
Citation: Abdul Hamid, R.; Hag

Husein, H.; Bäumler, R.

Characteristics of Some Wild Olive

Phenotypes (Oleaster) Selected from

the Western Mountains of Syria.

Sustainability 2022, 14, 5151. https://

doi.org/10.3390/su14095151

Academic Editor: Svein Øivind

Solberg

Received: 30 March 2022

Accepted: 20 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Characteristics of Some Wild Olive Phenotypes (Oleaster)
Selected from the Western Mountains of Syria
Reem Abdul Hamid 1, Hussam Hag Husein 2,* and Rupert Bäumler 2

1 Administration of Horticulture Research, General Commission for Scientific Agriculture Research,
Damascus P.O. Box 30621, Syria; reem_ahamid@gcsar.gov.sy

2 Institute of Geography, FAU Erlangen-Nuremberg University, Wetterkreuz15, 91058 Erlangen, Germany;
rupert.baeumler@fau.de

* Correspondence: hussam.husein@fau.de; Tel.: +49-9138523305

Abstract: This study presents the evaluation of some technological and production specifications
of 20 selected wild olive (oleaster) phenotypes from Hama Province, western–central Syria. The
analyses of oil quantity showed that the olive oil (OO) extracted ranged from 10.43 to 29.3%. The
fatty acid composition determined by gas chromatography (m/m%, methyl esters), conforming to
commercial standards, showed the percentages of palmitic (ranged 13.2–15.06%), stearic (2.27–4.2%),
arachidic (0.42–0.7%), palmitoleic (0.73–1.25%), oleic (64.29–73.17%), linoleic (8.96–16.45%), and
linolenic (0.23–1.6%). Our results suggest that, despite being in a harsh environment and lacking
agricultural service, two wild olive phenotypes (WA4, WA6) are interesting since their fruits showed
high-quality properties (fruit weight 2.16, 3.24 g; flesh 75.83, 86.2, respectively), high content of OO%
(29.27, 29.01, respectively), and better fatty acid composition (oleic % 68.45, 66.74, respectively). This
enables them to be a very promising introductory feature in olive genetic improvement processes.
Thus, both phenotypes were adopted tentatively as inputs, the first for oil purposes and the second
for dual purposes (oil and table olives). It will be important to further evaluate these promising
phenotypes in terms of their OO minor compounds, as well as their ability to resist biotic and
abiotic stresses.

Keywords: biodiversity; fatty acid composition; oleic acid; accession; genetic improvement; oleaster

1. Introduction

The origin of the olive (Olea europaea L.) remains unclear [1–5]. However, the archeo-
logical, geographical, and biological studies suggest that cultivated olives (O. europaea L.
var. sativa Lehr) resulted from the domestication of wild olives [6,7], particularly oleaster
(O. europaea L. subsp. sylvestris (Miller) Hegi) [8–10]. These wild forms have different
morphological and biological features. Usually, they grow spontaneously in the form of
thorny shrubs with small-size fruits, a higher stone/mesocarp ratio, spinescent juvenile
shoots, relatively low oil content, and a longer juvenile stage [9,11–17]. Their early domesti-
cation has resulted in the development of a huge number of varieties [5]. Domestication
has always been carried out through vegetative multiplication for empirically selected
phenotypes with desirable agronomic traits, such as large fruit size and/or high oil con-
tent [9]. Sometimes, the direct planting of cuttings or the grafting onto wild forms for
individuals presenting favorable traits has resulted in superior performance in fruit size
and oil content [2,9,11,12].

Given that the olive is a long-living and evergreen species, it cannot be ruled out
that individuals and genotypes reaching very far back to the origins of domestication
may still be found [7]. However, the path from wild to domesticated status may have
been very short and may still be occurring [18]. The first apparent phenotypic changes in
domesticated olives include increases in fruit production and growth ring enlargement,
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which involves a fleshy and oil-containing mesocarp. While wild olives are cross-fertilized
and reproduced by seed, cultivated varieties are self-fertilized and maintained by vegetative
propagation [19]. This confers wild olives a higher level of heterozygosis and genetic
variability than cultivated varieties [20].

Olive oil is composed of triglycerides (98–99%) [21], and minor components such
as sterols [22], waxes [23], tocopherols [24], carotenes and chlorophylls [25], phenolic
compounds [26], and volatiles [27]. A balanced fatty acid composition contributes to the
biological virtues of olive oil [28]. Therefore, as fatty acid is a genetic characteristic [29],
many researchers use ratios of fatty acids to characterize olive varieties [30,31].

