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Abstract: The role of agroforestry (AF) systems in providing ecosystem services is very crucial.
The greatest considerable increase in carbon (C) storage is often attained by moving from lower
biomass land-use systems to tree-based systems such as AF. However, for estimation of C stocks in
indigenous AF systems of southeastern Rift-Valley landscapes, Ethiopia, the data are scarce. This
study was aimed to investigate the biomass, biomass carbon (BC), and soil organic carbon (SOC)
stock of Enset-based, Enset-Coffee-based, and Coffee-Fruit-tree-Enset based AF systems. Comparison
of SOC stock of AF systems against their adjacent monocrop farms was also investigated. Research
questions were initiated to answer whether C stocks among the three AF systems vary because
of different management systems and how biomass C stock is influenced by species abundance,
diversity, and richness in the AF systems. The study was carried out at three selected sites in the
Dilla Zuria district of Gedeo zone. Twenty farms (total of 60) representative of each AF system were
arbitrarily selected and inventoried, and the biomass C stocks estimated. Ten adjacent monocrop
farms which were related to each AF system were selected in a purposive manner for comparison of
SOC stock. Inventory and soil sampling were employed in the 10 × 10 m farm plot. The mean AGB
ranged from 81.1 to 255.9 t ha−1 and for BGB from 26.9 to 72.2 t ha−1. The highest C stock was found
in Coffee–Fruittree–Enset based (233.3 ± 81.0 t ha−1), and the lowest was in Coffee–Enset based AF
system (190.1 ± 29.8 t ha−1). The result showed that SOC stocks were not statistically significant
between the three AF systems, although they showed a significant difference in their BC stock. The C
stocks of the investigated AF systems are considerably higher than those reported for some tropical
forests and AF systems. The SOC of AF systems is significantly higher than the ones for the adjacent
monocrop farms. Therefore, it can be understood that the studied AF systems are storing significant
amounts of C in their biomass as well as in soil. This considerable C storage by these systems might
contribute to climate change mitigation.

Keywords: biomass; carbon pool; indigenous agroforestry system; coffee; Enset; southeastern Ethiopia

1. Introduction

Agroforestry (AF) practices integrate trees and shrubs in the farmlands and the imple-
mentation of agroforestry in a given landscape plays a meaningful role in moderating the
effects of climate change through sequestration of carbon (C) [1–3]. Agroforestry is recog-
nized as one of the greenhouse gas lessening strategies under the Kyoto Protocol, which was
adopted in 1997. As a result, the sequestration potential of agroforestry systems has gained
the attention of many countries throughout the world, prompting them to concentrate on it.
Several authors have suggested that trees in agroforestry practices absorb and store larger
quantities of atmospheric carbon dioxide (CO2) than do the herbaceous seasonal or annual
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crops and pastures [4–6]. This is because incorporation of perennial trees and shrubs in
croplands and pastures would result in higher C sequestration both in biomass and the
soil [5,7]. Therefore, improving C stock in farmlands by introducing AF practices could
be a potential option to mitigate climate change impacts [1]. Worldwide, the whole land
area covered with various types of AF systems is projected to be around 1.6 × 109 hectares,
with an aboveground biomass sequestration potential of 1.1–2.2 billion t C in the coming
50 years [8]. Furthermore, [9] reported that the Earth’s area that is appropriate for practicing
agroforestry is approximately 222 × 107 hectare (ha), and if AF systems are turned into
effect on these suitable areas, then more than 55.3 billion t C could be stored in the terrestrial
ecosystems during the next 50 years. The amount of C sequestered in an AF system mainly
depends on the species composition, arrangement, and role of components within the
system, which in turn is determined by the ecological and socioeconomic aspects [10,11].

The capacity of AF systems to store C varies among different agroecological landscapes.
As a result, the storage potential for semiarid, subhumid, humid, and temperate regions
is estimated at 9, 21, 50, and 63 t C ha−1, respectively [12]. Extensive reviews by [13] for
West African Sahel countries (extending from arid Sahara Desert to humid region Guinea)
reported biomass C stocks ranging from 22.2 to 70.8 t C ha−1. There are many similar stud-
ies conducted in various regions of the continents [14–17]. As reports showed globally, the
total biomass C stock for AF systems ranges between 12 and 228 t C ha−1 [10,18]. Another
study by [19] reported that AF practices stored C ranging from 0.29 to 15.21 t C ha−1 yr−1

in their aboveground biomass and can have from 30 to 300 t C ha−1 in their soil down to
one-meter depth. Soil C stock for the 0–60 cm soil layer differs among different land uses
and regions. For instance, the C stock in the abovementioned soil layer is 121–123 t ha−1

for tropical forests and 110–117 t ha−1 for tropical savanna [20]. Some studies conducted in
southern Ethiopia by [21–23] showed that the indigenous AF systems have a great potential
in sequestering a significant quantity of C. Species composition of the AF, age, geographical
location [24], previous land use [25,26], climate, soil characteristics, the method of combin-
ing crops and trees, and handling technique [15,27,28] are some of the factors that have a
great influence on the variation in C sequestration potential of these systems.

