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Abstract: The increased penetration of electric vehicles (EVs) and distributed generator (DG) units
has led to uncertainty in distribution systems. These uncertainties—which have not been adequately
considered in the literature—can entail risks in the optimal sizing of EV charging stations (EVCSs)
and DG units in active distribution network planning. This paper proposes a method for obtaining
the optimal sizing of DG units and EVCSs (considering uncertainty), to achieve exact power system
analysis and ensure EV driver satisfaction. To model uncertainties in optimal sizing planning, this
study first generates scenarios for each system asset using a probability distribution that considers
the asset characteristics. In this step, the wind-turbine (WT), PV, and EVCS are modeled applying
the Weibull, exponential, and kernel density estimation (KDE), and scenarios for each asset are
generated using random sampling. Then, the k-means clustering is carried out for scenario reduction
and the representative scenario abstract. The probability of occurrence for each representative
scenario is assigned depending on the number of observations within each cluster. The representative
scenarios for each asset are integrated into the scenario for all assets through the joint probability.
The integrated scenarios are applied in the optimization problem for optimal sizing of the system
asset framework. The optimal sizing of the system assets problem is proposed (to minimize the
line loss and voltage deviation) and formulated via stochastic second-order conic programming,
to reflect the uncertainty under an AC power flow; this is a convex problem that can be solved
in polynomial time. The proposed method is tested on a modified IEEE 15 bus system, and the
simulation is performed with various objective functions. The simulation results demonstrate the
effectiveness of the proposed method.

Keywords: active distribution network; stochastic program; second-order conic program;
optimal sizing; distributed generator; electric vehicle; electric vehicle charging station; distribution
system planning

1. Introduction
1.1. Motivation

Concerns over climate change and the recent developments in technology have caused
distributed generation (DG) and electric vehicles (EVs) to attract worldwide attention as
eco-friendly alternatives to fossil fuel-based power plants [1]. In an active distribution
network (ADN) that integrates a combination of DG units and EV charging stations (EVCSs),
uncertainties arising from the high penetration of DG units and EVs in the distribution
systems cause challenges for the distribution system operator (DSO) [2,3]. The increase
in DG units (e.g., photovoltaic (PV) and wind-turbine (WT)) leads to uncertainty on the
supply side, whilst increasing EV penetration leads to uncertainty on the demand side.
Therefore, the optimal sizing framework of system assets in the distribution planning
should consider these uncertainties. Since the EVCS uncertainty does not follow specific
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probability distribution (e.g., normal, exponential distribution) that is a parametric method,
asset characteristics should be adequately modeled. If not, cost losses and lower utilization
rates may arise through the oversizing of system assets. Meanwhile, the optimal capacity of
each asset (i.e., PV, WT, and EVCS) should be optimized to satisfy driver convenience and
system constraints (e.g., voltage and permitted current). For the accurate analysis of power
systems, power flow should be applied in the distribution planning model. However, AC
power flow is generally nonconvex and NP-hard due to its nonlinear nature, thus making
the optimization problem challenging. To this end, the DC power flow is widely used,
which is a popular approximation and a linearization of AC power flow [4–7]. DC power
flow makes the optimization problem easy to solve and is based on some assumptions [8]:
(1) The line resistance can be neglected because the reactance is much larger than the
resistance in the transmission system. (2) The bus voltages are fixed as 1.0 pu These
assumptions are valid in the transmission system but not in the distribution system because
the R/X ratio cannot be ignored as in the transmission system. Furthermore, the bus
voltage is the main issue in the distribution system. Therefore, the AC power flow should
be applied in the AND planning, and it can be solved using the metaheuristics method,
which does not ensure the global optimum.