Syria ranks sixth place, on a global scale, in terms of olive production [32] and pos-
sesses very rich germplasms of olives. Wild olives (possible ancestors of the cultivated
genotypes) still exist in undisturbed maquis and forests of Syria [8,10,33], besides more than
seventy planted olive cultivars [34–36]. However, only five conventional cultivars (Zaity,
Sorani, Doebli, Khodeiri, and Kaissy) represent about 89.3% of the total olive trees culti-
vated [35]. Thus, there is an urgent need to release new varieties that are more suitable for
modern farming techniques. The process of genetic improvement requires a large amount
of time and a high cost, in addition to the unpredictability of reaching the desired goal [37];
therefore, a selection process seems to be easier, cheaper, and faster [38]. Consequently, an
ongoing program has been set up in Syria to select promising wild olive individuals [36].

This study is considered an intersection between the biodiversity project in Syria and
the project of genetic improvement of olives in Syria, the latter aiming to inventory and
collect the Syrian wild olive and assess their agronomic performance for future use in olive
breeding programs [36].

In the current study, 20 wild olive varieties are evaluated to select superior individuals
for use in genetic improvement processes. The evaluation was based on fruit specifica-
tions, quality and quantity of oil, and fatty acid compositions under Syrian conditions.
The approach went through an initial selection in the habitat, and then morphological,
technological, and productivity specification evaluation for the individuals. The superior
individuals were re-evaluated according to the levels of oleic acid, which is a required
feature for conferring the oxidative stability of the oil. The work resulted in the selection
of two promising varieties of wild olives with a greater number of positive properties,
whether as oil, table olives, or with a double purpose.

2. Materials and Methods
2.1. Plant Materials

Plant materials were obtained from the western mountains of Hama City, Syria,
at heights ranging from 443 to 544 m.a.s.l and with the coordinates 35◦02′–35◦05′ N,
36◦20′–36◦29′ E, where wild and cultivated olives still coexist within pockets of terra
rossa. Three mountainous sites (Sygata, Tel Afar, Kafer Nbbl) were surveyed. The area is
subject to a Mediterranean climate with an average rainfall of up to 800 mm/year.

These sites possess variable and small populations of isolated trees of different ages,
but, in general, medium-aged trees (20–30 years) prevail as perennial trees have almost
disappeared due to over-cutting. During the two growing seasons, 20 phenotypes of wild
olive (oleaster) were selected to study as promising accessions with apparent potential
based on crop load, fruit size, and tree vigor. Figure 1 shows how to mark the selected trees;
their locations were restricted by the Global Positioning System (GPS) and then by code.

Morphological readings of leaves, flowers, and fruits were taken corresponding to the
seasonal phenology. Plant materials were collected from each tree, and morphologically
described following the International Olive Oil Council [30].

For each location and tree, three samples of plant materials were collected. The fruits
were hand-picked from the tree during two growing seasons, 2009 and 2010. The maturity
was indicated by fruit color using the Jaen index (0–7) [39]; thus, the fruits were picked
up from each coded plant when 70% of the peel and pulp converted to black, which
corresponds to the (5) of the Jaen index. The healthy fruits without any morphological
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biotic and abiotic stress were selected and shipped on the same day to the laboratory. Plants
materials were performed in the laboratory of fruit physiology at the General Commission
of Scientific Agricultural Research (GCSAR), Syria.
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The oil was extracted from the samples. 150 g of fruits were crushed for 30 s in a
Foss-Knifetec 1095 electric mill. The resulting paste was mixed at a temperature of ca. 27 ◦C
for 30 min, and then 8 g of the paste was placed with 100 mL of petroleum ether in the
Soxhlet apparatus for 6 h (boiling point ranges from 40 to 60 ◦C) [40].

The extracts were centrifuged to remove insoluble substances, and they evaporated to
dryness on a rotary evaporator. After evaporation of the solvent, the oils were stored in
dark glass bottles. The percentage of oil was calculated as the following:

Percentage of extractable oil (EO):

EO =
total oil weight
sample weight

× 100

Percentage of oil based on wet weight (EOW):

EOW =
weight of extracted oil after evaporation× percent of the dry olive material

100

The percentage of oil based on the wet material was classified into low (16–18%),
medium (18–20%), and high (more than 20%) [22].

2.2. Determination of Fatty Acids Composition

Fatty acids were determined as fatty acid methyl esters (FAMEs) [41,42] using 0.1 g
of oil samples that were vigorously mixed with 200 µL of a methanol solution of KOH
(2 M) and 2 mL of n-hexane and then settled for 5 min. The top layer was injected into
a gas chromatograph system coupled to a flame ionization detector (FID). A column of
fused silica capillary (DB-wax, Agilent Technologies, Wilmington, DE, USA) was used.
The nitrogen gas was used as carrier gas with a flow of 1.69 mL/min, the temperature
was kept for the injector at 250 ◦C, and a split ratio of 1:50 was used. A gradient oven
temperature program was adopted, with the initial temperature set at 165 ◦C for 15 min.
Then, the temperature was raised from 165 ◦C to 200 ◦C at a rate of 5 ◦C/min. For 2 min, the
temperature was kept at 200 ◦C, then increased from 200 ◦C to 240 ◦C at a rate of 5 ◦C/min.
Finally, the temperature was kept at 240 ◦C for 5 min. The Authentic Commercial Standards
were used to identify each FAME, and the concentration was calculated as a percentage of
total peaks areas. A standard solution of FAME was prepared for fourteen fatty acids based
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on standard reference solutions included in two special groups ME14-ME19 produced by
(Sigma); the final concentration of fatty acids was 18 mg/L.