The entire area covered by AF systems in Ethiopia is not well recorded, although
according to some estimates based on satellite imagery for the base year 2006, roughly
2.32 million ha are classified AF land-use [29]. However, this figure did not include scattered
trees on crop and grazing lands due to some reasons. The latest estimate by [30] projected
the AF area in the country to 16 million ha by 2020. Agroforestry practices in Gedeo
zone of southern Ethiopia are known to have a long traditional and to be indigenous in
nature. Gedeo agroforests are also a well-known land-use system, and it is believed to
have self-sustaining and self-regulating attributes compared to other land-use systems in
the area [31]. Studies have been conducted by different researchers in Ethiopia [32–35] on
the aspects of management of AF systems, component interaction in these systems, and
determinants for diversity and composition in AF and additional ecosystems services in
Gedeo zone and other locations. Some studies were already conducted by [23,36] on C
stocks in AF systems in Gedeo and nearby regions. However, the study and comparison
of carbon stocks in three indigenous AF systems, such as Enset based, Coffee–Enset (C–E)
based, and Coffee–Fruit-tree–Enset (C–Ft–E) based agroforestry (AF) systems, is thought
to be highly relevant and complementary to the existing research findings. Furthermore,
this study used C stocks for monocrop systems as a control, which was not done in a prior
study at the same location [22].

The general objective of this study was to determine and compare the C stock of the
three AF systems and also relate them to traditional field-crop agriculture. The specific
objectives were (1) to determine and compare the biomass of the fruit and nonfruit trees,
coffee, enset, and litter of the three AF systems; (2) to determine and compare the C stocks
among the studied AF systems and (3) to compare the C stock of AF and adjacent field-
crop agriculture as control. Research was initiated to answer the following questions:
Could carbon stocks among the three indigenous AF systems vary because of different
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management systems? Is there a difference in soil organic carbon stock among the three AF
systems and in relation to field-crop agriculture? Is biomass carbon stock affected by the
species abundance, diversity, and richness in the three AF systems?

2. Materials and Methods
2.1. Study Area and Sites

This research was carried out in the Dilla Zuria district of Gedeo zone, Southern
Nations, Nationalities, and Peoples Regional State (SNNPRs), Ethiopia (Figure 1). Ge-
ographically, it is located between 5◦50′26” and 6◦12′48” N latitude and 38◦03′02” and
38◦18′59” E longitude. Elevation in the study area ranges between 1300 and 3064 m above
sea level (m asl). According to the meteorological data of 9 years, the annual rainfall ranged
from 1127 to 1624 mm, and the mean monthly air temperature ranged from 13 to 28 ◦C [37].
The entire area of the zone is 134,700 ha, which is divided into different land-use types,
such as agricultural land and AF together which accounts 94.5%, along with grassland
(1.4%), wetland (0.8%), natural forest (0.5%) plantations (0.1%), and others (2.7%) [38]. The
soil type is Nitisol and the texture is predominantly clay. The livelihood of the community
under this district is mainly dependent on AF practice. They use mixed farming, including
nonfruit trees, fruit trees, crops, vegetables, spices production, and very limited animal
husbandry focused on oxen, goats, and sheep fattening. Although there are several types
of AF systems practiced by the farmers, the main and most common are (1) Enset based AF
system (mainly practiced at the Sisota site), (2) Enset–Coffee based AF system (practiced at
the Golla site), and (3) C–Ft–E based AF system (practiced at the Chichu site); see Table 1
for detailed information.
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Table 1. Characteristics of the research sites.

Characteristics
Research Sites

Sisota Golla Chichu

Location Dilla Zuria district, SNNPRS Dilla Zuria district, SNNPRs Dilla Zuria district, SNNPRS

Altitude 1760–1830 m asl 1665–1732 m asl 1544–1587 m asl

Topography Steep slope land feature,
azimuth: southwest facing

Slightly steep to medium,
azimuth: southwest facing

Gentle slope, azimuth:
southwest facing

Plant species coverage Enset-dominated Coffee and enset-dominated Fruit tree-, coffee-, and enset-
dominated

AF handling activity

Tree trimming, lopping,
tightening, ripping of
unwanted plants. Enset leaves
and foliage of Millettia sp.
used for manuring and
floor covering

Trimming, lopping,
pollarding, tightening, ripping
of unwanted plants. Enset
leaves, herbaceous plants and
foliage of Millettia spp. used
for manuring and
floor covering