1.2. Literature Review

Numerous studies in the literature have addressed these challenges, by placing various
requirements upon the optimal sizing problem. In [9], a review of the systematic modeling
and analysis of EVs integrated hybrid renewable energy system is presented. In [10], the
EVCS sizing framework was introduced by incorporating the different types of EVCS (e.g.,
public parking lot and roadside fixed charging stations) into an NP-hard problem. This was
solved by a Voronoi diagram-based particle swarm optimization. In [11], optimal storage
and DG planning were formulated to reflect the uncertainty of EVs. This problem was
solved using tabu search and simulated annealing algorithms for short-term and long-term
planning, respectively. The authors of [12,13] sought to minimize the net present value
of the total cost. In [12], the optimal sizing of the DGs and an energy storage system
(ESS) was formulated using mixed-integer linear programming (MILP). In [13], the model
predictive control-based optimization model for EVCS planning was formulated as a
second-order conic program (SOCP), to minimize the system operation cost. Meanwhile,
several researchers have performed optimizations to minimize power system loss or voltage
deviations [14–16]. The authors in [14] aimed to minimize the power loss and maximize
the penetration of system assets. For system loss analysis, AC power flow was applied,
and SOCP relaxation was performed. In [15], an optimization model for EVCS sizing
was proposed and solved using particle swarm optimization and a genetic algorithm
(GA), to minimize power loss. Similarly, [16] proposed multi-objective EV charging station
planning with the aim of minimizing the power loss and voltage deviation. Furthermore,
the optimization problem for distribution assets (e.g., transformers and feeders) and DG
units was modeled as an MILP in [12]. The authors of [2] proposed the joint planning of
PVs, micro-turbines, and an EVCS for cost minimization. However, these studies were
based on point optimization, which does not consider uncertainty. From a practical point
of view, performing optimal sizing without considering this uncertainty may lead to the
above-mentioned oversizing. Although a typical day from each season was applied in [2], it
is difficult to ascertain whether uncertainty was fully considered. Moreover, power system
constraints were neglected in [10,12], and most of these studies did not fully consider PVs,
WTs, or EVCS.

The optimal sizing of system assets should consider the uncertainty of those assets;
therefore, several researchers have conducted scenario-based optimizations such as stochas-
tic programs and chance-constrained programs (CCPs). The authors of [17] proposed a
CCP-based method for the optimal sizing of DGs; they considered the uncertainty of EVs,
electricity prices, and DGs via a probability distribution function (PDF), and they solved
the problem using a GA. In [3,10,18], a stochastic mixed-integer nonlinear program was
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formulated to reflect the uncertainty, and AC power flow was applied to each optimization
model. The model for [3] aimed to minimize the investment cost, energy loss, and waiting
time of EVCSs in a sharing EV system; it was solved by a natural aggregation algorithm,
considering only the uncertainty of EVCSs. The authors of [4,12] proposed a distribution
planning model aimed at cost minimization; the optimal solution was obtained through a
GA. Although these studies considered uncertainty using the CCP or stochastic optimiza-
tion in the studies mentioned above (i.e., [3,10,17,18]), a heuristics method was used to
obtain the optimal solution in the AC power flow constrained problem; however, it does not
ensure a globally optimal solution. Furthermore, many researchers have studied the DGs
and EV allocation for an optimal allocation framework. Fan et el. [19] introduced integrated
expansion planning considering uncertainties of DGs and load to minimize the net present
value of investments and recast in two-stage stochastic programming. The optimization
problem is formulated as a multiobjective mixed-integer nonlinear program employing
the AC power flow and solved with a multiobjective Tchbycheff decomposition-based
evolutionary algorithm. The authors of [20] developed a hybrid approach for an EV-based
grid connected to the DG to minimize the annualized social cost connected to DG and
EVCS. The proposed model was solved using the student psychology optimization and
AdaBoost algorithms. Several researchers have formulated optimization models to ensure
global optimality. The authors of [21] optimized the capacity of the DGs, EVCS, and ESS
through a stochastic MILP, by minimizing the net present value of the assets. In this study,
nonlinear equations from the full AC power flow were transformed to a linear format.
Although this linearization makes the simulation faster and easier to solve, the solution
may not be accurate due to avoidable errors [22]. To tackle this problem, several researchers
have carried out the relaxation of AC power flow constrained problem, transforming it
into a convex problem. In [23], the authors employed SOCP relaxation to transform the
AC power flow into a convex problem in a stochastic program. This problem optimizes
the optimal sizing of the EVCS only. SOCP relaxation has also been applied in [2,13,14],
though the uncertainty was not considered there.

1.3. Paper Contribution and Organization

Based on the motivations stated above, this paper proposes stochastic SOCP program-
ming toward the optimal sizing of DG units and EVCSs. Uncertainties in system assets
are considered by generating an integrated scenario according to joint probability. The
optimization model is formulated for the optimal capacities of the PV, WT, and EVCS,
considering EV penetration alongside uncertainties. This model seeks to minimize the line
loss and voltage deviation. Subsequently, the exact SOCP relaxation is employed to trans-
form the model into a convex problem. The SOCP relaxation exactness is demonstrated
in [24,25], and a comparison for different commercial and user-developed packages has
been addressed in [8].

The contributions of this paper are briefly summarized as follows:

• To consider the uncertainties of the system assets (PV, WT, and EVCS) simultaneously,
an integrated scenario method is introduced, and a scenario-based stochastic program
is conducted to optimize the PV, WT, and EVCS capacities.

• The stochastic program is formulated as an SOCP model, to solve the AC power flow
constrained problem; this is a convex problem that can be solved in polynomial time
using a global optimal solution.

