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Abstract: To provide a favorable temperature for a power battery liquid cooling system, a bionic
blood vessel structure of the power battery liquid cooling plate is designed based on the knowledge
of bionics and the human blood vessel model. For three different discharge rates of 1C, 2C, and 3C,
FLUENT is used to simulate and analyze the heat dissipation performance of the liquid cooling plate
with a bionic vascular structure. The influence of the pipe distance (A1 and A2) at the coolant outlet,
the thickness of the liquid cooling plate, the inner pipe turning radius R of the pipe in the channel,
and the mass flow of coolant on the heat dissipation performance are studied. The results show that
the pipe distance (A1 and A2), plate thickness, and inner pipe turning radius R have significant effects
on the heat dissipation of the liquid cooling plate, especially under a 3C discharge. In addition, the
channel area at the coolant outlet also has great influence on the heat dissipation performance of the
liquid cooling plate, and the variable width optimization of the channel area at the outlet greatly
improves the heat dissipation performance of the liquid cooling plate. Increasing the inlet mass flow
rate can improve the heat dissipation capacity, but at the expense of a pressure drop. A verification
experiment is designed for 3C discharge. The results show that the error between the experiment and
simulation results is within 9.8%; therefore, the simulation is accurate, and the liquid cooling plate
has a significant heat dissipation effect.

Keywords: power battery; bionic vascular structure; liquid cooling plate; heat dissipation perfor-
mance; simulation analysis

1. Introduction

In recent years, the rapid development of the global economy has also triggered a
series of energy, environmental, and climate problems [1,2]. In order to solve these prob-
lems, the automotive industry is vigorously developing electric vehicles. The key to the
development of electric vehicles depends on the power battery technology [3–5]. The
thermal management of power batteries is one key battery technology [6–8]. The power
battery generates a lot of heat during discharging operation [9–12], and the temperature
of the battery directly affects the performance of the battery [13]. Therefore, the power
battery has certain requirements on the temperature: the maximum temperature should be
kept below 313.15 K (40 ◦C), and the temperature difference should be controlled within
5 ◦C [14,15]. Bionics is an interdiscipline between biology and engineering technology [16].
The purpose of bionics is to understand the principles of natural design and draw technical
solutions [17,18]. Nature has existed for billions of years. After a long period of natural
selection and survival of the fittest, nature has evolved many efficient systems [19]. For
example, the fractal structure of the vascular network of the human body is a naturally
optimized network flow channel for heat exchange or substance transfer. It has a uniform
microchannel distribution and is conducive to the transfer of energy and substances. Com-
pared with typical parallel channels, these microchannel structures improve the efficiency
of heat exchange and reduce the energy loss in fluid flow. The shark skin structure is a

Sustainability 2022, 14, 5541. https://doi.org/10.3390/su14095541 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14095541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su14095541
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14095541?type=check_update&version=1


Sustainability 2022, 14, 5541 2 of 16

good bionic structure for the reduction in fluid resistance, the leaf vein structure has some
similarities with animal blood vessels in fluid movement, and spider web and honeycomb
structures are mainly used in material structure strength and lightweight technology.