The iso-octane mixture was used throughout the preparation, as well as the RM6
(0-7631) standard mixture produced by (Supelco, Bellefonte, PA, USA) made of seven fatty
acids (C14: 0, C18: 3, C18: 2, C18: 1, C18: 0, C16: 1, C16: 0) to help distinguish peaks of
oil samples.

Separation of FAME was performed using a fused silica capillary column (60 m length,
0.25 mm internal dimension, 0.25 µm film thickness), a split injection system was used
to split the injected sample, and the splitting ratio was 1:10. The nitrogen gas was used
as carrier gas with a flow of 1.69 mL/min. In the injector, the temperature of the furnace
was kept at 147 ◦C for 30 min. Authentic commercial standards were used to identify each
FAME, and the concentration was calculated as a percentage of total peaks areas.

2.3. Statistical Analyses

The statistical program Genstat 7 was used to calculate the coefficient of variation (CV)
and to evaluate the significant differences at the 0.05 confidence level. Pearson’s test was
used for correlation analysis. A cluster analysis was conducted on the Euclidean distance
matrix based on the normalized data processed by hierarchical cluster analysis (HCA)
using the XLSTAT 2012 version (Addinsoft, New York, NY, USA) [43].

3. Results and Discussion

Biometrics are widely considered in table olive and olive oil production [44], where
the oil quantity and quality, in addition to the qualitative characteristics of the fruits (fruit
weight, seed weight, flesh), are among the most important characteristics that are used to
distinguish and rank cultivated or wild olive varieties. These are genetic traits affected by
environmental conditions, soil, and agricultural management [45]. The quality and quantity
of olive are not only related to pre-harvest factors but also to post-harvest conditions [46].
As well, the average fruit fresh weight is a crucial agronomic parameter for a preliminary
selection of varieties for table olives, oil destination, or even both uses.

3.1. Morphological Characteristics

Table 1 shows the averages of the morphological readings of the stone, leaf, and
fruit during two seasons of the selected wild olives’ phenotypes. The results suggest a
significant difference between the following: stone lengths, widths, and length–width
ratios. The stones have different shapes with length ranges from 0.86 to 1.63 cm, and widths
from 0.43 to 0.90 cm. The stone’s weight ranged from (0.32 to 0.66 g). The morphological
characteristics of the leaf suggest only a significant difference for the length and width.
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Table 1. Morphological characteristics of stone, leaf, and fruit of the studied wild olive phenotypes (n = 3).

Phenotype
Code *

Stone Leaf Average Weight
from 40 Fruits

(g) *

Average Weight
from 40 Stone

(g) *
Flesh Weigt %

Length (cm) Width (cm) Ratio
(Length/Width) ** Shape Length (cm) Width (cm) Ratio

(Length/Width) Shape

WS1 1.30 0.53 2.45 a,b elongated 3.80 1.10 3.40 elliptic 1.69 d ± 050 0.50 b ± 0.04 70.10

WS2 1.45 0.63 2.30 a,b elongated 3.50 0.80 4.37 elliptic-
lanceolate 3.13 a ± 0.08 0.58 b ± 0.05 81.49

WS3 1.15 0.50 2.30 a,b elongated 4.20 1.10 3.81 elliptic 1.85 d ± 0.057 0.40 c ± 0.05 78.45

WS4 1.33 0.63 2.11 a,b elongated 4.80 1.10 4.36 elliptic-
lanceolate 2.69 b ± 0.057 0.47 c ± 0.00 82.23

WS5 1.40 0.63 2.22 a,b elongated 3.60 0.90 4.00 elliptic-
lanceolate 2.49 b ± 0.105 0.47 c ± 0.05 81.00

WA1 1.10 0.60 1.83 ovoid 4.60 1.40 3.20 elliptic 2.25 b ± 0.27 0.54 b ± 0.10 75.83
WA2 1.40 0.60 2.31 a,b elongated 4.50 1.30 3.46 elliptic 2.16 c ± 0.175 0.54 b ± 0.10 74.79
WA3 1.30 0.50 2.60 a,b elongated 3.20 1.40 3.14 elliptic 2.18 c ± 0.06 0.61 a ± 0.10 71.95
WA4 1.00 0.60 1.66 d ovoid 3.80 1.20 2.80 elliptic 2.10 c ± 0.20 0.51 b ± 0.05 75.64
WA5 1.50 0.50 3.00 a elongated 4.40 1.50 3.10 elliptic 3.06 a ± 0.36 0.56 a ± 0.06 81.50