The remainder of this paper is organized as follows. In Section 2, an integrated scenario
generation method is presented. In Section 3, the proposed optimal sizing of the DG units
is proposed, and the EVCS methodology is described in detail. The results are presented
and discussed in Section 4. Finally, the paper is concluded in Section 5.

2. Scenario Generation of DG Units and EVCS

In this study, scenario-based stochastic programming was applied to consider the
uncertainties of the PV and WT outputs and the EV charging demand. Stochastic pro-
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gramming requires scenario generation, and each scenario is assigned a probability of
its occurrence. Therefore, in this step, the scenario sets for the PV and WT outputs and
EV charging demand are generated to incorporate these uncertainties, using probability
distribution fitting and k-means clustering. Figure 1 shows the framework for the proposed
scenario generation method.
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The EVCS demand and DG unit output data were normalized and used to represent
the ratio of demand or generation for each asset. Then, the power outputs of the DG
units (i.e., WT and PV) and the EVCS demand were modeled using Weibull, exponential,
and kernel distributions, respectively; then, random samplings based on these probability
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distributions were used to generate scenarios. Subsequently, k-means clustering was used
to reduce the scenarios and assign them probabilities. Finally, the scenario sets were
integrated into one set of scenarios using the joint probability.

2.1. Modeling of Uncertainty
2.1.1. Output Uncertainty Modeling for WTs

Numerous studies have demonstrated that the stochastic wind power output follows
a Weibull distribution; hence, it was assumed that the stochastic wind power pWT followed
a Weibull distribution with the following PDF [26]:

fWT

(
pWT

)
=

k
ck pWT(k−1)

e−(pWT/c)k
. (1)

Here, C and k denote the shape and scale parameters of the Weibull distribution,
respectively.

2.1.2. Output Uncertainty of PVs

Similar to the WT output, the PV output was modeled using the distribution probabil-
ity based on the output characteristics. An exponential distribution was adopted to model
the PV power output using historical data. The exponential PDF for pPV was expressed as

fPV

(
pPV

)
= λeppv

, (2)

where λ represents the rate parameter of the exponential distribution.

2.1.3. Modeling for EV Charging Demand

In this study, practical historical data for the arrival time and charging amount per
EV across several EVCSs in Korea are utilized. Table 1 shows the sample data, including
arrival time and charging amount of EVCS. The arrival time data were preprocessed at 0.1
intervals (i.e., 6 min) from 0 to 24 h.

Table 1. The data samples of EVCSs.

EVCS Code Arrival Time Charging Amount (kW)

EVCS 1 12.1 25.47

EVCS 2 13.7 17.57

...
...

...

EVCS 839 19.7 25.6

The charging demand for the EVCS was calculated by summing the charging amount
of the EVs arriving simultaneously (i.e., the sum of the charging amount with the same
arrival time). Subsequently, the charging demand for the EVCS was utilized to model the
uncertainty. The charging demand data did not follow a parametric family of probability
distributions (e.g., the Weibull or exponential distributions). Thus, the KDE was used to
estimate the probability distribution of the EVs’ EVCS charging demand. The KDE is a
non-parametric method for estimating the shape of a PDF for a random variable with a
kernel function K and smoothing parameter h. It is defined as follows [27]:

fEVCS

(
pEVCS

)
=

1
Nh ∑N

o K
(

PEVCS − PEVCS
o

h

)
. (3)

Let
(

PEVCS
1 , xEVCS

2 , . . . xEVCS
N

)
denote the observed sampled data and let n be the

number of sample data. The kernel function K is a non-negative parametric distribution
function (e.g., Gaussian, uniform, or Epanechnikov). In this study, the Epanechnikov
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function was applied as a kernel function. Figure 2 shows a histogram of the charging
demand and estimated PDF using a KDE based on historical data. It can be observed that
the charging demand does not have a specific parametric probability distribution, and the
KDE-based PDF is suitable for fitting these historical data.

Figure 2. Histogram of charging demand data and kernel density estimation-based PDF.

2.1.4. Integrated Scenario Generation

The probability distributions used in the modeling uncertainty were also utilized
for scenario sampling. Random sampling (for scenario generation) produces a virtual
scenario for each asset according to the probability distributions. However, excessively
many scenarios make the simulation time-consuming, and stochastic programming requires
the probability of occurrence for each scenario. Thus, k-means clustering was employed
to reduce the number of scenarios and assign a probability to each one. The k-means
clustering classifies asset data into the k cluster, and the centroid and classified data called
observation (i.e., the data grouped into the same group) are in the cluster. The k-means
clustering algorithm for scenario reduction works as follows:

(1) Select the number of clusters k. In this step, the elbow method was used to determine
the optimal number of clusters.

