai
Summer Sowing Region

The Southwest Mountain
Sowing Region

The Northwest Irrigation
Sowing Region

Variable Return
Coefficient Variable Return

Coefficient Variable Return
Coefficient Variable Return

Coefficient

LnSTRU −0.3516 * LnSTRU −0.0447 ** LnSTRU −0.3503 LnSTRU −0.3583 **
LnFINA 0.1410 LnFINA 0.1194 ** LnFINA 0.1025 LnFINA 0.1679
LnDISA −0.1029 *** LnDISA −0.1318 *** LnDISA −0.0218 LnDISA −0.0939 **
LnURBA −0.0889 LnURBA −0.0626 LnURBA −1.3480 *** LnURBA −0.5048
LnAGGL 0.2601 *** LnAGGL −0.1891 LnAGGL −0.3376 LnAGGL −0.1793
LnENVI 0.0468 LnENVI 0.1187 ** LnENVI 0.0215 LnENVI 0.0834 *
LnSCTE 0.0599 LnSCTE 0.1025 LnSCTE 0.4196 *** LnSCTE 0.0669

LnMECH
≤ 5.7728 0.3702 *** LnMECH

≤ 5.5102 0.2081 ** LnMECH
≤ 3.8199 0.0716 * LnMECH

≤ 7.4187 0.3221 ***

5.7728 <
LnMECH
≤ 6.8735

−0.3822 ***
5.5102 <

LnMECH
≤ 6.0740

−0.2357 ***
3.8199 <

LnMECH
≤ 4.0110

0.1033 *** LnMECH
> 7.4187 0.3483 **

LnMECH
> 6.8735 −0.3448 *** LnMECH

> 6.0740 0.2185 LnMECH
> 4.0110 0.0700 ***

Note: ***, ** and * represent passing the significance test at the 0.01, 0.05 and 0.10 levels, respectively, judged by
value |P| > t.

5. Discussion

The annual fluctuation and regional differences in maize GTFP in different regions
are large, and the effect of agricultural mechanization on agricultural GTFP in different
regions is different. Agriculture is the industry most directly affected by nature, so the
annual fluctuation and regional differences in maize GTFP in different regions are large.
The conclusions that the overall level of GTFP in the northwest irrigation area is the lowest
and that GTFP fluctuates greatly during natural disasters in the southwest mountainous
area confirms that agriculture is an industry with strong dependence on natural resources
and the environment and is greatly affected by natural disasters. The differences in agricul-
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tural development, economic development, industrial structure and natural conditions in
different regions are objective realities, which make the production of the same crop vary
greatly in different regions. At the same time, the development level of mechanization in
each region is also different, so the impact of mechanization on agricultural GTFP in each
region is different.

According to the redundancy rate of inputs and outputs of each province, the redun-
dancy rate of CO2 emissions, N2O emissions, pesticide application, fertilizer consumption
and labor quantity is at a high level. From the regional perspective, the redundancy rate
of CO2 emissions and N2O emissions in each region is at a high level, and the greenhouse
gas emissions have a significant impact on GTFP. The issue of greenhouse gas emissions
in agricultural production needs urgent attention. The “dual carbon strategy” of reaching
the peak of carbon by 2030 and achieving carbon neutrality by 2060 will involve profound
economic and systemic social changes, and green low-carbon agriculture will become the
future development direction. In terms of input factors, pesticide redundancy is the highest,
followed by fertilizer consumption. By spraying pesticides, human beings have greatly
reduced the threat of diseases and pests, making it possible to stabilize agricultural pro-
duction. Through the use of chemical fertilizers, the photosynthetic capacity of crops has
been greatly improved, which means that we can fully tap the crop yield potential, making
high yields possible. Pesticides and chemical fertilizers are a double-edged sword. On
the one hand, they have greatly improved the crop yield; on the other hand, they have
dramatically exacerbated the adverse impact of agriculture on the environment. In addition,
due to farmers’ scientific, technological and cultural level of blind drug use, dealers oversell
pesticides, attach importance to chemical prevention, and reject agricultural, physical and
biological prevention and other factors, resulting in pesticides being the most redundant
input. The problem of redundant labor quantity is obvious in northwest China, and can be
attributed to the replacement of the agricultural labor force by agricultural machinery. In
addition, the promotion and application of new agricultural science and technology, such as
chemical herbicides and sprinkler irrigation technology, can save a lot of agricultural labor.