WA6 1.10 0.60 1.83 d ovoid 3.40 1.40 4.14 elliptic-
lanceolate 3.24 a ± 0.18 0.44 c ± 0.10 86.20

WA7 1.40 0.70 2.00 c elliptic 4.7 0.9 5.11 elliptic-
lanceolate 1.59 d ± 0.04 0.41 c ± 0.1 74.27

WT1 0.86 0.43 2 c elliptic 5.80 1.10 4.18 elliptic-
lanceolate 1.39 d ± 0.33 0.32 d ± 0 76.64

WT2 1.30 0.60 2.16 c elliptic 4.60 1.50 3.06 elliptic 2.17 c ± 0.07 0.46 c ± 0.05 78.66
WT3 1.55 0.43 3.60 a elongated 4.60 1.30 3.53 elliptic 2.70 b ± 0.06 0.66 a ± 0.06 75.60

WT4 1.20 0.90 1.33 e spherical 6.30 1.20 5.25 elliptic-
lanceolate 1.47 d ± 0.07 0.44 c ± 0.01 69.86

WT5 1.30 0.60 2.16 c elliptic 5.50 1.50 3.60 elliptic 2.21 c ± 0.06 0.50 b ± 0.10 77.23
WT6 1.36 0.56 2.42 a,b elongated 4.30 1.20 3.58 elliptic 2.99 a ± 0.05 0.39 d ± 0.02 86.66

WT7 1.10 0.50 2.20 c elliptic 6.80 1.50 4.50 elliptic-
lanceolate 3.04 a ± 0.11 0.61 a ± 0.08 79.75

WT8 1.63 0.60 2.71 a,b elongated 4.70 1.20 4.00 elliptic-
lanceolate 3.00 a ± 0.22 0.63 a ± 0.11 78.82

C.V 9.00 7.80 9.10 - 6.80 9.20 0.00 - 8.60 16.40 -

L.S.D 0.05 - 0.50 0.17 0.00 - 0.33 0.13 -

(*) The first letter refers to (wild olive), and the second letter refers to the place of existence (S = Sygata; T = Tel Afar; A = Afar). (**) The means with different letters in parentheses
(a,b,c,d,e) for the same quality parameter indicate significant differences between the means at the 0.05 confidence level.
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The great variability in the means of the average fruit weight was observed among the
studied phenotypes; it ranged from 1.39 to 3.24 g. The percentage of flesh weight ranged
from 69.86 to 86.66%, and all the cultivars had a flesh weight lower than 2.4 g. A very
high correlation was found between the fruit weight and the flesh weight (0.990, p < 0.001),
whereas the stone weight was less correlated with the fruit weight (0.495, p < 0.001), mean-
ing that the stone had a lesser influence on the total fruit weight. The weight of the fruits
was higher than that of the fruits of the cultivated variety Souri [47]. However, it is a little
less than the main cultivated varieties in Syria [48].

The (WS2, WA6) phenotypes showed a maximum weight of the fruit of 3.13 and 3.24 g
with flesh weights of 81% and 86.2%, respectively. The maximum flesh weight that appears
in (WT6) is 86.66% with a fruit weight of 2.99 g.

The analysis of variance revealed significant differences among the olive accessions
for the main studied parameters, indicating a high degree of variability among oleasters
found in the same environment. As expected, the values for the fruit size in wild olives
were lower than those obtained in cultivated materials, with intermediate values between
1.39 and 3.24 g; this is classified as light to medium according to the standard guide for the
characterization of olives [30].

The cluster analyses of the stone (A), the leaf (B), and the fruit (C) characteristics
have been presented in (Figure 2). The morphological characteristics of stones and leaves
are clustered into two identical groups. The first group contains two subgroups: (WT3,
WT4) and (WA7, WA1, WA6, WT5, WT2, WT1, WS3, WS2, WA2). The second group also
contains two subgroups: (WT8, WT6, WA3, WS1) and (WS3, WT2, WT7, WS5, WA5, WS4).
The fruits are clustered according to their characteristics in three groups. The first group
(average fruit weight 2.18–1.47 g, flesh weight 71.95–69.86%), the second group contains
two subgroups (average fruit weight 2.706–1.59 g, flesh weight 74.27–77.23%), (average
fruit weight 3.043–1.8 g, flesh weight 82.23–78.78%, and the third group (average fruit
weight 3.246–3.0 g, flesh weight 86%). The last subgroup seems to be very promising as
table olive varieties.
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3.2. Quantitative and Qualitative Analysis of Oil
3.2.1. Olive Oil (OO)

Olive oil (OO) content is a criterion to be envisaged during the varieties selection. As
oil content is influenced by olive flesh humidity during the fruit-ripening period, this index
was expressed as a percent of fresh matter. The result (Table 2) showed that the average
percentage of the OO content varied significantly among phenotypes; most contain more
than 18% OO, and this is consistent with the results of studies [46–48]. Some (WS2, WT4,
WA6, WA4) showed a high percentage of 26.47, 26.76, 29.01, 29.3%, respectively.