(2) The initial centroids that are the central data point for each cluster are randomly
selected.

(3) The distance between the centroids and observation (i.e., each data point) and each
observation is assigned to the nearest centroid.

(4) The centroids are recalculated to be the center of the mass of observations within each
cluster.

(5) Repeat steps (3) and (4) until the clusters no longer charge.
(6) The centroid data were taken as representative scenarios, and the probability of

each representative scenario was assigned according to the number of observations
within each cluster divided by the total number of sampling data points. This can be
expressed as

Passet(Oasset = Sasset,n) =
∑ Cn

Dtotal
, (4)

where Passet(Oasset = Sasset,n) indicates the probability of occurrence in which the output of
each asset Oasset is the n-th representative scenario Sasset,n (i.e., the representative scenario).
The number of representative scenarios can differ, depending on the asset. The index
asset includes WT, PV, and EVCS. Cn and Dtotal represent the total number of observations
within the n-th cluster and total number of sampling data, respectively. It is assumed that
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the output of the DGs and the demand for EVCSs are independent. That is, the k-means
clustering in this study separately yielded the representative scenario and the probability
of each scenario for the WT, PV, and EVCS. The proposed optimization model considered
the asset uncertainties simultaneously. To this end, the integrated scenario was generated
using the joint probability, as follows:

P(S = So) = PPV(PV = SPV,a)× PWT(WT = SWT,b)× PEVCS(EVCS = SEVCS,c). (5)

Here, SPV,a, SWT,b, and SEVCS,c represent the a-th, b-th, and c-th representative scenar-
ios for each asset, respectively; PPV , PWT , and PEVCS denote the probability of occurrence
for each representative scenario. P(S = So) represents the probability of the o-th integrated
scenario’s occurrence; that is, it indicates the joint probability that these representative
scenarios occur simultaneously. Thus, one integrated scenario includes representative
scenarios for each asset (i.e., three representative scenarios).

3. Proposed Optimization Formulation and Preliminaries for Optimization Model
3.1. Stochastic SOCP Program

Stochastic programming was adopted in this study; it sought to minimize the objective
function for the overall scenario, to thereby consider the uncertainties of system assets. The
standard form of the stochastic program is expressed as follows [28]:

minCTx + EωQ(x, ω), (6)

s.t. Ax = b, (7)

x ≥ 0. (8)

Here, N indicates the number of scenarios and the probability assigned to each.Q(x, ω)
represents all scenarios. Stochastic programming has been described in detail in [18].
Because stochastic programming is based on scenarios (including generation or EVCS
demand) it is useful to consider the uncertainties of system assets. In this study (unlike
generic stochastic programming), the probability is applied to constraints, rather than to an
objective function.

Then, the stochastic program was modeled as a second-order conic program, with the
objective being to minimize the line loss and voltage deviation. In this step, an AC power
flow was applied to analyze the power system, and SOCP relaxation was employed to
transform the nonlinear and nonconvex problems into convex ones. In the SOCP problem,
SOCP constraints were added to the standard form of stochastic programming; these
constraints are expressed as follows:

‖Ax + b‖2 ≤ CTx + d. (9)

3.2. Objective Function

This study aims to appropriately size PV, WT, and EVCS for stable system operation.
The following Figure 3 shows the proposed framework for stochastic programming, and
Table 2 lists the nomenclature of the proposed optimization problem.

Table 2. The nomenclature for the proposed optimization problem.

Parameter Meaning

Iij The current of branch ij.

Zij/Rij/Xij The impedance/resistance/reactance of branch ij.

V0 The nominal voltage.

Vi, Vj The i/j-th bus voltage.

V1,j/V2,j The auxiliary variables for linearization of objective function.
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Table 2. Cont.

Parameter Meaning

Sij/Sjk The complex power in branch ij/jk.

Pij/Pjk The active power in branch ij/jk.

Qij/Qjk The reactive power in branch ij/jk.

Sj/Pj/Qj The injected complex/active/reactive power at the j-th bus.

vi/vi/ljj The auxiliary variables for SOCP relaxation.

PGi/QGi The active/reactive power generated at j-th bus.

PGj, PGj/QGj, QGj The under and upper bound of PGi/QGi.

PDj/QDj The active/reactive power consumed at j-th bus.

PDj , PDj/QDj, QDj The under/upper bound of PDj/QDj.

Captype
Dj /Captype

Gj The capacity of power-consuming/generating asset.

PType
Dj /PType

Gj
The upper bound of active power-consumed/generating
asset.

EVpen EV penetration rate.

