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Abstract: In order to conduct a data-driven load forecasting modeling and its application in optimal
control of air-conditioning system, this study used a hotel’s central air conditioning system as the
research object. Based on the data of the hotel energy management system, the load-forecasting model
of the central air conditioning system based on support vector regression (SVR) was established by
MATLAB. Based on the working principle of a chiller, chilled water pump, cooling water pump, and
cooling tower, the energy consumption models were established, respectively. Finally, based on the
load-forecasting results and the equipment energy consumption model, the energy consumption
optimization objective function of the hotel water system was established, the objective function
was solved to optimize the operating parameters of the water system at different load rates, the
operation control strategy for each piece of equipment was obtained, and the energy-saving analysis
was carried out. The results show that in the range of a load rate of 25~90%, the optimization strategy
has an energy-saving effect, and the system’s energy-saving rate is the highest when the load rate is
25.4%. The average energy-saving rate of the system is 12.4%.

Keywords: hotel building; SVR; load forecasting; optimal control; central air conditioning

1. Introduction

The energy conservation of public buildings is the focus of energy conservation [1,2].
Scholars have found that the energy consumption intensity of hotel buildings is the high-
est, and the energy consumption of hotel air conditioning systems accounts for a large
proportion of the total energy consumption. Therefore, energy-saving optimization of
air conditioning systems is an important measure to reduce hotels’ operational energy
consumption [3,4].

Establishing an accurate energy consumption model of central air conditioning systems
is very important for system analysis and control optimization. At present, the commonly
used energy consumption models of central air conditioning systems are the physics-based
white box model, data-driven black box model, and gray box model generated by the
mixture of both [5–7]. The white box model is mainly used in the design phase, and the
performance of the central air conditioning system is predicted and analyzed through
simulation. Yan et al. [8] proposed a simplified calculation method of energy performance
based on energy conservation, which is suitable for buildings with insufficient information
on the central air conditioning system. The black box model measures the input and output
variables of the central air conditioning system and uses a mathematical algorithm to
determine the relationship between the input and output variables. Liang Zhihao et al. [9]
took the operating parameters of inverter air conditioners as samples and established the
air conditioning performance prediction model by using a neural network algorithm to
realize the operation control optimization of inverter air conditioners. In fact, some heat-
and mass-transfer processes of central air conditioning systems are difficult to be defined
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directly by equations due to a lack of information or insufficient training data. In this
case, the gray box model is very effective. The basic structure of the model is formed
by the physics-based white box method, and the internal parameters of the model are
determined by the parameter-estimation algorithm based on the measured data of the
central air conditioning system. Zheng [10] proposed an improved artificial fish swarm
algorithm, which takes the minimum power consumption of the water chiller and cooling
tower as the objective function to solve the optimal load problem of the water chiller.
Wang Tianxu et al. [11] fitted the multivariate polynomial regression model of the water
chiller and chilled water pump based on the actual operating parameters and optimized
their operating parameters based on the simulation platform. Cheng et al. [12] proposed
a short-term hybrid forecasting model based on the Mean Impact Value-Improved Gray
Wolf Optimizer-Support Vector Regression (MIV-IGWO-SVR) and applied this model to
ice storage air conditioning cooling load forecasting. Feng et al. [13] proposed a prediction
method based on dest simulation and support vector machine regression algorithm (SVR)
so that the air conditioning system can respond to the indoor load change of near-zero
energy consumption buildings in time. Zhou et al. [14] investigated a forecasting method
for univariate time series with a nonlinear, random, large fluctuation and presented two
hybrid machine learning modeling methods—Chaos-support vector regression (Chaos-
SVR) and wavelet decomposition (WD)-SVR.

