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Abstract: The aged stack results in resistance growth and power decline. At present, most of the
analyses of resistance growth are qualitative or identified by complex mechanism models. For more
effective identification, the distribution of relaxation times (DRT) method is applied to the aging
analysis of the stack. The individual polarization process of the stack corresponding to each DRT
peak is determined by appropriate experimental conditions and the impedance of the individual
polarization process is characterized by the peak area. The three DRT peaks from low frequency to
high frequency are identified as the mass transport, the charge transfer of oxygen reduction reactions
(ORRs), and the proton transport in the cathode catalyst layer (CCL) and anode side. The stack’s
voltage recession rate is 15% at the rated current density of 800 mA cm−2 after running for 2000 h in
the driving cycle. Mass transport is the main reason accounting for 66.1% of the resistance growth.
The charge transfer resistance growth cannot be ignored, accounting for 30.23%. The resistance
growth obtained by the DRT can quickly and accurately identify the main reason for stack decline
and therefore promises to become an important diagnostic tool in relation to aging.

Keywords: proton exchange membrane fuel cell stack; distribution of relaxation times; electrochemical
impedance spectroscopy; resistance growth; aging

1. Introduction

Aging is one of the key issues restricting the commercialization of proton exchange
membrane fuel cells (PEMFCs) [1,2]. Long time operations of starting/stopping [3], load
changing [4], and poor water and heat management [5,6] can lead to performance degrada-
tion, manifesting in the increased polarization loss of PEMFCs.

The methods used to explain polarization loss can be mainly divided into two cate-
gories: postmortem [1,7–10] and in situ [11–17] diagnostic techniques. For the postmortem
method, it is usually required to decompose the aged stacks, and the morphology analysis
of the membrane electrode assembly (MEA) and gas diffusion layer (GDL)/microporous
layer (MPL) is carried out. The problem with this method is that the microstructure of the
MEA and GDL/MPL will be destroyed in the process of decomposition. By contrast, in
situ methods do not have such problems.

Among the in situ methods, electrochemical impedance spectroscopy (EIS) has a pow-
erful electrochemical analysis capability that can distinguish polarization processes of mass
transport, charge transfer, and proton transport in different frequency domains [18–23].
The principle of EIS is based on applying harmonic disturbances to an electrochemical
system and measuring the impedance of the system over a wide frequency range. EIS is
sensitive to both the internal material parameters and external operating conditions of
electrochemical systems. Owing to the above characteristics and advantages, EIS has great
potential in the fields of material development, structural design parameter optimization,
and fault diagnosis [20]. In addition, EIS can be used to identify electrode degradation as a
valid symbol for evaluating the health of PEMFCs exposed to accelerated stress tests [19].
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However, interpreting measured EIS data in an appropriate way can be challenging. Equiv-
alent circuit models (ECMs) composed of equivalent electrical elements can be used to
interpret EIS data [24,25]. The equivalent circuit elements include resistance, inductance,
capacitance, constant phase element (CPE), Warburg element, etc. [20]. At present, there
are at least six basic ECMs for PEMFCs [20], and many variations on this basis. Each ECM
has its own application scenarios. Therefore, the proper use of an ECM requires prior
knowledge of the fuel cell system in order to use the model to describe the electrochemical
process accurately and the interpretation is always ambiguous because different models
might fit the same EIS measurement data [26–28].

To avoid these problems linked with ECMs, the distribution of relaxation times (DRT),
a complementary method that can enhance the analytical ability of ECMs, has been devel-
oped. DRT can identify the time constant of the electrochemical process without considering
the exact internal mechanism by the quasi-infinite series of R//C elements, so there is
no need for prior knowledge. The DRT method has been applied to the aging analysis
of solid oxide fuel cells [29–31] and lithium-ion batteries [32,33] because of its excellent
resolution capability of the individual polarization process. In the field of PEMFCs, DRT
is mainly used to analyze the relationship between polarization loss at different time con-
stants and electrochemical reaction processes [34–36]. Weiß et al. [36] first applied the
DRT method to impedance analysis of PEMFCs, and seven peaks were identified in the
DRT function. The peaks in the DRT function were interpreted with the cell’s internal
phenomena by a set of experimental conditions (current density, air stoichiometry, etc.).
Heinzmann et al. [35] identified a PEMFC’s polarization processes by setting a wide range
of operating conditions, including current densities, relative humidity, and various cathode
and anode gas compositions. The results showed that the peaks of DRT function from low
frequency to high frequency are related to the mass transport process, the charge transfer
process, and proton transfer in the cathode catalyst layer (CCL), respectively. Kulikovsky
et al. [34] proposed a simple numerical method for the calculation of DRT for PEMFC
impedance. The relationship between the oxygen transfer peak of DRT and the oxygen
transfer coefficient in CCL was studied by this method and it was used as an indicator for
cathode flooding. Yuan et al. [23] established a two-dimensional impedance model of a
PEMFC to qualitatively analyze the electrochemical polarization process represented by
DRT distribution. A systematic dynamic configuration and model analysis results have
shown that the polarization processes form ultra-high frequency to ultra-low frequency
correspond to anode charge transfer, proton transfer in the CCL, charge transfer in the
cathode, oxygen transport in the cathode, and dissolved water transport, respectively.