The results for the southwest mountainous area and northwest irrigation area con-
firmed that agricultural mechanization can improve maize GTFP, and the improvement
effect of the agricultural mechanization development level on maize GTFP is different at
different stages. When the degree of mechanization is low, the use of mechanization in
planting production is relatively small. With the improvement of the mechanization level,
a large part of the labor force is liberated from the planting sector before the replacement
effect of machinery on labor increases. The improvement of the standardization of me-
chanical operation leads to the professional division of labor and industrial aggregation
of planting production, which leads to the emergence of the effectiveness of mechanized
element allocation and the scale effect. That is, with the improvement in the mechanization
level, the role of improving agricultural GTFP is increasingly significant. The role of ma-
chinery in agricultural GTFP starts to decline when the scale effect reaches the stage of scale
decline. The regression results of the spring sowing areas in the north and the summer
sowing areas in the Huang–Huai–Hai region are contrary to hypothesis H1. This can be
attributed to the impact of agricultural mechanization on the environment. The agricultural
mechanization level in the northern spring sowing area and the Huang–Huai–Hai summer
sowing area is relatively high. The large-scale application of agricultural mechanization has
brought about energy consumption and environmental pollution problems, reduced the
use of organic fertilizer and other low-carbon elements, and, after the aging of agricultural
machinery, will inhibit the maize GTFP. The results for the spring sowing area in the north
and the summer sowing area in the Huang–Huai–Hai area were contrary to those of the
southwest mountainous area and the northwest irrigation area, which conformed the law
of the difference of the influence of mechanization on agricultural GTFP.

In terms of the impact of land type and land area on the role of agricultural mecha-
nization on maize GTFP, the empirical results are contrary to hypotheses H2 and H3. In
terms of terrain characteristics and agricultural land management scale, the southwest
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mountainous area has a high altitude, and the terrain conditions are mainly plateau, basin
and mountains, with a high degree of land fragmentation and a small area of cultivated
land. The northwest irrigation area is characterized by small topographic relief, sparsely
populated land and large agricultural land management scale. The regression results show
that agricultural mechanization plays the largest role in improving the GTFP of maize in
the southwest mountainous area. That is to say, compared with the plains with a large
area of flat land, and the mountainous and hilly area with finely fragmented farmland,
agricultural mechanization plays a more significant role in improving maize GTFP. The
effect of agricultural mechanization on maize GTFP is not restricted by land area or type.
At present, the land policy of household contract responsibility system will exist for a long
time, and the miniaturization of agricultural machinery is in line with this situation. The
per capita income level of farmers is not high, and there is a certain pressure on the burden
of large-scale machinery, while the purchase of small machinery can be borne. In recent
years, small agricultural machinery in China has developed rapidly to meet the realistic
demand. Based on the current situation of agricultural mechanization in China, the field
management depends on small agricultural machinery. In plains areas where large-scale
agricultural machinery is highly popular, field management still relies on small-scale agri-
cultural machinery. In mountainous, hilly and other areas not suitable for the use of large
agricultural machinery, small agricultural machinery must be promoted to save manpower.
Agriculture in mountainous and hilly areas basically relies on small machinery or manual
agricultural production. In mountainous and hilly areas, there are not only single products,
but also many kinds of special agriculture. Small agricultural machinery can better play its
role according to local conditions, saving labor and greatly improving efficiency. This is
consistent with the fact that most maize planting in Xinjiang involves small-scale intensive
farming, and the GTFP efficiency is excellent.

Agricultural financial investment, environmental pollution control efforts and agri-
cultural science and technology expenditure can optimize the agricultural production
environment and play a role in improving GTFP. The effect of agricultural fiscal expen-
diture on GTFP growth can be divided into two aspects: one is the impact on desirable
agricultural economic output, and the other is the impact on undesirable environmental
pollutant emissions. Financial support for agriculture can improve agricultural production
conditions and the environment. For example, an agricultural machinery purchase subsidy
policy can produce an income effect, substitution effect and multiplier effect. Through
the use and popularization of agricultural machinery, the combination of labor force, land
and other elements can be optimized to improve the efficiency of resource allocation. The
urbanization rate has an inhibitory effect on maize GTFP. The expansion of cities and towns
has led to a reduction in cultivated land and the transfer of the rural labor force to cities,
and the reduction in the labor force has a negative impact on maize production. As an
industry greatly affected by natural disasters, the disaster rate of crops has an inhibitory
effect on maize GTFP.