Research on the control optimization of air conditioning systems shows that the
control of air conditioning systems based on feedback has a time delay and coupling, and
accurate load forecasting is the premise to realize the optimal operation of air conditioning
systems [15,16], while most of the above studies directly optimize the control of a device
alone, which does not fully exploit the energy-saving potential of the system. In view of
the above shortcomings, this paper takes a four-star hotel as the research object, establishes
the hotel water system energy consumption optimization objective function based on the
support vector regression (SVR) central air conditioning system load-forecasting results
and the energy consumption model of each piece of equipment of the water system, solves
the objective function, and obtains the equipment operation parameters of the water system.
The average energy-saving rate of the optimized air conditioning water system reaches
12.4%. This method is highly applicable to the energy-saving operation of the hotel.

2. Methods
2.1. Description of Building and Air Conditioning

The hotel of this study is located in Jiangyin City, Jiangsu Province, with a building
area of about 60,000 m2 and a height of 99.8 m, with a total of 28 floors. The cold source
adopted by the hotel is a magnetic suspension water chiller, and an energy management
system was added. Data mining technology is used to analyze the monitoring data of the
central air conditioning system so as to realize the monitoring and energy-saving diagnosis
of the operating energy consumption of the system equipment and provide guidance for
the daily operation and maintenance management of the hotel.

The water system of the hotel adopts primary pump variable flow system. The chilled
water and cooling water transmission and distribution systems are connected in parallel by
two frequency-conversion pumps of the same model and then connected in series with the
water chiller. The cooling tower adopts two cooling towers of the same model in parallel.
The specific parameters of the water system equipment are shown in Table 1.
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Table 1. Main equipment parameters of hotel’s central air conditioning system.

No. Name Rated Parameters Number

1 Magnetic suspension
water chiller

Cooling capacity 800RT, power
432 kW, rated COP 6.51 1

2 Chilled water pump (inverter) Flow rate 200 m3/h, power 30 kW,
lift 33 m

3

3 Cooling water pump (inverter) Flow rate 300 m3/h, power
18.5 kW, lift 16 m

3

4 Cooling tower
(fixed frequency)

Air volume 250,000 m3/h, water
volume 300 m3/h, fan power

7.5 kW
2

2.2. Load-Forecasting Model
2.2.1. Support Vector Regression Principle

Support vector machines include classification support vector machines and regression
support vector machines [17]. In this paper, the regression prediction model of air condi-
tioning load forecasting is established. Therefore, the regression support vector machine is
used. The essence of support vector machine is to find a hyperplane in multi-dimensional
space to segment the samples to be studied so as to maximize the interval of each sub-
sample after segmentation, which is transformed into a convex programming problem.
Insensitive loss function is introduced into regression support vector machine ε; if the
absolute difference between the real value and the predicted value is not greater than ε,
then the loss value (the deviation between the predicted value and the real value) is 0.

For the regression problem, the support vector machine model can be introduced. For
a given sample G = {(x1, y1), (x2, y2), . . . , (xn, yn)}, the linear regression function of SVR air
conditioning load forecasting is given by Equation (1)

T(x) = ωΦ(x) + b (1)

where ω is the weight vector, Φ(x) is a nonlinear mapping function, and b is the offset vector.
Since the relaxation degree on both sides of the spacing belt may be different, two

relaxation variables ξi and ξ∗i need to be introduced, and the expression of the optimized
SVR air conditioning load model is given by Equation (2)

T(x) = min
ω,b,ξ1,ξ2

1
2
‖ω‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (2)

where C is the penalty factor, which represents the size of the sample penalty when the
model training load error is greater than ε.

After introducing Lagrange function into Equation (2), it is transformed into dual
form and solved. The optimal solution of Equation (2) is α∗ =

[
α∗1 , α∗2 , •••, α∗n

]
, α =

[α1, α2, •••, αn]. So, the regression function is converted to Equation (3).