EVmin The minimum active power of the EVCS.

Ptype
j /Qtype

j The active/reactive power of asset at j-th bus.

Cm The normalization coefficient of the m-th scenario.

p f type The power factor of each asset

Figure 3. The flowchart for the proposed stochastic SOCP optimization.

The objective function of the optimization model was to minimize the voltage deviation
and line loss using a multi-objective function. This function was formulated as follows:

min
u ∑ijεL I2

ijRij + ∑jεB

∣∣∣V2
o −

∣∣Vj
∣∣2∣∣∣. (10)

Here, L and B denote the sets of lines and buses in the power system, respectively. ij
represents the line connecting the i-th and j-th bus. I2

ij and Rij represent the current and
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resistance, respectively, of the line ij. V0 is the nominal voltage and Vj is the complex bus

voltage at j-th bus. That is, I2
ijRij is the line loss of line ij and

∣∣∣V2
o −

∣∣Vj
∣∣2∣∣∣ is the voltage

deviation. u is the set of control variables, which is described in detail in the constraint
explanation. However, the objective function is nonlinear owing to the absolute value
of the function’s second term. To convexify the objective function, Equation (10) can be
rewritten with auxiliary variables as follows:

min
u ∑ijεL I2

ijRij + ∑jεB

(
V1,j + V2,j

)
. (11)

Here, V1,j and V2,j are auxiliary variables for convexification and positive values. These
variables have no physical meaning in the power system, just for linearization. According to
the convexification of Equation (11), related constraints were added to ensure equivalence
to Equation (10), as follows:

V2
o −

∣∣Vj
∣∣2 + V1,j −V2,j = 0. (12)

V1,j, V2,j ≥ 0. (13)

3.3. Constraints

In general, the AC power flow is nonlinear and non-convex in nature; therefore, DC
power flows are extensively applied in practice, and these flows are formulated as linearized
power flow equations. DC power flow is convex and makes simulation faster. However,
the optimal solution of the DC power flow is incorrect because errors from linearization are
inevitable. In this study, the AC power flow was applied to the optimization model and
relaxed in the SOCP model with a branch flow model and the remaining AC power flow.
Figure 4 presents a summary of the notations used in the branch flow model employed in
this study.

Figure 4. The 3-bus system for method demonstration.

Sij and Sjk denote the complex powers in branches ij and jk, respectively. Pij, Pjk, Qij,
and Qjk are the active and reactive powers in each branch, respectively. Sj, Pj, and Qj are
the injected complex, active, and reactive powers, respectively, of bus j. The equations
below represent Ohm’s law and the definition of branch power flow, respectively:

Vi −Vj = Rij Iij, (14)

Sij = Vi I∗ij. (15)

where I∗ij denotes complex conjugate of Iij. Based on the above definition, the power balance
at each bus was expressed as follows:

∑k∈ fd(j) Sjk −∑i∈ fu(j)(Sij − Zij
∣∣Iij

∣∣2) = Sj. (16)

fd(j) and fu(j) are the sets of downstream and upstream buses connected to bus
j. The complex power at the upstream bus is the active power loss attributable to the
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line impedance. Furthermore, substituting Equation (15) into Equation (14) produces
vj − vi = RijS∗ij/V∗ij ; then, by taking the squared magnitude, we obtain

∣∣Vj
∣∣2 = |Vi|2 − 2

(
RijPij + XijQij

)
+ (R2

ij + Xij)
∣∣Iij

∣∣2. (17)

However, the equations above are nonconvex because S is a complex number reflecting
the angle difference between the real and reactive power, and the bus voltage and branch
flow equations include the magnitude squared forms of Vi, Vj, and Ij. To convexify these
equations, auxiliary variables were introduced as vi, vj, and lj, and these notations were

substituted into Vi, Vj, and Ij. Let vi|Vi|2, vj
∣∣Vj

∣∣2, and lij
∣∣Iij

∣∣2. Thus, these constraints
should be separated as real variables and relaxed using auxiliary variables, as follows:

∑
k∈ fd(j)

Pjk − ∑
i∈ fu(j)

(Pij − Rijlij) = Pj, (18)

∑
k∈ fd(j)

Qjk − ∑
i∈ fu(j)

(Qij − Xijlij) = Qj, (19)

vj = vi − 2
(

RijPij + XijQij
)
+ (R2

ij + X2
ij)lij. (20)

Here, Pj and Qj denote the subtraction of the consumption and generation power at
bus j and can be expressed as Pj = PGj − PDj and Qj = QGj −QDj, respectively. Indexes Gj
and Dj denote the amount of generation and consumption at bus j. The constraint-related
auxiliary variables V1 and V2 were rewritten as follows:

V2
o − vi + V1 −V2 = 0. (21)

Equations (18) and (19) represent the real and reactive power, respectively, separated
from the complex power. Then, the constraint due to the auxiliary variable was formulated
to represent the relation between the auxiliary variables, real power, and reactive power:

lij =
P2

ij + Q2
ij

vi
. (22)

In the power system, the PGi, PDi, QGi, and QDi of each bus have limited real and
reactive powers of generation or demand under conditions of system:

PGj ≤ PGj ≤ PGj, QGj ≤ QGj ≤ QGj, (23)

PDj ≤ PDj ≤ PDj, QDj ≤ QDj ≤ QDj. (24)

In this study, the power-consuming system assets were the EVCS and generic load,
and the power-generating assets were the DG units and substation (slack bus). The PDj
of the power-generating connected bus and the PGj of the power-consuming connected
bus were zero. Pj and Qj can be classified into five types according to the connected assets:
slack, PV, WT, EVCS, and generic load. The capacity of each asset also limits the maximum
active power at the connected bus and should always be positive. This can be expressed as

0 ≤ Captype
Dj ≤ PType

Dj , 0 ≤ Captype
Gj ≤ PType

Gj , (25)

where Captype
Dj and Captype

Gj represent the capacities of the power-consuming and power-

generating assets, respectively, and PType
Dj and PType

Gj denote the maximum active power at
the asset-connected bus. Furthermore, the EVCS should be able to supply the minimum
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power for charging, to ensure driver’s convenience; this depends on the EV penetration
EVpen, which is expressed as

EVpen × EVmin ≤ PEVCS
Dj ≤ PType

Dj , (26)

where EVmin denotes the minimum power of the EVCS. The output of the assets should be
lower than the capacity and should always have a positive value:

Pj = Ptype
j , (27)

0 ≤ Ptype
j ≤ Captype

j . (28)

Ptype
j and Captype

j are the asset output and capacity, respectively.
For stochastic programming, the integrated scenario described in Section 2 and the

asset output coefficient Cm were applied as follows:

Ptype
j = Cm × Captype

j . (29)

Here, Cm denotes the normalization coefficient of the mth scenario. This can be used
to reflect the output uncertainty. The reactive power was determined by the active power,
because it is assumed that the system assets are operated at a fixed power factor:

Qj = Qtype
j , (30)

Qtype
j = Ptype

j × tan cos−1 p f type. (31)

Here, p f type is the power factor of each asset and differs for each one. The line current
was limited to the permitted current, to prevent thermal overload:

ljj ≤
∣∣Iij

∣∣2. (32)

In addition, the voltage magnitude should be maintained between the allowable lower
and upper limits, and the slack bus voltage should be fixed at 1.0 pu:∣∣∣Vj

∣∣∣2 ≤ vj ≤
∣∣Vj

∣∣2 (33)

However, this problem is still nonconvex, owing to the quadratic equalities in Equation
(22). To convexify this problem, conic relaxation was applied to transform the problem into
an SOCP. Finally, this constraint was relaxed to inequalities:

lij ≥
P2

ij + Q2
ij

vi
. (34)

This inequality constraint is equivalent to the standard form of the SOCP:∥∥∥∥∥∥
2Pij
2Qij

lij − vi

∥∥∥∥∥∥
2

≤ lij + vi. (35)

Because the objective function is linear, this optimization problem is a SOCP optimiza-
tion. In a spanning-tree radial distribution system, the AC power flow relaxation is always
exact; the exactness and validation of the SOCP relaxation in AC power flow are proven
and comprehensively described in [27,28].
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Finally, the proposed optimization problem for the optimal sizing of system assets
was reformulated as follows:

min
u ∑ijεL ljjRij + ∑jεB(V1,j + V2,j), (36)

s.t. (12, 13), (18− 21), (23− 33), (35). (37)

In the above constraints, the constraints for AC power flow are Equations (18–20),
(23), (24), (32), (33) and (35). Equations (12) and (13) are for linearization of the objective
function, and other equations are for optimal sizing of each asset.

4. Results and Discussion

In this section, the proposed optimal sizing framework is tested upon a modified IEEE
15-bus radial distribution system. Table 3 shows the representative scenario of each asset
using k-means clustering. The normalized data are classified using k-means clustering, and
the scenario coefficients are the centroids of each cluster. The k-means clustering is carried
out for each asset; therefore, the sum of the probability of occurrence (i.e., the conditional
probability) is 1 for each asset.

Table 3. The example for representative scenario of each assets using k-means clustering.