Although the above studies have played a great role in promoting the application
of DRT in PEMFC design, some aspects are not covered. Firstly, most of the above stud-
ies on PEMFCs are qualitative analyses of the polarization process represented by DRT
distribution which involved changing experimental conditions or impedance models but
lack quantitative analysis of the resistance of each polarization process through DRT dis-
tribution, namely, DRT peaks. In addition, there are few studies on the aging analysis of
PEMFCs using the DRT method, although DRT has been applied in the aging analysis of
lithium-ion batteries [33] and solid oxide fuel cells [31]. This paper aims to explore the
application of the DRT method in aging analysis of PEMFCs.

In this paper, the DRT method is used to quantitatively analyze the resistance growth
of the aged vehicular PEMFC stack. The main idea and the analysis procedure are shown
in Figure 1. Firstly, the internal polarization process corresponding to each DRT peak is
analyzed and verified by appropriate experiments. Secondly, the polarization resistance is
calculated by the area of the DRT peak and resistance growth analyses of the aged vehicular
PEMFC stack using the DRT, ECM, and I–V polarization curves are compared. Finally, it
is concluded that the DRT method is effective in analyzing the aged stack and the main
reason for the resistance growth is mass transport.
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Figure 1. Illustration of the main idea and the analysis procedure.

2. Materials and Methods
2.1. The PEMFC Stack and Test Bench

The large-scale PEMFC stack manufactured by PowerCell Sweden AB in Gothenburg,
Sweden is used for the experiments. Table 1 shows the key parameters of the stack. In order
to ensure the output efficiency of the system, we define the single cell voltage of 0.67 V as
the rated point of the stack.
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Table 1. Key parameters of the stack.

Parameters Values

Specification S2
Pitch number 216

Electrochemical active area 195 cm2

Cathode/anode Pt loading 0.4 mg cm−2/0.1 mg cm−2

Rated output power of stack 22.6 kW
Rated current of stack (0.67 V) 156 A

Maximum output power of stack 30.3 kW
Maximum current of stack (0.6 V) 234 A

Working temperature 70~80 ◦C
Bipolar plate Metal

Flow field Counter flow

The PEMFC stack test bench of FuelCon S25-LT (HORIBA FuelCon GmbH/Germany)
is used for gas supply and current loading for the stack, controlling the inlet temperature,
humidity, pressure, flow rate of gases, cooling water temperature, and the current of the
direct current (DC) load. Self-made AC impedance equipment is used for the superposition
of excitation current and the acquisition and processing of signals; an illustration is shown
in Figure 2. The EIS of the PEMFC stack is measured under different current densities
through a programable electronic load (Chroma 63204 (Chroma ATE Inc./Taiwan, China))
by sweeping frequencies generated by a signal generator covering the range of 2 kHz to
0.4 Hz, with three points per decade. The AC amplitude is set as 5% of the DC load as the
galvanostatic mode to perform a linear response. The oscillograph recorder collects the
total voltage and total current of the PEMFC stack for impedance calculation.
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Figure 2. Illustration of the self-made AC impedance equipment.

2.2. Procedure of the Experimental Test

Before the EIS test, the experimental stack is operated steadily under the operating
conditions in Table 2 for 1 h at 500 mA cm−2 to ensure the repeatability of the results.
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The operating variable of current densities for the EIS and polarization curve test of the
new stack covers 20 mA cm−2 to 1200 mA cm−2 and the other operation conditions are
referred to in Table 2. For the aged stack, the current densities range covers 20 mA cm−2 to
800 mA cm−2. It operates for 15 min to ensure the validity of the test after changing the
current density, and each point of current density is measured three times.

Table 2. The operation conditions of the PEMFC stack.