T(x) = ω∗Φ(x) + b∗ =
n

∑
i=1

(αi − α∗i )Φ(xi)Φ(x) + b∗ =
n

∑
i=1

(αn − α∗n)g(xi, x) + b∗ (3)

where g(xi, x) = Φ(xi)Φ(x) is called kernel function. Different forms of kernel functions
generate different support vector machines. The commonly used kernel functions include
radial basis function (RBF), polynomial function, perceptron (sigmoid) function, linear
function, etc.

2.2.2. Data Dimensionality Reduction Method

In order to ensure the high accuracy of load-forecasting results, the historical data
derived from the energy management system are preprocessed first. Data preprocessing
includes data cleaning, data integration, data dimensionality reduction, and data transfor-
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mation. Based on the existing measuring points of the hotel energy management system
and expert knowledge, we selected the daily type (N1), local dry bulb temperature (N2),
local relative humidity (N3), outdoor dry bulb temperature (N4), outdoor wet-bulb tem-
perature (N5), real-time water consumption (N6), water chiller power consumption (N7),
machine room power consumption (N8), water chiller COP (N9), refrigeration temper-
ature setting (N10), chilled water header flow (N11), cooling water header flow (N12),
chilled water return header temperature (N13), chilled water supply header temperature
(N14), cooling water return header temperature (N15), and cooling water supply header
temperature (N16). A total of 16 variables were used as the initial input parameters of
the model.

In order to reduce the redundancy between parameters and improve the accuracy
of load-forecasting model, principal component analysis (PCA) is used to reduce the
dimension of 16 variables in the dataset. After calculation, the variance contribution rates
of the first to sixth principal components are 36.90%, 18.76%, 12.07%, 8.92%, 4.82%, and
3.86%, respectively, and their cumulative contribution rate reaches 85.33%. Therefore, the
first six principal components can reflect most of the information of the original variables.

The six principal components can be expressed by the linear combination of 16 vari-
ables, and the calculation formula is given by Equation (4).

n′ij = ∑16
j=1 pijnij (4)

where nij represents the actual value of the i-th principal component under the j-th influ-
encing factor, n′ij indicates the value after linear combination, pij is the weight in the score
matrix, and the score matrix of each principal component is shown in Table 2.

Table 2. Principal component score matrix.

Influence
Factor

Main
Component 1

Main
Component 2

Main
Component 3

Main
Component 4

Main
Component 5

Main
Component 6

N1 −0.02 −0.01 −0.02 0.00 0.05 0.96
N2 0.02 0.10 0.08 0.26 0.02 0.00
N3 0.07 0.07 −0.01 −0.63 −0.03 −0.02
N4 −0.01 0.18 0.11 0.18 0.02 −0.09
N5 0.33 −0.15 −0.02 −0.10 −0.05 0.00
N6 0.01 0.10 0.06 0.13 0.06 0.04
N7 0.03 0.16 −0.07 −0.05 −0.06 0.08
N8 −0.01 0.20 −0.05 −0.07 0.01 0.07
N9 0.03 −0.28 −0.21 0.27 −0.08 0.07

N10 0.03 −0.19 −0.10 −0.21 0.08 0.18
N11 −0.25 0.45 0.00 −0.13 −0.13 0.06
N12 −0.07 −0.12 −0.03 0.02 0.99 0.06
N13 0.03 0.17 0.58 0.03 −0.17 0.01
N14 −0.05 0.06 0.48 0.02 0.17 −0.04
N15 0.33 −0.15 −0.02 −0.10 −0.05 0.00
N16 0.37 −0.22 −0.02 −0.05 −0.02 0.01

2.2.3. Modeling Steps

The original data after the data preprocessing step are divided into training set and test
set according to the ratio of 4:1, and the dataset is normalized. Then, the kernel parameters
C and G are optimized, and the SVR model is trained by RBF function. After obtaining the
best parameters c and G, the SVR model is constructed. Then, the test set data are used to
obtain the load-forecasting results, which are inverse-normalized. Finally, the evaluation
index is used to evaluate the load-forecasting results.
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2.2.4. Model Evaluation Index