Tesla’s Model S has two-way cooling channels between the power batteries, which
are wrapped by thermal conductive materials. This cooling structure greatly improves
the heat capacity of the battery pack, increases the contact area of the battery and the
pipeline, and makes the temperature distribution more uniform [20]. Brandner J. proposed
and implemented an efficient microstructured heat exchanger. Research shows that the
optimization of the structure or arrangement of the flow channels can improve heat dissi-
pation performance [21]. Hermann designed a three-dimensional model of a biomimetic
blood vessel using CAD software. A. Kremers studied a radiator with a biomimetic vessel
structure using COMSOL software. The research shows that the structure with the straight
inlet design had a better heat dissipation effect [22]. Hermanndesigned four kinds of
micro-channels with the same heat exchange area, and the research shows that the heat
dissipation effect of the fractal channel was better under the condition that the coolant inlet
flow was the same [23]. Xia studied Effects of different geometric structures on fluid flow
and heat transfer performance in microchannel heat sinks [24]. Hu and Yi improved the
driving range of electric vehicles by considering the battery temperature, heat dissipation
power, and power distribution of hybrid energy sources [25–27].Li Bo et al. designed a heat
management device for battery packs. The device is provided with a heat transfer plate
between the battery cells, and the heat transfer plate is also coated with a graphene layer.
This structure increases the function of low-temperature heating. The heat dissipation effect
and heating effect were effectively improved [28]. In this paper, a microchannel liquid
cooling plate with a bionic vascular structure is designed, and the heat dissipation model
of the liquid cooling plate is established and simulated by using Fluent software. The
influence of the pipe distance (A1 and A2) at the coolant outlet, the plate thickness of the
liquid cooling plate, the inner pipe turning radius R of the inner pipe of the channel, and
the mass flow of the coolant on the heat dissipation performance are studied. It provides a
theoretical and practical basis for the design and optimization of the bionic structure liquid
cooling plate.

2. Structural Modeling and Calculation Settings
2.1. Modeling of Liquid Cooling Plate with Imitation Blood Vessel Structure

The human vascular system is optimized for efficient fluid delivery. During the entire
blood delivery process, an efficient network delivery system can reduce the additional
energy consumption generated by the blood flowing in the blood vessel; thus, the human
blood vessel is an efficient microchannel network. Therefore, a liquid cooling plate suitable
for power batteries can be designed according to this characteristic. Figure 1a shows a
typical human blood vessel structure. Drawing on a similar distribution form and using
a quasi-fractal design method, the bionic structure of the liquid cooling plate is shown in
Figure 1b.
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Figure 1. Human blood vessel structure and bionic liquid cooling plate structure: (a) human blood 
vessel structure; (b) bionic structure of liquid cooling plate. 
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Figure 1. Human blood vessel structure and bionic liquid cooling plate structure: (a) human blood
vessel structure; (b) bionic structure of liquid cooling plate.
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2.2. Verification of the Independence of Boundary Conditions and Grid
2.2.1. Boundary Conditions

The heat source of the battery is mainly from the reaction heat Qr, the side reaction heat
Qs, the polarization heat Qp, and the Joule heat Qj that generates inside the battery during
its operation. The internal ohmic resistance of the lithium battery is mainly composed
of the internal resistance of the electrode material and the separator. In the charging and
discharging working state, the internal ohmic resistance produces Joule heat Qj, which is
the main reason for the increase in temperature in the battery. The formula for calculating
the total calorific value of the battery is as follows [29,30]:

Qtotal = Qr + Qp + Qj + Qs ≈ Qj = I2Re (1)

where Qtotal represents the total calorific value of the lithium ion battery; I represents the
battery charge and discharge current; Re represents the internal ohmic internal resistance
of the battery.

In this study, the cold plate was assumed to be homogeneous and isotropic. The
coolant was assumed to be steady and incompressible. The conservation equations for
mass, momentum and energy are illustrated as follows:

∂u1

∂x
+
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+
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= 0 (2)
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where ρl represents the density of water; ∇2 represents the Laplacian operator; Cpl re-
pressents the heat capacity of the fluid; λ f represents the thermal conductivity of the
cooling water; P represents the pressure of the coolant; u1, u2, and u3 represent the velocity
components of the coolant in the x-, y-, and z-axes, respectively.

The properties of the fluid and the solid (aluminum) are presented in Table 1, assuming
that the upper and lower surfaces of the cold plate were subject to the same heat flux. We
assumed a capacity of 20 Ah and a nominal voltage of 3.2 V for the batteries. When the
battery was discharged at 1C, 2C, and 3C, the constant heat flux was calculated as 1400,
2800, and 4200 Wm−2 (Φ = Ph/A′), assuming that the other surfaces were insulated.