Tree trimming, pollarding.
Farm house waste, ash and
coffee peelings used as
compost

Major food and cash crops,
vegetables Enset, taro, yam, kale Coffee, enset, banana, taro,

yam, sweet potatoes
Fruit, coffee, enset maize,
haricot bean, sweet potatoes

Average distance from the
next town (market) 10 km 8 km 5 km

2.2. Characteristics of the Three Indigenous Agroforestry Systems That Relate to the Study

A brief description about the abovementioned AF systems is given in Section 2.2.1–
Section 2.2.3 and a photograph of each AF system is shown in Figure 2.
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2.2.1. Enset Based Agroforestry System

Enset based AF systems are common in central, southwestern, and southern Ethiopia [39–41].
The areal coverage of enset in this system could be approximately within a range of 60–70%
of the farm total depending on the presence of other plant species and their composition.
Enset (Ensete ventricosum) is one of the species from the Musaceae family, which is also
commonly known as false banana. This perennial species is native and domesticated as
one of the important crops in Ethiopia. The enset can be either cultivated in monospecific
plantations or in mixture with a rotation period of 3 to 15 years [42,43]. To bear flowers and
then set seed, the plant might take 9 or more years [44]. Enset is among homegarden crops
known for its high energy content [45].
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2.2.2. Coffee–Enset Based Agroforestry System

The Coffee–Enset based agroforestry (C–E based AF) system is one of the traditional
AF homegardens in southern Ethiopia [39]. The system is suitably practiced in an altitude
range between 1500 and 2300 m asl. In this altitude, moisture and temperature conditions
are expected to be conducive for these AF practices. The two dominant native perennial
crops in this AF are enset and coffee, which comprise more than 60% in each farm [32]. Enset
is a staple food crop, and coffee (Coffea arabica) serves as a cash crop. Coffee also contributes
more than 60% of export income in Ethiopia and has been sold as organic [46,47]. Owing to
their great socioeconomic and ecological benefits in the farming system of the study area,
the crops can be deemed as “keystone” species in south Ethiopian AF. Coffee–Enset based
AF systems harbor several native woody species (Cordia africana, Millettia forginea, roots
(ginger, sweet potato), and annual crops (maize) favorably growing in intimate association
with enset and coffee.

2.2.3. Coffee–Fruit-Tree–Enset Based Agroforestry System

Multipurpose tree/shrub species such as coffee, enset, several fruits, and annual crops,
vegetables, medicinal plants, and livestock are components of the Coffee–Fruit-tree–Enset
(C–Ft–E) based agroforestry system. Under this type of indigenous AF system, coffee, fruit
tree, and enset have a greater share, and the remaining components such as vegetables,
spices, and livestock are still included [48]. The proportional area for coffee, fruit tree, and
enset is approximately 20–25% for each component. In the C–Ft–E based AF system, fruit
trees such as Persea americana Mill., Mangifera indica L. Casimiroa edulis Lal Llave and Lex.,
etc., are in a mixture with coffee and enset. In addition, nonfruit trees, for instance Cordia
africana, Milletia ferruginea, Ficus vasta, and Ficus sur, are also incorporated and mainly used
as a shade for coffee. Communities practicing this type of AF system are self-sufficient in
fuel wood, and the fruit trees and coffee account for 47% and 45% of their annual income,
respectively [48].

2.3. Sampling Design and Data Collection
2.3.1. Inventory for Biomass Estimation

The agroforestry systems were selected at similar altitudinal locations gradient of the
landscape to minimize variation in climatic variables and slope. Within each AF study
site, 20 AF farms (60 farms in total) were randomly selected, and ten adjacent monocrop
farms (30 farms in total) were selected in a purposive manner. The altitude, slope, GPS
location, agroforestry type, age of each agroforestry, and monocrop farm and site history
were also recorded.

A nested quadrat with 10 × 10 m size was established in each AF farm for the
inventory of trees/shrubs, coffee, and enset (Figure 3). The inventory was aimed to obtain
data for the biomass estimation. The size of the quadrats and sampling size coincided with
recommended practice in the literature for similar AF farms [36]. In some cases, the size
of the quadrant might occupy the whole farm. Because of the small size of some farms,
cost, and time-related issues, the size of the quadrant was limited to 100 m2. Within each
quadrant, three 50 × 50 cm small plots for litter sampling were laid out (Figure 3). In
addition, five circular plots at four corners of the quadrant and one in the center were
determined for soil sampling.
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Figure 3. Sample plot layout for inventory of trees, shrubs, coffee, and enset plants (10 × 10 m), soil
sample points (circular points), and litter (50 × 50 cm squares).