Parameters Values

Operating temperature 70 ◦C
Anode relative humidity 60%

Current density 20~800 mA cm−2

Cathode relative humidity 80%
Anode stoichiometry 1.5

Cathode stoichiometry 2
Anode pressure 0.85 bar

Cathode pressure 0.75 bar

2.3. Kramers–Kronig Validity Test

The quality of the measured impedance data needs to be evaluated in order to effec-
tively analyze the data and interpret the physical significance. The validity of measured
impedance spectra is necessary before further analysis, which needs to meet the require-
ments of linearity, time-invariance, and causality. At present, the verification method of the
Kramers–Kronig (KK) transformation is widely used [37]. For a linear, time-invariant, and
causal system, the real part ZRe(ω) and imaginary part ZIm(ω) of the impedance spectrum
are related. The equations are as follows:

ZRe(ω) =
2
π

∫ ∞

0

ω′·ZIm(ω′)

(ω′2 −ω2)
dω′ (1)

ZIm(ω) = − 2
π

∫ ∞

0

ω·ZRe(ω
′)

(ω′2 −ω2)
dω′ (2)

where ω represents the radian frequency. However, the semi-infinite integral can hardly
be resolved. To overcome this problem, an approach without direct calculation of the
Equations (1) and (2) is proposed, in which the consistency of the impedance spectrum and
KK transformation is judged by an appropriate equivalent circuit model (ECM) conforming
to KK relations [24,38]. To overcome the nonlinearity of the fitting, there is a method that
uses an equivalent circuit model consisting of a resistor in series with a number of R//C
elements and fits to the measured impedance data in the form of ohmic resistance and a
time constant [39,40]. The validity of the data can be verified quickly by this method. In
order to judge the repeatability of the measured impedance data and the KK fitted ECM,
the deviation is represented in residuals. The equations are as follows:

∆Re(ω) =
ZRe(ω)− ẐRe(ω)

|Z(ω)| (3)

∆Im(ω) =
ZIm(ω)− ẐIm(ω)

|Z(ω)| (4)

where ẐRe(ω) represents the real part of the model impedance, ẐIm(ω) represents the
imaginary part of the model impedance, and |Z(ω)| represents the absolute value of the
measured impedance spectrum. In this paper, Lin−KK Tools software (https://www.iam.
kit.edu/wet/english/Lin-KK.php (accessed on 7 April 2022)) [40] is used to produce the
fitted ECM and calculate the residual between the data and the model. The impedance
data is considered to conform to the KK relations when the relative residual is less than 1%.

https://www.iam.kit.edu/wet/english/Lin-KK.php
https://www.iam.kit.edu/wet/english/Lin-KK.php
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2.4. Distribution of Relaxation Times

DRT identifies each electrochemical process through an intrinsic relaxation time con-
stant, and the amplitude of each time constant represents the strength of the impedance of
each electrochemical process. The relationship between the complex impedance Z(ω) and
the distribution function of relaxation time g(τ) is represented below:

Ẑ(ω) = R0 + Zpol(ω) = R0 + Rpol

∫ ∞

0

g(τ)
1 + jωτ

dτ (5)

where τ represents the relaxation time constant of the R//C element depicted by τ = RC,
R0 represents the ohmic resistance, Zpol(ω) represents the polarization impedance, and
Rpol represents the polarization resistance and the radian frequency depicted by frequency
f of ω = 2π f . Equation (5) is usually written as the formula below, with the expression
γ(ln τ) = τg(τ), because the EIS data are usually taken on a logarithmic scale.

Ẑ(ω) = R0 + Zpol(ω) = R0 + Rpol

∫ ∞

−∞

γ(ln τ)

1 + jωτ
d(ln τ) (6)

The DRT method is a process of deconvolution γ(ln τ) from measured impedance
results, and this process will result in ill-posed and over-fitting problems [41]. To ensure
that γ(ln τ) is as accurate as possible, several approaches have been proposed. For example,
Fourier transform [42,43], maximum entropy [44], regularization [45–47], Monte Carlo [48],
evolutionary programming [49], and so on. The regularization method is not only simple
in operation but also adjustable in relation to noise resistance [31]. So, in this work, the
regularized regression approach is used [45–47]. Firstly, γ(ln τ) should be discretized. The
discretization form is as follows:

γ(ln τ) =
M

∑
m=1

xm∅m(Inτ) (7)

where xm represents the weight parameter, ∅m(Inτ) represents the discrete basis function,
and M represents the number of basis functions. By combining Equations (6) and (7), the
discretized impedance can be obtained:

Ẑ(X, ω) =
M

∑
m=1

[
xm

(
Rpol

∫ ∞

−∞

∅m(Inτ)

1 + jωτ
d(ln τ)

)]
+ e(ω) (8)

where X represents the M dimension weight vector and e(ω) represents the discretization
error. The vector X is estimated by minimizing the objective function S(X):

S(X) =
N

∑
n=1

[
Z(ω)− Ẑ(X, ω)

]2 (9)

where N represents the impedance measurement points. Since S(X) is sensitive to exper-
imental deviation, it will lead to unstable optimization results and ill-posed problems.
Therefore, secondly, a regularization method is introduced, and the function is as follows:

S(X) =
N

∑
n=1

[
Z(ω)− Ẑ(X, ω)

]2
+ λP(X) (10)

where λ represents the regularization parameter and P(X) represents the penalty term. The
selection of the regularization parameter λ is crucial to the level of Tikhonov regularization.
A high regularization parameter will lead to over-fitting and over-interpretation and
to deviations between model and impedance data [50]. Therefore, over-fitting should be
avoided as far as possible. The sum of squared residuals (SSR) under different λ can be used
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to select the appropriate regularization parameter. The public software ‘DRTtools’, an open-
source MATLAB graphical user interface (GUI), is adopted to calculate the distribution
function of relaxation time [47].

3. Results and Discussion
3.1. Validity and Analysis of Measured EIS Data

Figure 3a shows a Nyquist plot of typical fuel cell impedance spectrum data at a
current density of 400 mA cm−2 for a new stack in a frequency range of 0.4 Hz to 2 kHz.
The Nyquist plot shows R0 defined as a high-frequency intercept and Rpol defined as
the subtraction of the low-frequency intercept from R0. Since DRT requires high-quality
EIS data, the validation of KK relations of each group of EIS data is required before
DRT analysis. Figure 3b shows typical KK validation results at the current density of
400 mA cm−2 of the new stack. The relative residuals between the imaginary part and the
real part of the impedance are less than 0.5% in the whole frequency range.

Sustainability 2022, 14, 5677 8 of 20 
 

 
Figure 3. (a) Nyquist plot of EIS data at a current density of 400 mA cm−2 of a new stack. (b) Relative 
residual of the KK transformation. 

As can be seen from Section 2.2, before the DRT analysis can be performed, 𝜆 must 
be carefully evaluated to obtain a reasonable distribution function for the given EIS data. 
The DRT results with different 𝜆 values are shown in Figure 4a. Although two peaks ap-
pear with 𝜆 values of 10−1, there is a large overlap between the two peaks. Two obvious 
peaks are recognized with 𝜆 values of 10−2 to 10−4. From the relative residual distribution 
of the real part and the imaginary part in Figure 4b,c, the oscillation of the relative residual 
is more remarkable with the 𝜆 of 10−1. Figure 4d depicts the SSR of the calculated DRT 
with 𝜆 from 101 to 10−7. The SSR decreases exponentially with the decrease in the 𝜆 value 
from 101 to 10−2. When reducing 𝜆 to 10−2, the SSR tends to balance, and when the 𝜆 is 
further reduced, the SSR is almost unchanged. This means that further decreasing 𝜆 
shows no notable improvement in DRT results or model accuracy while it increases the 
risk of system oscillation. Considering the residual and avoiding oscillation, it is reasona-
ble to set the 𝜆 value to 10−3. 

Figure 3. (a) Nyquist plot of EIS data at a current density of 400 mA cm−2 of a new stack. (b) Relative
residual of the KK transformation.

The DRT method only cares about the capacitance characteristics of the polarization
process. According to reports in the literature, the inductance effect is caused by the
experimental equipment and wiring at high frequency (f > 10 kHz) and the adsorbent and
water transport in the membrane at low frequency (f < 0.4 Hz) [51–53]. Therefore, it is
reasonable to set the frequency range for DRT analysis at 0.4 Hz to 2 kHz.