6. Conclusions and Implications
6.1. Conclusions

This study examined 20 major maize-producing provinces in China from 2001 to 2020.
Specifically, we measured China’s maize GTFP using the SBM-ML model and revealed
the time and regional variation characteristics of maize GTFP. Secondly, we clarified the
optimization direction of maize GTFP according to the loss reasons of regional factors.
Finally, we applied the threshold regression model to analyze the impact and mechanism of
agricultural mechanization level on maize GTFP from the perspective of regional differences
and resource endowment differences.

The main conclusions include:
The growth in China’s maize production GTFP fluctuates greatly year by year, and de-

pends on the alternate promotion of technical efficiency and technical progress. Greenhouse
gas emissions have a significant impact on GTFP. Excessive use of pesticides and fertilizers
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is the biggest obstacle to the improvement in maize GTFP. Agricultural mechanization
plays a significant role in improving maize GTFP. Due to objective differences in agricul-
tural development and natural conditions in each region, the impact of mechanization
on agricultural GTFP in each region is different. The development level of agricultural
mechanization at different stages has different promotion effects on maize GTFP. Agricul-
tural mechanization has a two-way impact on maize GTFP. The factors of land type and
land area will not limit the promotion of agricultural mechanization to maize GTFP. In
addition to agricultural factors, agricultural financial investment, environmental pollution
control efforts, agricultural science and technology expenditure and other factors can play
a positive role in improving GTFP.

6.2. Policy Implications

Based on the conclusions of this study, the following policy recommendations can be made:
First, the relationship between agricultural mechanization and maize green produc-

tion should be comprehensively examined. The rational allocation of agricultural machin-
ery should be optimized, and the coordination between agricultural mechanization and
moderate-scale operation should be strengthened. The development of agricultural machin-
ery should be promoted to intelligent so as to facilitate the transformation and development
of agricultural machinery to green and high-end. Strengthening the actual operation level
of agricultural machinery causes the correlation between agricultural mechanization and
GTFP to reach a higher level.

Secondly, green agriculture requires increasing the protection of the environment,
the full use of agricultural ecological data resources in production, and promoting the
development of agricultural mechanization from replacing manual labor to coordinating
resource utilization. For example, when reducing maize carbon emissions, intermittent
irrigation techniques can be used to control greenhouse gas emissions. Each region should
strengthen research and development and the promotion of suitable agricultural machinery.
All departments should consider the specific needs of different types of food crops for
agricultural machinery. For example, maize has certain problems in the process of returning
straw to the field and mechanical tillage, and the straw cannot be used after being crushed.
Therefore, each region should strengthen relevant technologies and equipment to break
through the weak links of maize production, so as to provide support for the realization of
refined maize cultivation.

Third, promoting agricultural mechanization should combine regional characteris-
tics and agricultural machinery with the appropriate scale and terrain. For example, the
southwest region is mainly mountainous and hilly, and the use of large agricultural ma-
chinery is not convenient, so the promotion and publicity of small agricultural machinery
should be strengthened. The northwest irrigation region should increase the research and
development of water-saving irrigation equipment to promote agricultural production.

6.3. Research Limitations

This study enriches related research on the effect of agricultural mechanization in
maize green production. However, limited by personal ability and objective conditions,
this study has the following deficiencies:

First of all, the research scale of this study is at the provincial level, taking a single
maize crop as the sample, so statistical data on the relevant indicators required are difficult
to obtain. In this study, impact factor indicators such as disaster rate, environmental
pollution control efforts and scientific and technological expenditure cannot encapsulate
the data of individual maize crops, and it may affect the accuracy of the model if we replace
them with the overall agricultural data.

Secondly, because the level of agricultural mechanization is used to measure the state
of the development of agricultural mechanization in a region as a whole, using the ratio
of the total power of agricultural machinery to the total sown area of crops to measure
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the level of agricultural mechanization is not comprehensive. In a follow-up study, it is
necessary to add indicators that objectively reflect the level of agricultural mechanization.

Finally, the internal mechanism of the influence of agricultural mechanization on
regional maize green production is complex. This study analyzes from the perspective
of resource endowment, while this study only considers differences in regional topogra-
phy and land management scale and does not consider the moderating effect of climate
conditions. Therefore, the research results have certain limitations.
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