Table 1. Properties of water and aluminum.

Parameter CP (J/(kg·K) λ (W/(m·K)) µ (Pa) ρ (kg/m3)

Aluminum 871 202.4 - 2719
Water 4182 0.6 1.003 × 10−4 998.2

The coolant inlet was set as a mass flow inlet; the outlet was a pressure outlet, and the
outlet pressure was 0 Pa. The Reynolds number at the entrance was calculated according to
Equation (5), and the corresponding boundary conditions are shown in Table 2.

Re =
ρvd
µ

(5)
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where ρ represents the density; v represents the flow velocity; d represents the characteristic
length; µ represents the dynamic viscosity.

Table 2. Boundary conditions.

Boundary Conditions Parameter Value

Inlet mass flow (kg/s) 0.02
Inlet temperature T0 (K) 300

Outlet pressure (Pa) 0

The liquid cooling plate was attached between the two power batteries. The temper-
ature difference between the liquid cooling plate and the battery surface was small, and
radiation heat transfer could be ignored. The convection heat exchange between the wall
surface of the liquid cooling plate and the coolant was the main cooling method, and the
heat taken away by the coolant was:

Q f = cpm∆T (6)

where Q f represents the heat taken away by the coolant; cp represents the specific heat
capacity of the coolant; m represents the mass flow of the coolant; ∆T represents the
temperature rise of the coolant.

The mathematical model was realized and solved by Fluent software. The maximum
temperature (Tmax) of the liquid cooling plate could reflect the worst working state of the
battery. The surface temperature difference (∆T) of the liquid cooling plate indicated the
temperature distribution of the battery. The smaller the temperature gradient of the battery,
the more heat absorbed by the coolant, and the more uniform the temperature distribution.
The inlet and outlet pressure drop (∆P) of the coolant was equal to the sum of the pressure
drop of all channels, which reflected the excellent heat dissipation performance from the
perspective of energy consumption. The smaller the ∆P, the smaller the pump power
required to drive the coolant through the channel.

2.2.2. Grid Independence Verification

In the simulation process, the mesh size of the fluid area was very important for the
accuracy of the simulation results. Because the flow channel structure of this model was
more complicated, the use of an unstructured mesh could reduce the workload. The model
was divided into a solid area and a fluid area. Taking 3C discharge as an example, the
grid size was selected to be 0.75 mm, 0.7 mm, 0.6 mm, and 0.5 mm under the working
condition of ambient temperature of 300 K and a mass flow rate of 0.02 kg/s to verify the
independence of the grids. The verification results are shown in Table 3.

Table 3. Independent test of volume mesh number.

Grid Size/mm Total Number of
Grids

Maximum
Temperature (K)

Temperature
Difference (◦C)

0.75 1,240,995 307.11 6.44
0.7 1,498,009 307.09 6.32
0.6 2,290,503 307.04 6.39
0.5 3,593,672 307.05 6.43

3. Simulation Analysis of Liquid Cooling Plate Heat Dissipation
3.1. The Influence of the Pipe Distance at the Coolant Outlet on the Heat Dissipation Performance

For the liquid cooling plate model in this study, the inlet mass flow rate was 0.02 kg/s
to analyze the heat dissipation performance of the liquid cooling plate in an environment
of 300 K at room temperature. The overall analysis flow chart was as Figure 2.
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Figure 3 is the temperature diagram of the liquid cooling plate and the cooling liquid
channel under 1C, 2C, and 3C discharge, respectively.
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It can be concluded from Figure 4 that the temperature of the liquid cooling plate
had the same changing trend under three different discharge rates. Along the inflow
direction of the coolant, the lowest temperature zone was found; correspondingly, the
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highest temperature zone was found to be at the outlet. Especially under 3C discharge,
the highest temperature (Tmax) of the liquid cooling plate reached 307.09 K (33.94 ◦C),
and the temperature difference (∆T) was as high as 6.32 ◦C. At this time, the temperature
uniformity of the liquid cooling plate was poor and the temperature difference exceeded
the safe working requirements of the power battery.
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Figure 4. Definition of the pipe distance at the coolant outlet.