As can be seen from Section 2.2, before the DRT analysis can be performed, λ must be
carefully evaluated to obtain a reasonable distribution function for the given EIS data. The
DRT results with different λ values are shown in Figure 4a. Although two peaks appear
with λ values of 10−1, there is a large overlap between the two peaks. Two obvious peaks
are recognized with λ values of 10−2 to 10−4. From the relative residual distribution of
the real part and the imaginary part in Figure 4b,c, the oscillation of the relative residual
is more remarkable with the λ of 10−1. Figure 4d depicts the SSR of the calculated DRT
with λ from 101 to 10−7. The SSR decreases exponentially with the decrease in the λ value
from 101 to 10−2. When reducing λ to 10−2, the SSR tends to balance, and when the λ is
further reduced, the SSR is almost unchanged. This means that further decreasing λ shows
no notable improvement in DRT results or model accuracy while it increases the risk of
system oscillation. Considering the residual and avoiding oscillation, it is reasonable to set
the λ value to 10−3.
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3.2. The Polarization Process Analysis of a New Stack with DRT

In order to analyze the polarization loss variation of the aged stack and further explain
the degradation mechanism, it is necessary to use the DRT method to identify the individual
polarization processes of the new and aged stacks.

That the polarization curve of the PEMFC is nonlinear reveals an exponential drop at
low current densities, a nearly linear drop at medium current densities, and a sharp drop
at high current densities. Therefore, the polarization impedance is different in the whole
range of current densities. In order to describe the overall behavior of the system, the range
of current densities for EIS testing is taken from 20 mA cm−2 to 1200 mA cm−2, covering
low and high current densities. The other operating conditions are kept constant, according
to Table 1.

The Nyquist plots in Figure 5a,c show that the polarization resistance Rpol decreases
rapidly from 1529 mΩ cm2 to 355 mΩ cm2 with the increase in current density at low
current density regions (from 20 mA cm−2 to 200 mA cm−2) and decreases gently from
340 mΩ cm2 to 294 mΩ cm2 at medium current density regions (from 300 mA cm−2

to 600 mA cm−2). However, at high current density regions (from 800 mA cm−2 to
1200 mA cm−2), the polarization resistance Rpol increases slightly from 276 mΩ cm2 to
353 mΩ cm2 with the increase in current densities. The main reason is that the mass
transport limitation gradually dominates.

From the enlarged view of the above figure, the ohmic resistance R0 is almost constant
at 80 mΩ cm2 over the entire current densities range. In addition, at low current density
regions, an obvious arc appears in the high-frequency region of the EIS data, which will be
explained in the DRT analysis below.
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Figure 5b,d is the DRT spectra under overall current densities. In Figure 5b, the DRT
spectra contains three peaks. In the low current density regions (from 20 mA cm−2 to
200 mA cm−2), the P2 peak dominates the polarization process and rapidly decreases,
and the characteristic frequency gradually shifts right from 3 Hz (20 mA cm−2) to 20 Hz
(200 mA cm−2) with the increase in current density. In the enlarged view of Figure 5b,
there is a P3 peak in the high-frequency region next to the P2 peak. The P3 peak has almost
no correlation with the current density, and the characteristic frequency is about 300 Hz.
The peak P3 in the high-frequency region is related to the process of the anode side and
the proton transport of the cathode catalyst layer [23,35]. Due to the small peak of P3, the
contribution for the polarization loss analysis can be ignored. The P1 peak begins to appear
and the characteristic frequency is about 1.3 Hz (200 mA cm−2) in the low-frequency region
left to peak P2.

In Figure 5d, in the middle and high current density regions (from 300 mA cm−2 to
1200 mA cm−2), the P2 peak decreases slowly with the increase in current density, and the
characteristic frequency continuously shifts right to 70 Hz (1200 mA cm−2). Due to the right
shift of the P2 peak, the characteristics of the P3 peak are rolled inside the P2 peak; therefore,
the P3 peak almost disappears in the high current density region. This phenomenon
can also be verified from the high-frequency region of the Nyquist plot which has an
obvious arc at the low current density region but disappears at the high current density
region. With the increase in current density, the P1 peak gradually rises and dominates the
polarization process. The characteristic frequency of P1 gradually shifts to the right of 6.5 Hz
(1200 mA cm−2). The shift in the characteristic frequency of P1 is mainly due to the decrease
in the polarization resistance.

From the above analysis, the strongly dependent relationship between the P2 peak and
current density are highly consistent with the charge transfer impedance of oxygen reduc-
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tion reactions (ORRs), and the charge transfer impedance also dominates the polarization
loss in the low current density regions [54,55].