Table 2. Percentage of OO in the studied wild olive phenotypes based on the fresh matter weight
(n = 3).

Phenotype Code The Average Percentage of
OO in 1st Season

The Average Percentage of
OO in 2nd Season The Average of OO in Two Seasons

WS1 21.12 ± 0.16 21 ± 16 21.06 ± 0.50
WS2 26.50 ± 0.02 26.33 ± 0.57 26.42 ± 0.29
WS3 20.16 ± 0.11 21.05 ± 0.09 20.6 ± 0.13
WS4 20.26 ± 0.20 21 ± 0.09 20.52 ± 0.27
WS5 18.22 ± 0.06 19 ± 0.12 18.61 ± 0.03
WA1 12.04 ± 0.05 12 ± 0.13 11.97 ± 0.02
WA2 10.53 ± 0.13 10.3 ± 0.51 10.43 ± 0.29
WA3 11.74 ± 0.16 11.33 ± 0.51 11.73 ± 0.22
WA4 29.27 ± 0.25 29.38 ± 0.53 29.31 ± 0.40
WA5 17.81 ± 0.05 17.62 ± 0.51 17.73 ± 0.31
WA6 29.01 ± 0.08 29.02 ± 0.12 29.01 ± 0.04
WA7 19.04 ± 0.22 18.42 ± 0.51 18.74 ± 0.19
WT1 16.03 ± 0.28 16.03 ± 0.12 16.01 ± 0.14
WT2 12.11 ± 0.22 12.22 ± 0.51 12.21 ± 0.38
WT3 9.17 ± 0.04 10.73 ± 0.11 9.61 ± 0.04
WT4 27.02 ± 0.07 26.66 ± 0.52 26.76 ± 0.29
WT5 10.50 ± 0.05 11.46 ± 0.50 11.01 ± 0.25
WT6 12.41 ± 0.05 14.04 ± 0.06 13.71 ± 0.03
WT7 9.48 ± 0.44 10.41 ± 0.52 10.02 ± 0.48
WT8 22.03 ± 0.27 21.62 ± 0.55 21.71 ± 0.23

C.V 1.12 2.71 1.91

LSD 0.05 - - 0.62

The percent of OO extracted during two seasons showed a positive correlation with
high significance (r = 0.99) (Table 3).

Table 3. Correlations of OO during two seasons (n = 3).

Correlations The Average Percentage of OO in the
1st Season

The Average Percentage of OO in the
2nd Season

The average percentage of OO in 1st season. 1.00

The average percentage of OO in 2nd season.
Pearson Correlation 0.995 * 1.00

(*) Correlation is significant at (p < 0.01).

3.2.2. Fatty Acid Composition

The fatty acid composition is an important quality parameter and authenticity indica-
tor of OO, and a genetic trait that is closely related to the cultivars [49–53] rather than the
place of collection, maturity index, and other edaphic factors [54]. Previously, it has been
used by several authors as a parameter for oil evaluation [55,56].

The fatty acid evaluation was performed on the OO following the usual product
analyses. As can be seen in Table 4, the fatty acid composition of the studied oils is variable
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from one phenotype to another. Whereas, the results showed that the percentage of Palmitic
fatty acid ranged between 16.15 and 11.2%, Stearic 4.39 and 2.20%, Arachidic 0.88 and
0.36%, Palmitoleic 1.47 and 0.51%, Oleic 77.4 and 62.22%, Linoleic 18.83 and 5.6%, Linolenic
2.08 and 0.19%.

Table 4. The composition of fatty acids (%) of the OO wild olive phenotypes (n = 3).