Measurements such as diameter at breast height (DBH, cm ±0.1), total height (h,
m ±0.1) of all trees and shrubs (single and multistemmed) having a breast height diameter
≥2.5 cm and height ≥1.5 m was made. For coffee plants (in C–E based and C–Ft–E based
AF systems), the stem diameter at stump height (40 cm), d40, was also measured. For Enset
based AF systems, the basal diameter of the pseudostem (height of 10 cm, d10) of plants
one-year-old or older was measured. Stem diameter measurements (DBH, d10, and d40)
were taken using a caliper in two vertical directions to minimize measuring error. The two
values were averaged and later used in successive computations.

2.3.2. Biomass and Determination of Biomass C Stocks

Estimation of total aboveground biomass (AGB) and belowground biomass (BGB)
(t ha−1) of fruit trees and nonfruit trees and shrubs, enset, and coffee plants were done for
the 60 farms (20 farms from each AF). However, 30 farms (10 farms from each AF) were
randomly selected, and the biomass C stocks (t C ha−1) were estimated. Unlike the fine
roots and herbs C stocks of the trees and shrubs, the enset, coffee, and litter were computed.
For some reason, fine roots and herbs were excluded from the computation. The biomass
in natural forest/AF could be estimated by both destructive and nondestructive methods.
In this study, allometric equations (which are nondestructive) were used. This is because
destructive tree harvesting is too costly, labor-intensive, and time-consuming for both AGB
and BGB determination. Furthermore, farmers may demand compensating payments for
the sampled trees because they may be harvested at the wrong time and/or production is
less due to premature cutting.

To compute the AGB and BGB, and their respective C stocks, a plant species inventory
followed by the application of allometric equations was performed. These equations
were developed by [49–52]. The reason for adopting these allometric equations is because
the study site in which the equation was developed had a similar environmental setting
(climate and soils) to our research sites and showed the highest R2, the smallest error of
prediction values, and used only DBH for trees [49–52]. In addition, the similarity in type
of plant, plant architecture, and species could be a reason to adapt these equations to this
study [51,52]. For instance, [49] developed an equation to estimate AGB of trees grown in
AF systems in western Kenya:

AGB = 0.225 × d2.341 × ρ0.73 R2 = 98; n = 72 (1)
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where AGB (kg dry matter /plant) = aboveground biomass, d (cm) = diameter at breast
height, and ρ is species wood density (g cm−3).

However, to estimate the AGB (kg dry matter/plant) of the coffee and enset plants, an
allometric equation, which was developed by [52] and [51], respectively, was adopted

AGBcoffee = 0.147 × d40
2 R2 = 0.80, n = 31 (2)

ln (AGBenset) = −6.57 + 2.316ln(d10) + 0.124 ln(h); R2 = 0.91, n = 40 (3)

where d40 (cm) = stem diameter of the coffee plant at 40 cm height, d10 (cm) = the basal
diameter of the enset pseudo stem at 10 cm height, and h (m) = total height.

For estimating the BGB (stump plus coarse roots (>2 cm)) for trees and shrubs, includ-
ing coffee, the following allometric equation [50] was used:

BGB = 0.490 AGB0.923 R2 = 0.95, n = 72 (4)

where BGB (kg dry matter/plant) = belowground biomass and d (cm) = diameter at
breast height.

However, to estimate the BGB of enset (corm plus attached proximal roots), the
allometric equation developed by [52] was used:

BGBenset = 7 × 10−6 × d10
4.083; R2 = 0.68, n = 40 (5)

where BGBenset (kg dry matter/plant) = enset belowground biomass and d10 (cm) = the
basal diameter of the enset pseudostem at 10 cm height.

Note: n (in all the formulas) is the number of individual plants that were sampled the
development of the allometric equation.

The biomass of litter was determined from samples collected from the three 50 × 50 cm
plots within the 10 × 10 m inventory quadrant. Three samples were taken from each
quadrant, and later single composite sample was taken for C measurement and analysis.

The BGB and AGB C stocks were determined using content C% in each component. It
was computed from organic matter content determined as loss-on-ignition (LOI; ignition
at 550 ◦C for 2 h) and an assumed C content of organic matter of 44% [22]. Accordingly,
the C content of 48% for fruit and nonfruit trees and shrubs, 43% for coffee, 41% for enset,
and 29% for litter were used [22]. The sum of aboveground and belowground biomass C
provided the total biomass C stock for that specific farm or site.