In previous studies [35,36], the P1 peak attributed to the cathode oxygen mass transport
impedance was obtained by EIS testing under pure oxygen conditions in which the P1
peak almost disappeared. In order to further verify the relationship between the cathode
oxygen mass transport and the P1 peak, the EIS tests changed the air stoichiometry at the
high current density (800 mA cm−2) from 2.3 to 1.4 (the other operating conditions refer
to Table 3). According to the Nyquist plot in Figure 6a, as the air stoichiometry gradually
decreases, the right arc gradually increases. It can be seen more clearly from the DRT
spectrum in Figure 6b that the P1 peak is also gradually increasing. This conclusion is
consistent with the air stoichiometry mainly affecting the cathode mass transport under
high current density [56].

Table 3. The resistance values of the new and aged stacks at different current densities.

Current Density Type New Stack Aged Stack Growth Rate

60 mA cm−2

Rct 693 mΩ cm2 854 mΩ cm2 23%
Rdiff 0 0 -
Rohm 81.5 mΩ cm2 104 mΩ cm2 22%
Ran 24.3 mΩ cm2 6 mΩ cm2 −75%

200 mA cm−2

Rct 292 mΩ cm2 372 mΩ cm2 27%
Rdiff 78 mΩ cm2 105 mΩ cm2 35%
Rohm 84.8 mΩ cm2 90 mΩ cm2 6%
Ran 4.7 mΩ cm2 0 -

400 mA cm−2

Rct 183 mΩ cm2 220 mΩ cm2 20%
Rdiff 146 mΩ cm2 195 mΩ cm2 34%
Rohm 83 mΩ cm2 85.4 mΩ cm2 3%
Ran 0 0 -

800 mA cm−2

Rct 109 mΩ cm2 139 mΩ cm2 28%
Rdiff 190 mΩ cm2 254 mΩ cm2 34%
Rohm 82 mΩ cm2 86 mΩ cm2 4%
Ran 0 0 -
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3.3. The Polarization Process Analysis of the Aged Stack with DRT

The aged stack had run for above 2000 h on the bus and the equivalent driving cycle is
shown in Figure 7a. The total driving cycle time is 500 min, and the main operating points
are 30% (240 mA cm−2), 50% (400 mA cm−2), and 100% (800 mA cm−2) rated power. After
that, the polarization curve of the aged stack is shown in Figure 7. Compared with the new
stack, the voltage of the aged stack decreases significantly at each current density point. As
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can be seen from the I–V polarization curve, the voltage has been reduced from 0.89 V to
0.85 V even at a low current density (20 mA cm−2). The voltage recession also increases
gradually with the increase in current density. The voltage is reduced from 0.67 V to 0.57 V
at the rated current density of 800 mA cm−2 with a recession rate of 15%. Furthermore, the
voltage data of the stack at 100% rated power (800 mA cm−2) is extracted, and the average
voltage of the stack at this operating point per day is used as the average cell voltage
Vcell. The curve of Vcell at 800 mA cm−2 during the driving cycle is shown in Figure 7c.
Vcell gradually decreases from 0.65 V to 0.57 V. In the first 120 days, Vcell undergoes large
fluctuations but the overall decline is slight. This abnormal fluctuation is mainly due to
the unsuitability of the operating conditions of the stack caused by the change in ambient
temperature. For example, the capacity of the air compressor will decrease with an increase
in ambient temperature, resulting in water management problems for the stack. After
120 days, Vcell gradually decreases from 0.64 V to 0.57 V, and the Vcell reaches its lowest
point at 240 days. The EIS tests are carried out at 240 days.
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Due to the severe decay of the aged stack, it is difficult to operate stably for a long time
under large current density regions. Therefore, the EIS data testing range is taken from
20 mA cm−2 to 800 mA cm−2. The other operating conditions are kept constant, according
to Table 2.

The Nyquist plots from Figure 8a,c show that the polarization resistance Rpol decreases
rapidly from 2220 mΩ cm2 to 450 mΩ cm2 with the increase in current density at low cur-
rent density regions (from 20 mA cm−2 to 300 mA cm−2); however, it remains constant at
410 mΩ cm2 in the middle and high current density regions (from 400 mA cm−2 to
800 mA cm−2). The polarization resistance Rpol increases by 48% compared with the
new stack at 800 mA cm−2.
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From the enlarged view of the above figure, it can be seen that the ohmic resistance
R0 slightly drops from 115 mΩ cm2 to 90 mΩ cm2 in the low current density regions and
remains almost constant at 90 mΩ cm2 in the high current density region. The ohmic
resistance Ro increases by 4% compared with the new stack at 800 mA cm−2 (Table 3).

In Figure 8b, in the low current density regions, the P2 peak also rapidly decreases
and the characteristic frequency gradually shifts right from 3.7 Hz (20 mA cm−2) to 21 Hz
(200 mA cm−2) with the increase in current density. In the enlarged view of Figure 8b, the
characteristic frequency of the P3 peak is 310 Hz.