In order to avoid the overfitting phenomenon of the model, the test set data are used
to test the prediction performance and generalization performance of the model. In this
paper, root mean square error (RMSE), goodness of fit R2, and calculation time T are used
as the evaluation indexes of the prediction performance of the model. In addition, the
generalization performance of the model can be evaluated by comparing the RMSE and R2

of the prediction results of the training set and the test set. The calculation formulas of root
mean square error and goodness of fit are shown in Equations (4) and (5).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (6)

where n is the number of sample data, yi is the actual value of the ith sample, ŷi is the
predicted value of the ith sample, and yi is the mean value of the sample.

2.3. Operation Optimization of Air Conditioning Water System

The selection of water chiller is often based on the maximum design cooling load, but
most of its time in actual operation is in partial load state, and the actual energy efficiency
is low [18], so it is very important to predict the load. When the load-forecasting model
predicts the load at a certain time, each piece of equipment of the air conditioning water
system will adjust the operating parameters to balance the cooling capacity between supply
and demand so as to achieve energy savings.

2.3.1. Objective Function

Based on the working principle of equipment, this paper establishes the energy con-
sumption model of water chiller, chilled water pump, cooling water pump, and cooling
tower, and establishes the energy consumption optimization objective function of hotel
air conditioning water system based on the energy consumption model of each piece of
equipment of water system. Taking the lowest total energy consumption of the water
system in the operation process as the optimization objective, with the operating conditions
of each piece of equipment and the energy conservation of heat-exchange process as the
constraint conditions, the sequential quadratic programming (SQP) method is used to solve
the energy consumption optimization problem of hotel air conditioning water system with
controllable variables and disturbance variables and realize the dynamic optimization of
operating parameters of each piece of equipment under different load rates. The objective
function is given by Equation (7):

Nsys =
T

∑
t=0

Pch(t)∆t +
T

∑
t=0

Pcp,all(t)∆t +
T

∑
t=0

Pwp,all(t)∆t +
T

∑
t=0

Pt,all(t)∆t (7)

where Nsys is the total energy consumption of system operation, kW·h; Pch(t) is the power
of the water chiller at time t, kW; Pcp,all(t) is the sum of power of all cooling water pumps
at time t, kW; Pwp,all(t) is the sum of the power of all chilled water pumps at time t, kW;
Pt,all(t) is the sum of power of all cooling towers at time t, kW; ∆t is the operation time of
central air conditioning system.

2.3.2. Optimizing Control Parameters

The variables involved in the energy consumption optimization function of air con-
ditioning system are divided into controllable variables and disturbance variables. Con-
trollable variables refer to the variables that can be controlled independently in the air
conditioning system, while disturbance variables refer to the uncontrollable variables in
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the system. Based on the analysis results of energy consumption model and energy-saving
characteristics of each piece of equipment of the air conditioning system, and comprehen-
sively considering the coupling relationship between various variables, the controllable
variables and disturbance variables of the system optimization control are determined
as follows:

Controllable variables: chilled water supply temperature Two, cooling water inlet
temperature Tci, cooling water flow Fcp, and chilled water flow Fwp. The chilled water flow
Fwp and cooling water flow Fcp can be adjusted by variable-frequency water pump, and the
chilled water supply temperature of water chiller can be adjusted by the internal control
system of water chiller to ensure that the refrigeration capacity meets the requirements of
hotel’s operation load.

2.3.3. Objective Function Constraints

(1) Water chiller load rate is given by Equation (8).

0.1 ≤ PLR ≤ 0.9 (8)

(2) Water chiller temperature is given by Equations (9)–(12).

7 ◦C ≤ Two ≤ 12 ◦C (9)

15 ◦C ≤ Tci ≤ 35 ◦C (10)

Two ≤ Twi (11)

Tci ≤ Tco (12)

where Two is the outlet temperature of chilled water, ◦C; Tci is the inlet temperature of
cooling water, ◦C; Tco is the outlet temperature of cooling water, ◦C; and Twi is chilled
water inlet temperature of water chiller, ◦C.