2.3.3. Soil Sampling and Determination of Soil Organic Carbon Stocks

Soil samples were taken from the four corners and center of each 10 × 10 m inventory
quadrant, and then a composite soil was used to determine SOC. This was done for soil
depths at 0–20 and 20–40 cm. It was assumed that taking samples down to 40 cm soil depth
might be sufficient. The total number of samples were 60 for the AF systems and 60 for
the adjacent monocrop farms. The sampling depth was chosen concerning the cost for soil
analysis and to have a uniform and complete sampling procedure, since the method should
be used for the selected AF farms and monocrop farms. The sampling was employed for
all three AF systems together with the adjacent monocrop farms. Both gravimetric and
volumetric soil sampling methods were employed. The volumetric soil sampling was
employed in the middle of each 10 × 10 m inventory quadrant. Volumetric sampling
was carried out to obtain soil samples for determination of bulk density, and gravimetric
sampling for SOC determination. A 200–250 mg soil sample from each of the 120 samples
was weighed, and the SOC content was determined by a LECO TruSpec CN analyzer
(ÖNORM L1080). The soil C stocks (t C ha−1) were computed by multiplying the C content
(%), bulk density (g cm−3), and layer thickness (cm). The total SOC stock is the summed
value of the two layers (0–20 and 20–40 cm). AF C stocks in the study sites were calculated
by adding total biomass C and SOC up to 40 cm depth.
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2.4. Statistical Analysis

The biomass (t ha−1) of the trees and shrubs, coffee, and enset, was estimated for all
60 farms (smallholdings) using the allometric equations. However, the AF C stocks (t ha−1)
were calculated only for the 30 farms (smallholdings), implying ten farms from each AF
system. This was because the soil and litter samples were only taken from 30 randomly
selected AF farms. The biomass and biomass C stocks for each AF were expressed using the
mean, minimum, maximum, and standard deviation statistics. To test for differences in the
biomass, biomass C, and soil C between the three AF systems, a one-way ANOVA followed
by post hoc testing (Fisher’s LSD test) was used. Levene’s test was conducted to check
the homogeneity of variances. Linear regression analysis was also conducted to analyze
the relationship between some parameters. Similarly, the soil C stocks for 30 monocrop
farms adjacent to the AF farms were also calculated layer by layer and their means were
compared. For comparison, a pairwise two-tailed t-test was conducted. The statistical
analyses were done using Statistical Package for Social Sciences, IBM SPSS version 26 (SPSS
Inc., Chicago, IL, USA, 2019).

3. Results
3.1. Biomass and Biomass Carbon Stocks

The aboveground and belowground biomass and biomass C stock of three AF systems
were estimated and the estimation was made for each plant species within the inventoried
quadrant. AF system mean AGB and BGB t ha−1 and the biomass values of components of
the AF are displayed in Tables 2 and 3, respectively. The mean AGB ranged from 81.1 t ha−1

(Enset based AF) to 255.9 t ha−1 (C–Ft–E based AF system) and for BGB from 26.9 t ha−1

(Enset based AF system) to 72.2 t ha−1 (C–Ft–E based AF system) (Table 2). The AGB was
by far higher than the BGB across all the AF systems. In C–Ft–E AF, the AGB was even
3.5-fold compared to its respective BGB, which is extremely high. The total calculated
biomass values in the studied three AF systems ranged from 108.0 to 328.1 t ha−1. The
one-way ANOVA followed by post hoc testing (Fisher’s LSD test) (n = 20) results showed
that the mean AGB, BGB, and total (aboveground plus belowground) between the three AF
systems was significant at (p < 0.05) (Table 2). In general, the biomass t ha−1 is in the order:
C–Ft–E based AF > C–E based AF > Enset based AF.

The biomass contribution from individual components (e.g., fruit tree, nonfruit tree,
enset, and coffee) to the each of the three AF systems was computed. As shown by the
results in Table 3, the contribution was higher from the woody fruit and nonfruit trees
across all the AF systems. The contribution from nonfruit trees and shrubs was relatively
higher in all AF systems except in C–Ft–E based. The result of one-way ANOVA followed
by post hoc testing (Fisher’s LSD test) (n = 20) showed that the total biomass of fruit trees
and nonfruit trees in C–Ft–E based AF system was significantly different at (p < 0.05) from
both Enset based and C–E based AF systems, but Enset based and C–E based AF were not
significantly different (Table 3).

Table 2. Mean (±SD) (n = 20), AGB, BGB, and total (aboveground plus belowground) biomass (t ha−1)
for each of the three studied AF systems, and results of one-way ANOVAs (at α = 0.05, significant
differences between AF systems are indicated).

Biomass C–Ft–E AF Enset AF C–E AF F p

Aboveground biomass a 255.9 ± 294.0 81.1 ± 69.0 126.7 ± 145.1 4.4 0.017
Belowground biomass b 72.2 ± 69.9 26.9 ± 21.1 39.4 ± 39.4 4.8 0.012

Agroforestry total biomass 328.1 ± 364 108.0 ± 90.0 166.1 ± 184.4 4.5 0.016
a trees, coffee, enset. b stumps, coarse roots (enset corm + proximal roots), and fine roots.
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Table 3. Mean (±SD) total biomass (t ha−1) of woody, enset, and coffee components grown in three
AF systems. Within each AF system having the same letter are not significantly different at (p < 0.05)
from each other (Fisher LSD test; n = 20 for each AF system).