Scenario PV WT EVCS

Scenario
Coefficient

Probability
(%)

Scenario
Coefficient

Probability
(%)

Scenario
Coefficient

Probability
(%)

1 0.5819 16.83 0.6192 19.65 0.4345 19.18

2 0.4278 44.35 0.4594 18.90 0.7838 9.59

...
...

...
...

...
...

...

Total 1 1 1

Table 4 represents the example of the integrated scenario using the joint probability.
Each integrated scenario includes the scenarios of PV, WT, and EVCS and the probability of
each scenario through the joint probability, as shown in Table 4. In this paper, it is assumed
that the output of each asset is independent. Therefore, the probability of each integrated
scenario is calculated as the product of the probability for representative scenarios.

Table 4. The example of the integrated scenario using the joint probability.

Integrated Scenario PV WT EVCS Probability (%)

Scenario 1 0.5819 0.6192 0.4345 0.63

Scenario 2 0.5819 0.6192 0.7838 0.32

...
...

...
...

...

Scenario 245 0.4943 0.8227 0.5193 0.47

Total 1

For this system, case studies are conducted depending on the various optimization
functions. Figure 5 illustrates the modified IEEE 15-bus system, and the numbers in Figure 5
represent bus number. Table 5 lists the system parameters, and the parameter and decision
variables in the proposed optimization are applied as per unit. The DG units and EVCS
were in Bus 7, 8, and 11 and Bus 13, respectively.
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Figure 5. Modified IEEE 15-bus system.

Table 5. System parameters.

Parameter Value Parameter Value

EVmin (kW) 350 V0 (kV) 12

Capmax (MW) 12 p f EVCS 0.99 lag

Vmin (pu) 0.95 p f PV 0.99 lag

Vmax (pu) 1.05 p f WT 0.95 lag

A case study analysis was carried out for different objective functions, as follows:

• Case 1 (CA = 1, CB = 0): Line loss minimization (active power loss);
• Case 2 (CA = 0, CB = 1): Voltage deviation minimization;
• Case 3 (CA = 1, CB = 1): Line loss and voltage deviation minimization (multi-objective

function).

To implement the optimization of various objective functions, the objective function
was rewritten as

min
u

CA ∑L
ij=1 I2

ijRij + CB ∑B
j=1(V1,j −V2,j). (38)

The simulation results are presented in Table 6. Comparing Cases 1 and 2, it can
be seen that the active power loss in Case 2 decreased substantially (by 83.7% in Case
1) because the objective function minimizes the line loss of the test system. In contrast,
the voltage deviation in Case 2 was ~27.3% less than that in Case 1, because the objective
function of Case 2 was to minimize the voltage deviation. The voltage deviation in Table 6
was obtained as follows:

Voltage deviation = ∑j∈B

∣∣Vo −Vj
∣∣. (39)

In Case 1, the size of EVCS2 was smaller than that of the other cases because EVCS2
was located at the end of the system, and the line loss due to line impedance was large. The
size of the WT was zero. From the perspective of minimizing the voltage, DG units can
cause overvoltage at the DG-connected bus. EVCS1 was located close to the substation, and
the capacity of EVCS1 was smaller than that of EVCS1. Hence, the size of WT was zero, to
minimize the voltage deviation. It can be noted that the results (i.e., the capacities of asset,
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loss, and voltage deviation) in Cases 1 and 2 were strongly determined by the objective
to be minimized, which is not appropriate. Hence, a multi-objective function was applied
in this study (see Case 3). The voltage deviation and line loss were lower than in Cases 1
and 2, respectively. From the cases, the impact of the auxiliary variables V1,j and V2,j for
convexifying the objective function can be analyzed. Case 2, which minimizes only voltage
deviation, shows the smallest voltage deviation. Additionally, when comparing Cases 1
and 3, the effect of the auxiliary variables can be verified by reducing the voltage deviation
in Case 3 where both loss and voltage deviation are minimized compared to Case 1 where
only power loss is minimized.

Table 6. Results of the optimal sizing of system assets.

Asset Case 1 Case 2 Case 3

EVCS1 (kVA) 685.7 685.7 685.7
EVCS2 (kVA) 685.8 3051.5 3048.6

PV (kVA) 7971.9 7858.8 10,377.4
WT (kVA) 3921.6 0 3743.1

Active power loss (Line loss) (kW) 608 3737.1 706.7
Voltage deviation (pu) 0.4905 0.1343 0.3393

Figures 6–8 show the bus voltage of each scenario in the case studies. The bus voltages
at the asset-connected bus are listed in detail in Table 7. The objective function that
minimizes the voltage deviation was not included in Case 1, and the bus voltage in Figure 6
shows that the voltage deviation exceeded that in other cases. It can be observed in Figure 7
that the bus voltage of Case 2 (in which only the voltage deviation was minimized) exhibited
the smallest voltage deviation. In Figure 7, compared to other cases, the voltage at Bus 8
(connected to the WT) was closest to 1.0 pu, because the wind power generation was zero
and therefore the voltage did not increase. A voltage greater than 1.0 pu appeared on the
DG-connected or adjacent buses. As shown in Table 7., the voltages on the DG-connected
bus and EVCS-connected bus exceeded 1.0 pu, because the EVCSs were located close to the
DG units.