In Figure 8d, in the high current density regions (from 300 mA cm−2 to 800 mA cm−2),
the P2 peak decreases slowly with the increase in current density, and the characteristic
frequency continuously shifts right to 38 Hz (800 mA cm−2). The P3 peak also disappears in
the high current density region. With the increase in current density, the P1 peak gradually
rises and dominates the polarization process. The characteristic frequency of P1 gradually
shifts to the right to 4.7 Hz (800 mA cm−2). From the above analysis, the characteristic
frequency of the P1 and the P2 peaks has slightly increased, but the distribution function
has undergone a significant increase compared with the new stack.

3.4. Individual Resistance Growth of the Aged Stack

The RC element can represent the electrochemical system with distributed parameters
and the relevant DRT plot is shown in Figure 9a,b. The impedance of an RC element can be
expressed as R/(1 + (jωτ)); τ is the time constant. For the standard RC elements, the area of
the peak is proved to be equal to the resistance of the RC element and the time constant τ is
equal to the RC. Figure 9c displays the calculated DRT spectrum with a λ value of 10−3 at
the current density of 400 mA cm−2 for the new stack. There are two obvious peaks, hence
a two-order RC ECM is applied and compared with the DRT results in Figure 9c. Each peak
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region represents an independent polarization process, and the area within the span of
each region from fl to fu represents the resistance, Rpol−i, of the polarization process [33].

Rpol−i =
∫ 1/(2π fl)

1/(2π fu)
γ(ln(1/(2π f )))d(ln(1/(2π f ))) (11)
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The capacitance C can also be calculated by the characteristic frequency
f (C = 1/(2π f R)). Then, the parameters of the two-order RC ECM are fitted using
Zview software (Scribner Associates Inc./Southern Pines, NC, USA) with the initial value
set by the DRT. Based on the above polarization process analysis and the principle of DRT,
the area of the P1 peak represents the cathode oxygen mass transport resistance, Rdiff; the
area of the P2 peak represents the charge transfer resistance, Rct, of ORRs; and the area of
the P3 peak represents the sum of the anode chemical reaction resistance and the proton
transport resistance of the cathode catalytic layer, Ran. The intercept at the real axis of the
Nyquist plot in the high-frequency region represents the ohmic resistance, Rohm.

In this paper, the EIS data at four typical current densities are used to comparatively
analyze new and aged stacks.

From the Nyquist plot in Figure 10a, the aged stack has a larger arc, which means
that the polarization resistance, Rpol, is larger. The enlarged view of Figure 10a clearly
shows that the ohmic resistance, Rohm, slightly increases. Similarly, from the DRT spectra
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in Figure 10b, the P1 and P2 peaks of the aged stack are larger, while the characteristic
frequency only slightly increases.
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Figure 10c–f compares the individual resistance of the new and aged stack respec-
tively. As can be seen from Figure 10c, the Rct of the aged stack decreases gradually from
854 mΩ cm2 to 139 mΩ cm2 (from 60 mA cm−2 to 800 mA cm−2). At each current density,
the growth rate of Rct is about 25% compared to the new stack. Rdiff is basically 0 at a low
current density and increases rapidly from 100 mΩ cm2 to 250 mΩ cm2 (from 200 mA cm−2

to 800 mA cm−2) in the aged stack (Figure 10d). The growth rate of Rdiff of the aged stack
compared to the new stack is about 35%. It can be seen from Figure 10e that the Rohm of
the aged stack slightly increases compared with that of the new stack. The growth rate is
about 5%. However, the growth rate is larger at a low current density, possibly because
the gas humidity of the aged stack does not completely reach the preset humidity range.
It can be seen from Figure 10f that the resistance value of Ran is relatively small and only
exists in low current density regions. The growth rate of Ran is negative in the low current
density range and Ran even disappears in the middle and high current density regions.
This anomaly may be due to the fact that the characteristic frequency of the P2 peak of the
aged stack is shifted to the right compared to the new stack. The P3 peak is more affected
by the P2 peak and is rolled inside the P2 peak at a smaller current density, resulting in a
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decrease in the area of the P3 peak. With the increase in current density, the P2 peak shifts
more to the right, resulting in the disappearance of the P3 peak. However, the P3 peak
is relatively small and can be ignored without affecting the accuracy of the calculation.
The resistance values of the new and aged stacks at different current densities are shown
in Table 3.