Agroforestry
System

Woody
Enset Coffee Agroforestry

Total BiomassFruit Nonfruit Total

C–Ft–E based AF 154.1 ± 158.8 a 141.6 ± 283 a 295.7 ± 372.0 a 6.8 ± 3.7 a 25.6 ± 41.5 a 328.1 ± 364 a

Enset based AF 29.7 ± 61.2 b 45.3 ± 67.2 a 75.0 ± 94.0 b 29.0 ± 15.6 ab - 108.0 ± 90 b

C–E based AF 31.7 ± 132.4 b 97.7 ± 128.9 a 129.4 ± 186.4 b 19.1 ± 10.2 ac 17.6 ± 6.5 a 166.1 ± 184 b

C–Ft–E based AF = Coffee–Fruit tree–Enset based agroforestry; Enset based AF = Enset-based agroforestry; C–E
based AF = Coffee–Enset based agroforestry system.

Regarding the C stock, only 10 out of the 20 farms were randomly selected and
computed for their biomass C stocks. This is because the numbers of farms where we
obtained soil and litter samples were only from the ten farms. In addition, soil sample
collection from monocrop farms was only carried out on 30 smallholdings (10 for each),
which are adjacent to the AF farms. Therefore, to estimate ecosystem C stock, a uniform
representation of samples from all components (standing biomass, litter, and soil) is very
important. The AGB carbon stock ranged from 10.2 to 212.9 t ha−1 across the three AF
systems, while the average C stock in BGB ranged from 2.9 to 56.1 t ha−1. In the case of
individual AF farms, the highest total biomass C stock was recorded in the C–Ft–E based
AF system (269 t ha−1), and the least was in an Enset based AF system (13 t ha−1). The
ratio of mean AGB to BGB carbon stock was 3.4, 3.1, and 3.0 for C–Ft–E based, Enset based,
and C–E based AF systems, respectively. The share of fruit and nonfruit woody species
in the total AGB carbon stock was estimated at 83%, 72%, and 63% for C–Ft–E based,
Enset based, and E–C based AF systems, respectively (Figure 4). The share of trees (fruit
trees and nonfruit trees) in the total BGB C stock was estimated at 82%, 71%, and 60% in
C–Ft–E, Enset based, and E–C based AF systems, respectively (Figure 5). On average, trees
accounted for 73% in AGB and 71% in BGB C stock across all smallholdings. The results
of the statistical analysis showed that the total mean biomass C stock of C–Ft–E based AF
was significantly different at (p < 0.05) from both Enset based and C–E based, but Enset
based and C–E based AF were not significantly different. We hypothesized that biomass
C stocks would differ significantly amongst AF systems, and our findings supported this
hypothesis. In general, the total biomass C stock of the AF systems is in the order C–Ft–E
based AF > Enset based AF > C–E based AF (Table 3).

3.2. Soil Organic Carbon Stock

In the current study, considering all the individual farms, the greater SOC stock was
found in C–E based AF, which is 190 t ha−1, while the least was found in C–Ft–E based AF
with a value of 86 t ha−1. From the total SOC stock (0–40 cm), the upper soil layer (0–20 cm)
contributed an average of 60.3%, 56%, and 55.1% for C–Ft–E based AF, Enset based AF,
and C–E based AF, respectively. The highest total mean SOC stock for the AF systems was
found in Enset based (146.1 t ha−1) and the least was in C–Ft–E based AF (125.5 t ha−1).
The results of ANOVA analysis showed that the mean SOC stock was not significantly
different among the AF systems at (p < 0.05) (Table 4). In general, the total mean SOC stock
of the AF systems is in the order Enset based > C–E based > C–Ft–E based AF system.
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Figure 4. Proportion of C stock of each component in the aboveground biomass. C–Ft–E AF= Coffee–
Fruit-tree–Enset based agroforestry; C–E based AF = Coffee–Enset based agroforestry.
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found in Enset based (146.1 t ha−1) and the least was in C–Ft–E based AF (125.5 t ha−1).
The results of ANOVA analysis showed that the mean SOC stock was not significantly
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Figure 5. Proportion of carbon stock of each component in the belowground biomass. C–Ft–E
AF= Coffee–Fruit-tree–Enset based agroforestry; C–E AF = Coffee–Enset based agroforestry.