Phenotype
Code

Palmitic
(C16:0) *

Stearic
(C18:0) *

Arachidic
(C20:0) *

Palmitoleic
(C16:1) *

Oleic
(C18:1) *

Linoleic
(C18:2) *

Linolenic
(C18:3) * O/L Ratio **

WS1 13.81 ± 0.57 b 3.23 ± 1.01 a 0.47 ± 0.11 c 0.76 ± 0.11 b 64.91 ± 1.00 d 15.24 ± 1.00 b 1.29 ± 0.60 b 4.26 ± 1.00
WS2 14.32 ± 1.01 a 3.14 ± 1.05 a 0.49 ± 0.11 c 0.77 ± 0.11 b 66.05 ± 0.50 c 13.52 ± 1.00 b 1.23 ± 0.60 b 4.89 ± 0.70
WS3 12.96 ± 0.71 b 3.17 ± 1.03 a 0.45 ± 0.10 c 0.78 ± 0.12 b 63.76 ± 1.10 d 17.12 ± 1.00 a 1.31 ± 0.68 b 3.72 ± 1.00
WS4 13.32 ± 1.02 b 2.77 ± 1.10 b 0.43 ± 0.13 c 0.79 ± 0.12 b 62.22 ± 1.40 d 18.83 ± 1.00 a 1.26 ± 0.60 b 3.30 ± 1.20
WS5 13.53 ± 1.03 b 2.85 ± 1.05 b 0.44 ± 0.17 c 1.19 ± 0.46 a 66.15 ± 1.10 c 14.12 ± 1.60 b 1.24 ± 0.90 b 4.68 ± 1.30
WA1 11.22 ± 1.11 c 3.05 ± 1.10 a 0.82 ± 0.14 a 0.51 ± 0.14 77.41 ± 1.10 a 5.98 ± 1.00 e 0.28 ± 0.10 c 12.94 ± 1.00
WA2 16.15 ± 0.92 a 2.98 ± 1.01 b 0.88 ± 0.11 a 1.35 ± 0.71 a 66.79 ± 0.90 c 11.18 ± 1.00 c 0.19 ± 0.10 c 5.97 ± 0.90
WA3 15.99 ± 1.21 a 2.20 ± 1.05 b 0.68 ± 0.10 b 1.47 ± 0.75 a 67.11 ± 1.10 c 11.76 ± 1.00 c 0.23 ± 0.15 c 5.70 ± 1.00
WA4 15.67 ± 1.10 a 2.85 ± 1.04 b 0.44 ± 0.10 c 0.75 ± 0.11 b 68.45 ± 1.00 b 10.51 ± 1.00 c 0.23 ± 0.10 c 6.51 ± 1.00
WA5 14.85 ± 1.11 a 2.83 ± 0.90 b 0.46 ± 0.14 c 0.76 ± 0.11 74.87 ± 1.00 a 5.60 ± 1.00 e 0.28 ± 0.10 c 13.36 ± 1.00
WA6 14.93 ± 1.03 a 2.49 ± 0.85 b 0.36 ± 0.12 c 1.08 ± 0.57 a 66.74 ± 1.10 c 13.40 ± 1.00 b 0.56 ± 0.10 c 4.98 ± 1.00
WA7 13.82 ± 1.14 b 3.13 ± 1.10 a 0.59 ± 0.13 b 1.34 ± 0.71 a 69.11 ± 1.00 b 9.90 ± 1.00 d 2.08 ± 0.60 a 6.98 ± 1.00
WT1 14.11 ± 0.99 a 3.01 ± 1.20 a 0.53 ± 0.11 b 0.88 ± 0.10 b 65.51 ± 0.90 d 13.40 ± 1.00 b 1.38 ± 0.70 b 4.89 ± 0.90
WT2 13.89 ± 0.99 b 3.01 ± 1.01 a 0.62 ± 0.11 b 0.81 ± 0.10 b 64.99 ± 1.00 d 14.77 ± 1.00 b 1.65 ± 0.80 b 4.40 ± 1.00
WT3 13.18 ± 1.10 b 3.40 ± 0.82 a 0.53 ± 0.11 b 0.84 ± 0.10 b 66.39 ± 1.00 c 13.52 ± 1.00 b 1.63 ± 0.80 b 4.91 ± 1.00
WT4 13.04 ± 1.12 b 2.60 ± 1.01 b 0.36 ± 0.10 0.99 ± 0.06 b 67.81 ± 1.00 c 13.93 ± 1.00 b 1.08 ± 0.60 b 4.87 ± 1.00
WT5 14.15 ± 1.03 a 4.39 ± 1 a 0.63 ± 0.13 b 1.17 ± 0.09 a 67.78 ± 1.00 c 9.85 ± 1.00 d 1.31 ± 0.70 b 6.88 ± 1.00
WT6 13.65 ± 1.04 b 2.79 ± 1.03 b 0.46 ± 0.16 c 1.18 ± 0.09 a 67.52 ± 1.00 c 12.4 ± 1.00 c 1.50 ± 0.80 a 5.44 ± 1.00
WT7 15.17 ± 1.04 a 2.51 ± 1.11 b 0.46 ± 0.11 c 1.25 ± 0.13 a 63.43 ± 1.00 d 15.53 ± 1.00 b 1.25 ± 0.70 b 4.08 ± 1.00
WT8 13.01 ± 1.10 b 2.43 ± 1.02 b 0.39 ± 0.11 c 0.67 ± 0.13 b 66.68 ± 0.50 c 15.13 ± 1.00 b 1.16 ± 0.60 b 4.41 ± 0.70

C.V 6.62 30.13 17.61 36.10 1.42 8.21 32.52 -
LSD 0.05 1.55 1.47 0.15 0.60 1.58 1.76 0.61 -

(*) The means with different letters in parentheses (a,b,c,d,e) for the same quality parameter indicate LSD at the
0.05 confidence level. (**) O/L, oleic acid/linoleic acid ratio.