Reason for analysis: When the coolant just flowed into the liquid cooling plate, the
resistance was small and the temperature was low, and a minimum temperature area was
formed at the entrance. As the coolant continued to flow, it was more and more affected by
the thermal resistance; the more heat the coolant absorbed during the flow, the more the
temperature rose, and a high temperature area formed at the outlet. The analysis of the
temperature diagram of the flow channel showed that the two coolant pipes at the outlet
had the highest temperature and a poor heat dissipation, resulting in a large temperature
difference of the liquid cooling plate, thereby weakening the overall cooling performance
of the liquid cooling plate.

In order to improve the heat dissipation performance of the liquid cooling plate, we
focused on the analysis of the distance of the two cooling pipes at the outlet; the distance
from the edge of the liquid cooling plate to the first pipe was set to A1, and the distance
from the first pipe to the second pipe was set to A2, as shown in Figure 3. By analyzing the
effect of the pipe distance at different coolant outlets on the heat dissipation performance,
the best heat dissipation effect of the liquid cooling plate was achieved.

In this section, keeping other conditions unchanged, A1 was divided into 5 mm, 6 mm,
8 mm, and 10 mm, and A2 was divided into 5 mm, 6 mm, 8 mm, 10 mm, and 12 mm. In
total, 20 kinds of structures (4 × 5) were generated through arrangement and combination.
Figure 5a shows the relationship between the size of A1 and A2. With the maximum
temperature (Tmax), Figure 5b shows the relationship between the size of A1 and A2. With
the temperature difference(∆T), Figure 5c shows the relationship between the size of A1
and A2 with the pressure drop (∆P).
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Figure 5. The effect of the pipe distance at the coolant outlet on the cooling performance of the liquid
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the size of A1, A2, and ∆T; (c) the relationship between the size of A1, A2, and ∆P.

Figure 5a,b shows that the change trends of the maximum temperature (Tmax) and
temperature difference (∆T) of the liquid cooling plate were very similar. When A2 was
fixed, Tmax and ∆T decreased as A1 decreased. In addition, the reduction in A1 could
quickly weaken the influence of A2 on Tmax and ∆T.

From Figure 5a–c, it could be concluded that when A1 = 10 mm and A2 = 12 mm, the
heat dissipation performance of the liquid cooling plate was the worst. Take 3C discharge
as an example. At this time, the maximum temperature (Tmax) reached 307.09 K (33.94 ◦C),
the temperature difference (∆T) was 6.32 ◦C, and the pressure drop (∆P) was 4887.8 Pa.
Under this structure, ∆T had exceeded the safe working range of the power battery. When
A1 = A2 = 5 mm, the maximum temperature (Tmax) of the liquid cooling plate dropped to
305.33 K (32.18 ◦C), and the drop was 1.76 ◦C. The temperature difference (∆T) dropped to
4.54 ◦C with a drop of 28.2%. However, at this time, the pressure drop (∆P) had risen to
5401.4 Pa. The premise of lowering the temperature of the liquid cooling plate was to bring
about greater pressure loss.

Obviously, it was not advisable to blindly reduce A1 and A2 for heat dissipation
performance. Reason for analysis: When A1 and A2 decreased, the coolant flow path
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was closer to the outlet, which improved the heat absorption capacity at the outlet of the
liquid cooling plate, thereby improving the heat dissipation effect of the liquid cooling
plate. However, the adverse effect was that the distance of coolant flows in the liquid
cooling plate became longer; because the flow channel was a micro channel, the flow of the
coolant needed to overcome a large resistance. The longer flow channel meant that the flow
resistance became larger, and the pressure loss was inevitably increased, so the pressure
difference at the inlet and outlet became larger, which increased the energy consumption of
the cooling pump; thus, increasing the energy consumption of the power battery thermal
management system.