Table 4. Mean (±SD; n = 10) BC, SOC (0–40 cm), and AF total C stock (t ha−1) for the three AF
systems, and results of one-way ANOVAs (at α = 0.05).

C Stock C–Ft–E AF Enset AF C–E AF F p

Aboveground C a 83.8 ± 63.0 39.1 ± 32.0 37.8 ± 17.3 3.9 0.033
Belowground C b 24.4 ± 16.2 12.6 ± 9.7 12.7 ± 5.8 3.6 0.042
Total biomass 108.2 ± 79.2 a 51.7 ± 41.7 b 50.5 ± 23.1 b 3.8 0.034
SOC 0–20 75.7 ± 14.2 81.7 ± 14.4 76.9 ±18.3 0.4 0.665
SOC 20–40 49.8 ± 7.5 64.4 ± 16.3 62.7 ± 21.2 8.9 0.103
SOC 0–40 125.5 ± 17.3 a 146.1 ± 26.5 a 139.6 ± 25.4 a 14.7 0.152
Agroforestry total 233.3 ± 81.0 a 197.8 ± 58.7 a 190.1 ± 29.8 a 0.1 0.243

a trees, coffee, enset, and litter. b stumps, coarse roots, enset (corm + proximal roots), and fine roots.

3.3. Ecosystem Carbon Stocks

The mean AF total C stock for C–Ft–E based was relatively high and the least was
recorded in C–E based AF (Table 4). The result of one-way ANOVA followed by post hoc
testing (Fisher’s LSD test) (n = 10) at (p < 0.05) showed that the total AF C stock and SOC
stock were not statistically significant among the three AF systems, although they showed
a significant difference in their biomass carbon (BC) stock.
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Table 4. Mean (±SD; n = 10) BC, SOC (0–40 cm), and AF total C stock (t ha−1) for the three AF
systems, and results of one-way ANOVAs (at α = 0.05).

C Stock C–Ft–E AF Enset AF C–E AF F p

Aboveground C a 83.8 ± 63.0 39.1 ± 32.0 37.8 ± 17.3 3.9 0.033
Belowground C b 24.4 ± 16.2 12.6 ± 9.7 12.7 ± 5.8 3.6 0.042
Total biomass 108.2 ± 79.2 a 51.7 ± 41.7 b 50.5 ± 23.1 b 3.8 0.034
SOC 0–20 75.7 ± 14.2 81.7 ± 14.4 76.9 ±18.3 0.4 0.665
SOC 20–40 49.8 ± 7.5 64.4 ± 16.3 62.7 ± 21.2 8.9 0.103
SOC 0–40 125.5 ± 17.3 a 146.1 ± 26.5 a 139.6 ± 25.4 a 14.7 0.152
Agroforestry total 233.3 ± 81.0 a 197.8 ± 58.7 a 190.1 ± 29.8 a 0.1 0.243

a trees, coffee, enset, and litter. b stumps, coarse roots, enset (corm + proximal roots), and fine roots.

3.3. Ecosystem Carbon Stocks

The mean AF total C stock for C–Ft–E based was relatively high and the least was
recorded in C–E based AF (Table 4). The result of one-way ANOVA followed by post hoc
testing (Fisher’s LSD test) (n = 10) at (p < 0.05) showed that the total AF C stock and SOC
stock were not statistically significant among the three AF systems, although they showed
a significant difference in their biomass carbon (BC) stock.

Total AF C stock of individual AF smallholdings in this study ranged between
132.0 t ha−1 (Enset based AF) and 356.4 t ha−1 (C–Ft–E based AF). The mean biomass
C stock fraction of the total AF C stock was 46%, 26%, and 27% for C–Ft–E based AF, Enset
based AF, and C–E based AF, respectively. Except for C–Ft–E based; the remaining two AF
systems had a greater contribution from the SOC (about 2.8 times the biomass C) to their
respective total AF carbon stock. The SOC exceeds the biomass C across all AF systems
(Figure 6), and there was a difference in SOC to total biomass C stock ratio among the AF
systems. The highest proportion of SOC (0–40 cm) to total biomass C stock was found in
Enset based AF with a value of 2.82, and the least was in C–Ft–E based AF with a value of
1.16. The contribution of SOC to the total AF C stock was 54% for C–Ft–E based, 74% for
Ensetbased, and 73% for C–E based AF.