The results also showed significant differences at the 0.05 LSD for the percentage of
fatty acids composition.

The degree of correlation between the fatty acids included in the composition of OO
according to the level of the correlation and its significance were different (Table 5).

Table 5. The correlation between fatty acids (%) of the OO wild olive phenotypes (n = 3).

Palmitic Stearic Arachidic Palmitoleic Oleic Linoleic Linolenic

Palmitic 1
Stearic 0.13 1.00

Arachidic 0.08 0.16 1.00
Palmitoleic 0.52 * −0.17 0.32 1.00

Oleic −0.23 0.06 0.34 −0.21 1.00
Linoleic −0.06 −0.18 −0.48 * −0.06 0.91 ** 1.00

Linolenic −0.34 0.43 −0.39 −0.23 −0.55 * 0.59 ** 1.00

(*) Indicates that they are significantly different (p < 0.05). (**) Indicates that they are significantly different
(p < 0.01).

The table shows there is a high correlation between the two fatty acids (Oleic/Linoleic)
r = 0.91 and (Linolenic/Linoleic) r = 0.59. However, there is a negative correlation between
Oleic/Linolenic (r = −0.55) and Linolenic/Arachidic (r = −0.48).

Monounsaturated fatty acids have great importance due to their nutritional implication
and effect on the oxidative stability of oils [57].

Oleic acid, which is the main monounsaturated fatty acid [58], has an important
role as it forms 55 to 83% of the fatty acid composition [59]. It is used as an excipient in
pharmaceuticals, and the diet is linked with a reduction in the risk of coronary heart disease
(CHD) [58,59] and is widely recommended to replace a similar amount of saturated fat
without increasing the total number of daily calories [60–62]. The proportion of oleic acid
within the fatty acid composition plays an important role in determining the quality of the



Sustainability 2022, 14, 5151 9 of 14

oil as olive oil that contains oleic acid by more than 55% is classified as an excellent virgin
olive [63]. Based on proven beneficial health effects, it is recommended to substitute other
lipids with oleic acid [64], Moreover, it gives olive oil anti-oxidation properties [65] and the
ability to bear high temperatures during cooking.

Oleic acid was found in a wide range in the selected phenotypes, but not less than
62.22% as in WS4. Two phenotypes (WA1, WA5) express a high percentage of oleic acid
(77.4%, 74.81%, respectively). This is higher than the higher percentage (71.9%) in Picual
grown in Northwestern Argentina [66] and gives great importance to these two phenotypes
as the higher the percentage of oleic acid, the higher its quality [67].

The content of stearic acid, another important saturated acid, is within the range of
2.43% in WT8 and 4.39% in WT5. For the arachidic acid, all the studied phenotypes showed
values lower than the limit of 0.6% established for the OO except for the WA1, WA2, WA3,
WT2, and WT5, which showed somewhat higher values of 0.82%, 0.88%, 0.68%, 0.62%, and
0.63%, respectively.

Polyunsaturated fatty acids, such as linoleic acid, are very important for human
nutrition. However, these fatty acids are negatively correlated to the stability of OO as it is
much more susceptible to oxidation [68,69]. The phenotypes WS4, WS3, and WT7 showed
the highest percentage of 18.83%, 17.12%, and 15.53%, respectively, whereas the lowest
percentage was found in WA1 and WA5 of 5.98 and 5.6%, respectively.

Given the important role that oleic acid plays when evaluating the quality of OO, the
cluster analyses of the percentage of extracted OO and the content of oleic acid are per-
formed and the result is presented in Figure 3. The first group is WA1, WA5, characterized
by high oleic acid (74.87–77.4%) and the extracted OO ranges (11.9–17.73%). The second
group has two subgroups; the first subgroup is WT3, WA2, WT5, and WA3, characterized
by a moderate content of oleic acid (66.39–67.78%) and the extracted OO range of 9.61 to
20.6%. The second subgroup is WT6, WT2, WT7, WT1, WS5, WA7, WT8, WS1, WS3, and
WS4, characterized by a moderate content of oleic acid (62.22–69.11%) and the extracted
OO range of 10 to 21.06%. The third group (WS2, WT4, WA6, and WA4) is characterized by
lower content of oleic acid (66.05–68.45%) and a high of extracted OO that ranges from 20.6
to 29.3%.
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Jaccard’s similarity coefficient was used to gauge the similarity of the phenotypes
according to the following quantitative and chemical morphological properties (leaf, seed,
fruit, flower clusters, flesh, OO) in Table 6.

Table 6. The similarity of the phenotypes according to quantitative and chemical morphological properties.