Based on the above analysis, the pipe distances A1 and A2 had a significant effect
on the heat dissipation effect of the liquid cooling plate, but the effect on the pressure
difference had to still be considered while determining the values of A1 and A2. Therefore,
the values of A1 and A2 should needed to be selected appropriately. It can be seen from
Figure 4 that when A1 = 6 mm and A2 = 8 mm, the overall heat dissipation performance
of the liquid cooling plate was the best. At this time, under 3C discharge, Tmax = 305.24 K
(32.09 ◦C), ∆T = 4.48 ◦C, and ∆P = 4870.5 Pa greatly reduced the energy consumption of
the thermal management system of the power battery when it met the requirements of the
safe working temperature of the power battery. Therefore, in the following analysis, we set
A1 to 6 mm and A2 to 8 mm.

3.2. The Influence of Liquid Cooling Plate Thickness on Heat Dissipation Performance

According to the model parameters analyzed in the previous section, in order to com-
pare the effects of different liquid cooling plate thicknesses on heat dissipation performance,
in this section, we designed five liquid cooling plate simulation analysis models with plate
thicknesses of 3 mm, 4 mm, 5 mm, 6 mm, and 7 mm, respectively. Additionally, through a
simulation calculation, the relationship between the maximum temperature (Tmax) and the
temperature difference (∆T) of liquid cooling plates with different plate thicknesses under
the same boundary conditions was obtained. Figure 5 shows the relationship between the
plate thickness and heat dissipation performance in a room temperature environment of
300 K and an inlet mass flow rate of 0.02 kg/s.

It is obvious from Figure 6 that the maximum temperature (Tmax) and temperature
difference (∆T) of the liquid cooling plate under the three different discharges continued
to decrease with the increase in plate thickness. Reason for analysis: Since the thermal
conductivity of aluminum was much higher than that of the cooling liquid, increasing
the thickness of the plate with the flow channel of the liquid cooling plate unchanged
was equivalent to increasing the cross-sectional area of the aluminum plate. According to
Fourier’s law of heat conduction, increasing the plate thickness was beneficial to the lateral
diffusion of heat. Therefore, increasing the plate thickness was beneficial to improve the
heat dissipation performance of the liquid cooling plate. For example, under 3C discharge,
when the plate thickness increased from 3 mm to 4 mm, the maximum temperature (Tmax)
of the liquid cooling plate dropped from 305.24 K (32.09 ◦C) to 305.10 K (31.95 ◦C), which
was a drop of 0.14 ◦C; the temperature difference (∆T) dropped from 4.48 ◦C to 4.25 ◦C,
which was a drop of 0.23 ◦C. When the plate thickness exceeded 4 mm, the maximum
temperature (Tmax) and temperature difference (∆T) of the liquid cooling plate began to
shrink. Considering the limited space for the layout of the power battery, in order to
improve the cruising range of the power battery, more batteries should have been arranged
in the limited space as much as possible, so that the thickness of the liquid cooling plate
would be as small as possible. Based on the above analysis, the plate thickness of 4 mm
could optimize the heat dissipation effect in a smaller space.
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3.3. The Influence of Inner Tube Turning Radius on Heat Dissipation Performance

In order to compare the influence of the turning radius R of the inner pipes of different
flow channels on the heat dissipation performance of the liquid cooling plate, R was
designed to be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 15 mm,
and 20 mm in total. The research obtained the influence of radius R on the maximum
temperature (Tmax) and temperature difference (∆T) of the liquid cooling plate under the
same boundary conditions. Figure 6 shows the relationship between the turning radius R
of the inner pipe of different flow channels and the heat dissipation performance within
the working conditions of 300 K and 0.02 kg/s inlet mass flow rate.