(3) Chilled and cooling water flow constraints are given by Equations (13) and (14).

0.4Fcp,0 ≤ Fcp,all ≤ 1.2Fcp,0 (13)

0.4Fwp,0 ≤ Fwp,all ≤ 1.2Fwp,0 (14)

where Fcp,0 is the rated flow of cooling water system at 600 m3/h, and Fwp,0 is the
rated flow of chilled water system at 400 m3/h.

(4) Heat-exchange constraints between equipment are given by Equations (15)–(18).

Qt = Qch + Pch = cmFcp,all (Tci − Tco) (15)

Fcp,all =
Qch + Pch

cρ (Tci − Tco)
(16)

Qch = cmFwp,all (Twi − Two) (17)

Fwp,all =
Qch

cρ (Twi − Two)
(18)

where Qt is the heat dissipation of cooling tower, kW·h; Qch is the refrigerating
capacity of the water chiller, kW·h; Pch is the power of water chiller, kW; c is the
specific heat of water, ignoring the change of specific heat caused by the change of
water temperature, at 4.18 kJ/(kg ◦C); and ρ is the density of water, at 1000 kg/m3,
ignoring the change of water density caused by the change of water temperature.

(5) Optimal cooling amplitude of cooling tower is given by Equation (19).

tco − twb = 3.5 ◦C (19)
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where tco is the outlet temperature of cooling water, ◦C, and twb is the outdoor air
wet-bulb temperature, ◦C.

After determining the objective function and constraints of water system energy con-
sumption optimization, the operation parameter optimization problem of air conditioning
water system can be transformed into a constrained nonlinear optimization problem with
the lowest operation energy consumption of air conditioning water system under the condi-
tions of disturbance variables and constraints. The mathematical model of the optimization
problem is given by Equation (20): 

min f (x)
s.t. c(x) ≤ 0

ceq(x) = 0
Ax ≤ b

Aeq(x) = beq
lb ≤ x ≤ ub

(20)

where f (x) is the objective function; x is the optimization vector; c(x) and ceq(x) are column
vectors composed of nonlinear functions; A is the constraint coefficient matrix of linear
inequality; b is the right end vector of linear inequality constraint; Aeq is a linear equality
constraint coefficient matrix; beq is the right end vector of linear equality constraint; and lb
and ub are the lower and upper bounds of the optimization variable x, respectively.

2.3.4. Objective Function Solution

In this paper, the sequential quadratic programming (SQP) method is used to solve the
constrained optimization problem. It turns the original problem into a series of quadratic
programming subproblems. The variable scale matrix is constructed by using BFGS method
to ensure superlinear convergence. The constrained optimization problem is solved by
using the fmincon function.

3. Results
3.1. Analysis of Load-Forecasting Results

In the load-forecasting results, without the dimensionality reduction in input parameters,
the optimization results of core parameters c and G are 8 and 0.25, T = 435.59 s. RMSE = 118.14,
and R2 = 0.9468 for the prediction result of the training set, and RMSE = 130.89, R2 = 0.9289 for
the prediction result of the test set. The prediction results of the test set and training set
are similar, and the generalization performance of the model is good. The load-forecasting
results of the training set and test set are shown in Figure 1.
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Figure 1. Load-forecasting results without PCA dimensionality reduction. (a) 

Training set forecast results; (b) test set forecast results. 

  

Figure 1. Load-forecasting results without PCA dimensionality reduction. (a) Training set prediction
results; (b) test set prediction results.