WS1 WS2 WS3 WS4 WS5 WA1 WA2 WA3 WA4 WA5 WA5 WA7 WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8

WS1 1.00
WS2 0.44 1.00
WS3 0.78 0.33 1.00
WS4 0.44 0.78 0.56 1.00
WS5 0.56 0.67 0.67 0.89 1.00
WA1 0.56 0.44 0.56 0.33 0.44 1.00
WA2 0.56 0.44 0.56 0.33 0.44 0.78 1.00
WA3 0.78 0.56 0.56 0.44 0.56 0.78 0.78 1.00
WA4 0.44 0.44 0.44 0.22 0.33 0.78 0.67 0.56 1.00
WA5 0.67 0.56 0.56 0.56 0.67 0.56 0.56 0.67 0.44 1.00
WA6 0.33 0.67 0.44 0.67 0.78 0.44 0.33 0.44 0.44 0.44 1.00
WA7 0.33 0.22 0.56 0.44 0.44 0.22 0.11 0.11 0.11 0.22 0.33 1.00
WT1 0.33 0.22 0.44 0.22 0.33 0.44 0.56 0.33 0.33 0.11 0.33 0.44 1.00
WT2 0.22 0.11 0.44 0.22 0.33 0.56 0.56 0.44 0.56 0.44 0.33 0.33 0.44 1.00
WT3 0.56 0.44 0.56 0.33 0.44 0.78 0.89 0.78 0.78 0.56 0.33 0.11 0.44 0.67 1.00
WT4 0.44 0.33 0.44 0.33 0.44 0.22 0.22 0.33 0.44 0.11 0.67 0.33 0.44 0.33 0.33 1.00
WT5 0.33 0.22 0.33 0.11 0.22 0.67 0.67 0.56 0.67 0.56 0.22 0.22 0.44 0.89 0.78 0.22 1.00
WT6 0.33 0.33 0.44 0.44 0.56 0.44 0.56 0.56 0.44 0.67 0.44 0.11 0.22 0.78 0.67 0.33 0.67 1.00
WT7 0.33 0.56 0.22 0.44 0.56 0.56 0.56 0.56 0.56 0.44 0.56 0.22 0.56 0.56 0.67 0.44 0.67 0.56 1.00
WT8 0.56 0.67 0.44 0.67 0.78 0.44 0.56 0.56 0.56 0.67 0.56 0.22 0.33 0.33 0.67 0.44 0.44 0.56 0.78 1.00

As expected, our present findings clearly show that oleic acid is the major fatty acid in
wild olive oils as in the cultivated olive oils. In addition, all of the studied wild olive trees
contained more than 62% oleic acid of the fatty acid composition.

Among the screened oleasters, two (WA6, WA4) stand out for their interesting OO
content (29.01, 29.3%, respectively) and fairly good oleic acid content (66.74, 68.45%, re-
spectively). As well, the content of extracted OO showed a positive correlation with high
significance during two agricultural seasons. This is very important given that the trees are
in the wild state (Figure 4).
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of oleic acid (77.4%), whereas both WA4 and WA6 were noteworthy for their high content
of OO and oleic acid. Both cluster analysis and Jaccard’s similarity coefficient revealed
clear relationships between accessions according to their geographical origin. This can be
explained by the fact that the spatial juxtaposition has an effect on the similarity. Two wild
olive phenotypes (WA4, WA6) were selected as promising since they showed the lowest
similarity according to Jaccard’s similarity coefficient, in addition to their fruits possessing
higher-quality properties (fruit weight 2.16, 3.24 g, flesh 75.83, 86.2, OO% 29.27, 29.01,
oleic% 68.45, 66.74, respectively). This enables it to be a very promising introduction to
genetic improvement processes.

4. Conclusions

In Syria, a wide genetic diversity has been reported for wild olives, which is interesting
for the introgression of some traits in breeding programs. However, care must be taken
because introducing some beneficial wild traits may have negative effects on other traits.
The study revealed the latent potential of the wild varieties of olives that are still present
in Syria, not only in terms of the amount of oil extracted but also in terms of the quality
of this extracted oil, which qualifies them to be good inputs in the genetic improvement
programs for olives. Some of the studied phenotypes showed an average weight of the fruit
exceeding 3 g and medium-weight stones with a weight less than 0.4 g. The flesh weight
exceeds 70% and reaches 86.66%. Most of them showed a high OO extraction rate at the
laboratory scale, while some of them showed to be superior taking into account the harsh
environment where they are growing, with some OO values exceeding 29% in addition
to the stability of the OO extracted rate during two agricultural seasons. The fatty acid
composition was compatible with the commercial specifications of olive oil.

Two phenotypes have been selected as an accession in olive genetic improvement
processes, WA4 as an oil accession (OO 29.3%, oleic 68.45%, flesh weight 75.64%), and
WA6 as an oil and table accession (fruit weight 3.24 g, OO 29.01%, oleic 66.74%, flesh
weight 86.2%).

In future work, these varieties will be further explored for the minor compounds of
the oil and in terms of resisting biotic and abiotic stresses.
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