Figure 6. Bus voltage for Case 1.
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Figure 7. Bus voltage for Case 2.

Figure 8. Bus voltage for Case 3.

Table 7. Bus voltage in each case.

Bus Case 1 Case 2 Case 3

7 (EVCS1) 1.0241 1.0000 1.0207
8 (WT) 1.0500 1.0037 1.0457
11 (PV) 1.0500 1.0500 1.0500

13 (EVCS2) 1.0399 1.0000 1.0000

It should be noted in Figures 6–8 that the voltage did not depend on the scenario. In
the proposed optimization model, the capacity of an asset depends on the scenario that
minimizes voltage deviation and line loss. Figures 9–11 show the change in capacity with
respect to the scenario. In the case of case 1, it is calculated that charging stations 1 and
2 have almost the same capacity, and WT is the most calculated compared to other cases.
In Case 2, it can be observed that the capacity of WT is calculated as 0 in all scenarios,
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as shown in Table 6. The capacity of EVCS 2 is calculated to be larger in all Cases 2 and
3 because EVCS is adjacent to a bus connected with a PV with a large output. It can be
confirmed that, in Case 3, the capacity of WT is calculated to be larger than in Case 2, and
that the capacity of EVCS2 is calculated to be larger than in Case 1.

Figure 9. Capacity with respect to scenario for Case 1.

Figure 10. Capacity with respect to scenario for Case 2.

Figure 11. Capacity with respect to scenario for Case 3.
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Table 8 represents the comparison of with/without k-means clustering. Compared
to the case where scenario reduction using the k-means clustering is applied, it can be
found that the capacity is extremely oversized when it is not applied. This is because there
are many scenarios close to zero, so the capacity is calculated excessively. In addition,
because the number of scenarios is large, the operation time is also larger than the case
where the k-means clustering is applied, about 208 s, and it can be verified that the scenario
reduction through the application of the k-means clustering is effective in the optimal sizing
framework of system asset.

Table 8. Comparison of cases with/without k-means clustering.

Asset With k-Means Clustering Without k-Means Clustering

Capacity (pu) Computation
Time (s) Capacity (pu) Computation

Time (s)

EVCS1 (kVA) 685.7

5.37

5378.7

208.40
EVCS2 (kVA) 3048.6 236,905

PV (kVA) 10,377.4 265,649.4

WT (kVA) 3743.1 11,619.9

5. Conclusions

A new method for optimally sizing PV, WT, and EVCS was proposed to minimize
voltage deviation and line loss. The proposed method is formulated as a stochastic SOCP
model to consider the uncertainties of the system assets and applied AC power flow. To
consider the uncertainties, the probability distribution was fitted according to the output
characteristics of the PV, WT, and EVCS; then, integrated scenarios were generated using
k-means clustering. Finally, these integrated scenarios were applied to the stochastic SOCP
optimization model.

To verify the effectiveness of the proposed optimization model, case studies involving
various objective functions were conducted, and these cases were compared with each other.
When a single objective function was applied, the capacity of the asset and system value
(e.g., line loss and voltage deviation) was robustly determined, whereas the multi-objective
function model determined the control variables (e.g., line loss, voltage deviation, and
capacity). These results were confirmed through numerical experiments and analyses of
multiple dimensions.

The proposed method can solve ADN planning problems by considering these uncer-
tainties. Furthermore, the power system was considered by employing an AC power flow
in the model. The optimal sizing of the DG units and EVCS was properly determined in
the distribution planning step.

However, the EV charging demand was simplified by modeling the charging demand
from the EVCS rather than the driver’s perspective. The generated scenarios are not time-
variant but a snapshot for a certain time. Therefore, we will model the driver’s behavior
characteristics in future work and generate a time-variant scenario (i.e., profile scenario for
PV, WT, and EVCS). This model will be applied in charging demand modeling for ADN
planning; furthermore, the joint optimal sizing and siting model of DGs and EVCSs will be
extended to achieve greater practical value. This work will help resolve the problems of
uncertainty in ADN planning and thereby offer breakthroughs in the design of economical
and reliable energy systems for the future.
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