From Figure 7a, it could be concluded that under 12 kinds of inner pipe turning
radius conditions, the change trends of the maximum temperature (Tmax) and temperature
difference (∆T) of the liquid cooling plate were basically the same, showing a change that
first decreased and then increased. This trend of change was more obvious under 3C
discharge. By analyzing the temperature change curve of the liquid cooling plate under
3C discharge, it could be found that when the inner pipe turning radius was 8 mm, the
heat dissipation performance of the liquid cooling plate was the best. The maximum
temperature (Tmax) was 305.03 K (31.98 ◦C), and the temperature difference (∆T) was
4.10 ◦C. Compared with the inner pipe turning radius of 1 mm, Tmax and ∆T decreased by
0.52 ◦C and 0.50 ◦C, respectively. Simultaneously, relative to the inner pipe turning radius
of 20 mm, Tmax and ∆T decreased by 0.87 ◦C and 0.90 ◦C, respectively.

From Figure 7b, it could be concluded that the pressure drop (∆P) difference of the
liquid cooling plate showed a trend that first dropped rapidly, then rose slightly, and finally
stabilized. When the turning radius of the inner pipe was 1 mm, ∆P was the largest, which
was as high as 5203.8 Pa. The ∆P decreased with the increase in the radius. When the
radius was 6 mm, ∆P dropped to a minimum of 4777.4 Pa, which was a drop of 426.4 Pa.
When the turning radius continued to increase from 6 mm, ∆P rebound slightly, but finally
stabilized. That was because the excessively large turning radius of the inner pipe shortened
the straight-line flow distance of the coolant, and the increase in the distance of the bend
caused a small increase in pressure loss. When the turning radius of the inner pipe exceeded
a certain range, the pressure loss of the coolant flow began to stabilize, and, finally, the
pressure difference between the inlet and outlet also tended to stabilize.
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Figure 7. The relationship between turning radius and temperature and pressure drop: (a) curve of
turning radius and temperature; (b) curve of turning radius and pressure drop.

Based on the above analysis, the turning radius of the inner pipe of the channel had
significant impact on the heat dissipation performance of the liquid cooling plate. Choosing
a turning radius of 8 mm could effectively improve the maximum temperature (Tmax) and
temperature difference (∆T) of the liquid cooling plate and effectively reduce the pressure
drop (∆P), which reduced the energy consumption of the cooling system. The temperature
graph of the liquid cooling plate and the flow velocity graph at the coolant outlet under 3C
discharge are shown in Figure 8.
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3.4. The Influence of the Flow Channel Area at the Coolant Outlet on the Heat Dissipation
Performance of the Liquid Cooling Plate

It can be seen from Figure 8 that the highest temperature region of the liquid cooling
plate appeared at the outlet of the cooling liquid, especially the highest temperature on
the right side of the outlet. By analyzing the flow velocity diagram at the coolant outlet,
it was found that the flow on the right side of the coolant outlet was the smallest. It was
found that there was a gradual change in the diameter of blood vessels at the entrance
and exit, from large to small at the entrance and from small to large at the exit. Based on
this, the flow channel at the outlet of the liquid cooling plate was subjected to variable
width optimization processing. When the thickness of the flow channel was unchanged,
the upper and lower width classification ratio was 0.8. We further discusses the effect of
the flow channel area at the coolant outlet on the cooling performance of the liquid cooling
plate. Taking 3C discharge as an example, the optimized coolant outlet channel is shown in
Figure 9a, and the temperature diagram of the optimized liquid cooling plate under the
same boundary conditions is shown in Figure 9b.
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It can be seen from Figure 9b that the range of the maximum temperature region of
the liquid cooling plate was reduced compared to Figure 8a. The maximum temperature
(Tmax) dropped from 305.03 K (31.88 ◦C) to 304.91 K (31.76 ◦C), which was a decrease of
0.12 ◦C. The temperature difference (∆T) of the liquid cooling plate dropped from 4.10 ◦C
to 3.97 ◦C, and decreased by 0.13 ◦C. The temperature uniformity of the liquid cooling plate
was further improved. Reason for analysis: The optimized design of variable width at the
coolant outlet essentially enlarged the area of the flow channel. Through this optimization,
the flow rate could be better introduced to the outlet and the cooling liquid coverage area
at the outlet increased, which greatly improved the heat dissipation performance of the
liquid cooling plate.