In the training set forecasting results, when the air conditioning system load is within
1200 and 2400 kW, the error between the load-forecasting results and the real value is
basically within ±10%, and the load-forecasting accuracy is high; when the load of the air
conditioning system is within 280 and 1200 kW, the predicted value of some data is far
greater than the real value. In the test set’s forecasting results, it can be found that the error
between most load-forecasting results and the real value is within ±10%. The absolute
errors of the prediction results of the training set and the test set are counted. The data with
an absolute error of less than 10% account for 92.22% and 88.27%, respectively, and the data
with an absolute error of less than 20% account for 94.06% and 92.92%, respectively. The
load-forecasting results have high accuracy.

In the load-forecasting results after dimensionality reduction in input parameters, the
optimization results of core parameters c and G are 4 and 1.414, T = 256.74 s. RMSE = 169.72,
R2 = 0.8843 for the prediction results of the training set, RMSE = 180.33, R2 = 0.8630 for the
prediction results of the test set. The prediction results of the test set and the training set
are similar, and the generalization performance of the model is good. The load-forecasting
results of the training set and test set are shown in Figure 2.

 

2 

 

  

(a) (b) 

Figure 2. Load-forecasting results after dimension reduction by PCA. (a) 

Training set forecast results; (b) test set forecast results. 
Figure 2. Load-forecasting results after dimension reduction by PCA. (a) Training set prediction
results; (b) test set prediction results.
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Compared with the load-forecasting results without dimensionality reduction in input
parameters, the accuracy of load forecasting after dimensionality reduction is significantly
reduced. Among them, the RMSE of the training set is increased by 43.66%, R2 is reduced
by 6.6%, the RMSE of the test set is increased by 37.77%, and R2 is reduced by 7.1%, but
the modeling process time is reduced by 41.06%. In conclusion, using PCA to reduce
the dimension of input parameters can avoid the increase in the model calculation cost
caused by too many input parameters, but it will reduce the accuracy of load forecasting,
which may be due to the loss of information when extracting principal components from
high-dimensionality data.

The actual load-forecasting results show that when PCA is not used for data dimension-
ality reduction, T = 435.59 s, RMSE = 118.14, R2 = 0.9468, RMSE = 130.89, and R2 = 0.9289;
after data dimensionality reduction with PCA, T = 256.74 s, RMSE = 169.72, and R2 = 0.8843
for the prediction results of training set, and RMSE = 180.33 and R2 = 0.8630 for the predic-
tion results of the test set. Therefore, whether PCA is used for dimensionality reduction or
not, the prediction results of the test set and training set are similar, which shows that the
model has good generalization performance; that is, the operation-load-forecasting method
of an air conditioning system based on data mining proposed in this paper is feasible.

3.2. Analysis of Water System Operation Optimization Results

(1) Optimal operation control strategy of a groundwater system with different load rates

The actual operating parameters of the system under different load rates are obtained
from the data derived from the energy management system. Based on the load-forecasting
results, the operating parameters of water system equipment are optimized. The results are
shown in Table 3.

It can be seen in Table 3 that within the range of a 25~90% load rate, the relative error
of load-forecasting results is within ±10%. The actual total load of 14 working conditions
in the table is 22,761.8 kW, the predicted total load is 22,913.2 kW, and the relative error is
0.64%. The load-forecasting effect is good. In terms of equipment operation parameters,
with the increase in load rate, the outlet temperature of chilled water decreases from
12.00 ◦C to 9.30 ◦C. When the load rate is below 80%, one cooling water pump and cooling
tower can meet the load demand, and when the load rate is above 80%, two can meet the
load demand. The start and stop of the cooling tower fan are interlocked with the cooling
water pump; one set of chilled water pumps can meet the load demand when it is operated
at a 25% load rate, and two sets can meet the load demand under other working conditions.

(2) Energy consumption analysis of the water system

It can be seen in Table 3 that the optimization strategy has a certain energy-saving
effect in the range of a 25%~90% load rate, and the energy-saving effects of the optimization
strategy are different under different load rates. When the load rate is 25.4%, the system
energy-saving rate is the highest, which is 29.45%. When the load rate is 80.37%, the system
energy-saving rate is the lowest, which is 0.43%. The average energy-saving rate of the
optimization strategy under different load rates is 12.40%.
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Table 3. Water system optimization parameters of water chiller under different loads.