3.5. Recession Analysis of the Aged Stack

In order to verify the accuracy of the resistance growth in each polarization process
decomposed by the DRT method in the analysis of the decay process of the aged stack, the
resistance growth decomposed by the ECM of the measured EIS data and the equivalent
resistance growth in the I–V polarization curve at the rated current density of 800 mA cm−2

are compared. As can be seen from Figure 11a, the sum of the resistance growth of each
polarization process decomposed by DRT is 97 mΩ cm2, the resistance growth analyzed by
the ECM of the measured EIS data is 89 mΩ cm2, and the equivalent resistance growth of
the voltage decrease through the I–V polarization curve ∆Rtotal is 99 mΩ cm2. The DRT
method is closer to the actual resistance growth, and the deviation is about 3%. Therefore,
it can be considered that the DRT method is effective in the analysis of the aged stack.
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Figure 11b shows the proportion of different polarization resistance growths at the
rated current density of 800 mA cm−2. In Figure 11b, ∆Rdiff overwhelmingly dominates
the resistance growth of 66.1%, which means that the oxygen mass transport performance
of the aged stack undergoes a severe decline and the possible influencing factors include
the GDL/MPL and the catalyst layer (CL). The low temperatures at which the PEMFC
operates mean that the product water is almost liquid. This liquid water can accumulate
in the pores of the CL and must be removed to keep the gas pathways to the active
sites of the CL unblocked [57]. Many researchers have reported that the GDL interacts
with the changes in water during durability tests. These changes appear to occur at the
microstructural level [58,59]. The GDL gradually changes from hydrophobic to hydrophilic
and gas diffusion and convection are blocked after the durability test [60]. In addition,
liquid water covers the catalyst–ionomer phase in the CL, limiting the flow of gas to the
active platinum sites [61]. As a result, the performance of the PEMFC decreases drastically
under high current densities. Keeping the hydrophobic properties of the GDL/MPL
hydrophobic gradient constant is important for maintaining mass transport during the
durability test. ∆Rct also makes a great contribution to the resistance growth of 30.23%.
Carbon corrosion and the dissolution and aggregation of platinum catalysts may be the
main reasons for the increase in ORR polarization resistance [1,14,17,62]. ∆Rohm has little
effect on resistance growth, which is only 3.67%.
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4. Conclusions

In this work, the quantitative DRT method has been successfully applied to analyze the
aged vehicular PEMFC stack by running a driving cycle for 2000 h. After 2000 h operation
on the bus, the performance of the stack deteriorates seriously, and the rated power at
800 mA cm−2 declines by about 15%. The resistance growth method based on the DRT is
proposed to determine the reason for the decline of the stack.

Firstly, the peaks in the DRT spectra representing the individual polarization process
are verified by changing the air stoichiometry and the current density. The P1 peak in the
low-frequency region (3 Hz) gradually increases with the decrease in air stoichiometry,
which represents oxygen mass transport impedance. The P2 peak in the middle frequency
region (20 Hz) decreases exponentially as the current density increases, which represents
the charge transfer impedance of the ORRs. The P3 peak in the high-frequency region
(300 Hz) is almost unaffected by current density, which represents the impedance of proton
transfer in the CCL and anode side. The area of the P3 peak is almost negligible and rolled
inside the P2 peak in the high current density region. The high-frequency intercept of the
Nyquist plot represents the ohmic resistance.

The impedance of each polarization process is calculated quantitatively by each cor-
responding peak area and its influence on power decline is analyzed. By calculating the
polarization resistance and ohmic resistance of the new and aged stack, the resistance
growth of the aged stack is given. The resistance growths obtained by the DRT, ECM, and
I–V of the aged stack at a rated current density of 800 mA cm−2 were compared to verify
the accuracy of the DRT method. The DRT method has been found to yield a result closer to
the actual resistance growth, with a deviation of about 3%, which verifies the effectiveness
of the DRT method. The increase in mass transport resistance is the main reason for the
resistance growth, accounting for 66.1% at rated power. We believe that optimizing the
oxygen mass transport performance is the key factor in improving the lifetime of the stack.
The charge transfer resistance of the ORRs also makes a great contribution to the resistance
growth of 30.23% at rated power. The ohmic resistance has little effect on resistance growth.

Therefore, the DRT method can quickly and accurately separate the individual polar-
ization process from the EIS data, with no need to establish a complex mechanism model or
an ECM. It is therefore expected to become an important diagnostic tool for PEMFC aging.
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