3.5. The Influence of the Coolant Mass Flow Rate on the Heat Dissipation Performance of the
Liquid Cooling Plate

The coolant mass flow rate is an important factor of the cooling performance of the
liquid cooling plate. In order to analyze the impact of different flows on the cooling effect,
six different inlet mass flows, which were 0.005 kg/s, 0.010 kg/s, 0.015 kg/s, 0.020 kg/s,
0.025 kg/s, and 0.030 kg/s, were designed in this section. According to the above research
basis, the curves of the maximum temperature (Tmax), temperature difference (∆T), and
Pressure drop (∆P) of the liquid cooling plate with the flow rate under the same boundary
conditions are shown in Figure 10.
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Figure 10. Change curve of Tmax, ∆T, and ∆P of liquid cooling plate with flow: (a) change curve of
temperature and flow; (b) change curve of pressure drop.

It can be concluded from Figure 10 that the heat dissipation performance of the
liquid cooling plate continued to increase with the increase in the coolant mass flow rate;
especially when the mass flow rate increased from 0.005 kg/s to 0.010 kg/s, the temperature
dropped the most, and then the temperature decline trend began to slow down. Taking
3C discharge as an example, when the coolant mass flow rate increased from 0.005 kg/s
to 0.030 kg/s, the maximum temperature (Tmax) of the liquid cooling plate dropped from
311.98 K (38.83 ◦C) to 304.24 K (31.09 ◦C), which reduced by 7.74 ◦C; the temperature
difference (∆T) dropped from 9.96 ◦C to 3.62 ◦C, which was a drop of 6.34 ◦C, and the
drop rate was as high as 63.65%. When the coolant mass flow rate increased to 0.015 kg/s,
the maximum temperature (Tmax) and temperature difference (∆T) of the liquid cooling
plate were 305.69 K (32.54 ◦C) and 4.49 ◦C, respectively. At this time, the temperature
of the liquid cold plate met the safe working temperature requirements of the power
battery. With the continuous increase in the flow rate, the decreasing trend of the liquid
cooling plate temperature began to slow down, while the pressure drop (∆P) showed a
tendency to increase exponentially. Compared with the mass flow rate of 0.030 kg/s and the
flow rate of 0.020 kg/s, the maximum temperature (Tmax) of the liquid cooling plate only
decreased by 0.67 ◦C, and the temperature difference (∆T) decreased by 0.35 ◦C. However,
the pressure drop (∆P) increased by 5928.5 Pa, which was an increase of 117.14%, and
greatly expanded the energy consumption of the cooling pump under the specific heat
dissipation requirement. Therefore, a moderate coolant mass flow rate should be selected
according to the battery’s discharge rate and operating temperature to facilitate the best
heat dissipation performance of the liquid cooling plate.

3.6. Experimental Verification

It can be seen from the above analysis that the temperature of the liquid cooling
plate was the highest and most likely to exceed the safe working temperature condition
of the power battery under 3C discharge. Therefore, in order to verify the accuracy of the
simulation results, a 3C discharge verification experiment was designed. The liquid cooling
plate shown in Figure 9a was processed using aluminum plates, the mass flow rate of the
cooling liquid was 0.020 kg/s, and the ambient temperature and cooling liquid temperature
were 300 K. The liquid cooling plate was divided into a base plate and a cover plate and
glued together as a whole. Figure 11 shows the structure of the liquid cooling plate.
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Figure 11. The structure of the liquid cooling plate.