Work
Conditions

Load Rate
(%)

Actual Load
(kW)

Load
Forecasting

(kW)

Relative
Error
(%)

Wet Bulb
Temperature

(◦C)

Cooling Water
Discharge

Temperature
(◦C)

Chilled Water
Discharge

Temperature
(◦C)

Cooling Water
Flow

(m3/h)

Chilled Water
Flow

(m3/h)

Energy
Consumption of the

Water System
before

Optimization
(kw·h)

Optimized Water
System Energy
Consumption

(kw·h)

1 25.4 715.9 715.9 0.00 22.79 29.13 12.00 240.0 205.2 177.0 124.9
2 30.3 853.4 791.6 −7.24 22.77 29.64 12.00 240.0 244.6 182.8 141.7
3 35.1 988.1 983.4 −0.47 24.79 32.24 11.95 240.0 276.8 210.4 183.7
4 40.6 1142.2 1192.6 4.41 23.60 31.90 11.68 240.0 308.8 244.0 211.3
5 45.7 1286.6 1268.6 −1.40 25.04 33.70 11.47 240.0 309.0 264.8 235.0
6 50.1 1408.4 1387.8 −1.46 24.73 32.86 11.38 240.0 329.6 284.5 250.9
7 55.2 1553.5 1507.4 −2.97 24.77 34.45 11.13 240.0 334.9 329.4 283.9
8 60.3 1695.9 1676.9 −1.12 24.20 34.62 10.93 240.0 354.5 418.6 321.5
9 65.3 1837.4 1911.0 4.01 26.27 37.79 10.41 240.0 357.8 432.7 405.2

10 70.9 1994.9 1994.9 0.00 28.06 38.00 10.09 314.9 349.3 513.2 442.0
11 76.0 2137.6 2220.3 3.87 27.45 38.00 9.82 323.3 368.9 525.4 510.4
12 80.4 2261.2 2268.2 0.31 28.40 38.00 9.62 383.4 362.3 535.6 533.3
13 84.8 2386.9 2400.4 0.56 28.49 38.00 9.40 414.6 368.2 617.9 580.9
14 89.0 2504.7 2594.2 3.58 27.20 38.00 9.30 371.8 391.5 687.7 645.9
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4. Conclusions

This paper takes the central air conditioning system of a hotel as the research object,
establishes the load-forecasting model based on SVR through MATLAB, and establishes the
equipment energy consumption model based on the principle of each piece of equipment in
the water system. On this basis, the objective function of energy consumption optimization
of the hotel’s water system is established, and the dynamic optimization of operating
parameters of the water system at different load rates is realized. The main conclusions are
as follows:

(1) The air conditioning load-forecasting model based on the SVR principle has simi-
lar prediction results in the test set and the training set, indicating that the model
generalization performance is good. Moreover, whether PCA is used for dimension-
ality reduction or not, the load-forecasting model has good generalization perfor-
mance. The advantage of PCA is that it can significantly reduce the calculation cost
of the SVR model, but it reduces the accuracy of load forecasting. The reason for
this may be the information loss caused by extracting principal components from
high-dimensionality data.

(2) Based on each equipment model of the water system, the objective function of energy
consumption optimization of the water system is established. The operating conditions
of each piece of equipment and the energy conservation of the heat-exchange process
are taken as the constraint conditions, and the predicted air conditioning load is taken
as the disturbance variable. SQP is used to solve the energy consumption optimization
problem of the hotel air conditioning water system with controllable variables and
disturbance variables and realize the optimization of operating parameters of sewage
system at different load rates. After optimization, the average energy-saving rate
of the water system with different load rates is 12.40%, which shows that the water
system optimization based on load forecasting proposed in this paper has a good
energy-saving effect.
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