According to the simulation results, a total of 16 temperature checkpoints was arranged
in this experiment, of which 15 checkpoints were arranged on the cooling plate and one
checkpoint was the ambient temperature. Checkpoint 14 was the ambient temperature
checkpoint, checkpoint 7 was placed at the coolant inlet, and checkpoint 6 was placed at
the coolant outlet. The arrangement of the temperature checkpoints is shown in Figure 12a.
The heat source was a silicon heating sheet pasted on the surface of the cooling plate as
shown in Figure 12b. During the experiment, we put the liquid cooling plate into the
environmental chamber and energized the heated silicon plate to detect the temperature
change of the liquid cooling plate. The temperature curve of the 16 checkpoints obtained is
shown in Figure 12c.

It can be seen from Figure 12c that the temperature at checkpoint 4 was the highest,
and the corresponding position was the red high temperature area on the right side of the
coolant outlet in Figure 8b. The maximum temperature (Tmax) hardly changed after being
reduced to 32.4 ◦C. The temperature at checkpoint 7 was the lowest and the temperature
fluctuation was the smallest. This was because the checkpoint 7 layout at the inlet of the
cooling liquid was cooling with excellent results. The temperature first rose slightly and
then remained at 28.0 ◦C. By analyzing the experimental results, we found the maximum
temperature (Tmax) of the experiment to be 32.4 ◦C higher than the simulation result by
0.64 ◦C. The temperature difference (∆T) was 4.4 ◦C, which was 0.43 ◦C higher than the
simulation result, but the temperature difference (∆T) was still less than 5 ◦C. The heat
dissipation performance met the requirements of the battery operating temperature, and
the maximum error between the experimental and simulation results was within 9.8%.
The main reason for the error may have been the agricultural machinery glue used in
the process of processing the liquid cooling plate, while the thermal conductivity of the
agricultural machinery glue was much lower than that of the aluminum plate. Therefore,
the difference between the simulation results and the experimental results was within the
acceptable range, the experimental results were consistent with the simulation results, and
the simulation results were accurate.
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4. Conclusions

Based on bionics and the human blood vessel model, this study designed a liquid
cooling plate with a bionic vascular structure of quasi-similar fractal. Under three different
discharges of 1C, 2C, and 3C, Fluent software was used to study the pipe distance (A1 and
A2) at the coolant outlet, the thickness of the liquid cooling plate, the turning radius R of the
pipe in the channel, and the mass flow of the coolant on the heat dissipation performance.
The results showed that the pipe distance (A1, A2), plate thickness, and inner pipe turning
radius R had a significant effect on the heat dissipation effect of the liquid cooling plate,
especially under 3C discharge. When A1 = 6 mm and A2 = 8 mm, the plate thickness was
4 mm, the inner pipe turning radius was 8 mm, the highest temperature (Tmax) of the liquid
cooling plate was 305.03 K (31.88 ◦C), and the temperature difference (∆T) was 4.10 ◦C. At
this time, the structure was more compact and the system energy consumption was lower
while meeting the requirements of the safe working temperature of the power battery,
which was more conducive to the standardization and practical application of the power
battery liquid cooling plate.

By imitating the human blood vessel model, the cooling liquid outlet was optimized
with a variable width, and the heat dissipation performance of the liquid cooling plate was
greatly improved. The increase in the mass flow rate could improve the heat dissipation
capacity, but would consume more cooling system energy. Therefore, a moderate mass flow
of the coolant could be selected according to energy consumption and heat transfer targets.

For 3C discharge, a verification experiment was designed. The results showed that the
error between the experimental and simulation results was maintained within 9.8%, the
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simulation of the cooling effect of the liquid cooling plate was accurate, and the cooling
performance of the liquid cooling plate was obvious.
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