3.4. Correlation between Biomass Carbon and SOC of Agroforestry Systems

For the ten selected farms in all three AF systems, the result of Pearson correlation
(two-tailed significance difference) showed that biomass C stock and SOC stocks had
r-values of −0.005 for C–Ft–E based AF, 0.5 for Enset based AF, and −0.3 for C–E based
AF (Appendix A). The correlation under Enset based AF showed a positive and a slightly
higher value, but it was not statistically significant. A correlation analysis of SOC stock
with other factors such as slope percent and wealth status of the households (rich, medium,
and poor) was conducted. In addition, a correlation of SOC stock, number of livestock
units owned, and age of the AF farm was conducted. These factors were believed to act as
proxy variables for the intensity of biomass extraction from the AF system and thus affect
the SOC stock on each farm. Accordingly, the correlation results of SOC stock with the
farm’s age showed a positive correlation with r-values 0.7, 0.64, and 0.44 for Ensetbased,
C–E based, and C–Ft–E based AF systems, respectively. The r-values under Ensetbased
and C–E based AF systems were statistically significant. Most AF farms that have an older
age showed a higher amount of SOC stock. However, SOC stock was negatively correlated
with slope percent and showed r-values −0.61, −0.55, and −0.21 for Enset based, C–E
based, and C–Ft–E based AF systems, respectively.
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The correlation results of SOC stock with the households’ wealth status (rich, medium,
and poor) showed that there is higher SOC stock on farms owned by wealthy farmers
across the three AF systems. A positive correlation was observed with r-values of 0.37,
0.47, and 0.34 for Enset based, C–E based, and C–Ft–E based AF systems. However, SOC
was negatively correlated with the number of livestock units owned by the practitioners.
The correlation results showed that the relationship between SOC stock and the number
of livestock under Enset based AF was statistically significant with an r-value of −0.66.
However, the r-values for C–E based and C–Ft–E based AF systems were −0.49 and −0.31,
respectively, and were not significant.

3.5. Relationship between Biomass C and Abundance, Shannon Diversity, Marglef’s Richness

The bivariate correlation analysis results showed that the quantity of biomass carbon
(BC) stock was positively correlated with mean species richness, mean abundance, and
diversity in all AF systems except in C–Ft–E based AF. Under the C–Ft–E based AF system,
the relationship between total BC and diversity was negative. From all AF systems, the
strongest correlation between BC and plant species richness was observed in C–E based AF
with an r-value of 0.52. A weak correlation was observed in BC stock with plant diversity
(r = −0.32) for the C–Ft–E based AF system. The BC stock was more positively correlated
with species richness (r = 0.49, r = 0.44, r = 0.52) for C–Ft–E based, Enset based, and C–E
based AF, respectively, than the other variables.
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3.6. Soil Organic Carbon Stocks of AF Systems versus Their Adjacent Monocrop Farms

A pairwise comparison was conducted to determine the SOC stocks of three AF
systems and their adjacent monocrop farming systems. The mean total SOC stock of the
three investigated AF systems was higher than in the adjacent monocrop farms. According
to the results of paired two-tailed t-test, C–Ft–E based AF and C–E based AF showed a
statistically highly significant difference compared to the respective monocrop smallholding.
However, the SOC stock of the Enset based AF system did not significantly differ from its
adjacent monocrop plots (Table 5).

Table 5. Mean (±SD; n = 10), SOC stock (0–40 cm, t ha−1) for the three studied AF systems and their
adjacent monocrop plot and results of paired sample two-tailed t-test.

Land Use Type n Mean ± SD t df Sig.
(2-Tailed)

Pair 1 SOC Coffee–Ft–Enset AF 10 125.5 ± 17.3
5.0 9 0.001 **SOC monocrop plot 10 90.5 ± 15.3

Pair 2 SOC Enset based AF 10 146.1 ± 26.5 0.4 9 0.688 NS
SOC monocrop plot 10 141.8 ± 28.1

Pair 3 SOC Coffee–Enset AF 10 139.6 ± 25.4 5.4 9 0.000 **
SOC monocrop plot 10 95.3 ± 14.6

** Significant at the 0.01 level (two-tailed). * Significant at the 0.05 level (two-tailed). NS—not significant.

4. Discussion
4.1. Biomass, Biomass Carbon, Soil Organic Carbon, and Ecosystem Carbon Stocks

For a mitigation of the rising CO2 in the atmosphere, C stores in biomass are only of
major importance when they are deposited in longer-lived biomass such as the woody
components of AF, etc. [10]. Another advantage of having these perennial systems is
that C sequestration does not have to end after harvesting the wood component because
the boles, stems, or branches can also store carbon if processed in any form of long-
lasting products [53]. The mean aboveground and belowground biomass values of the
current study are higher than the values reported by [36] in indigenous AF systems. Both
studies were conducted in the same zone of the region but different specific research sites.
The author reported values from 34.9–59.2 t ha−1 for AGB to 11.6–19.2 t ha−1 for BGB.
Results of this study were also relatively higher than the Coffee–Albizia association AF
in southwestern Togo, which had an average value of 140 t ha−1 in its aboveground and
32 t ha−1 in belowground [15]. The total calculated biomass values in the studied three
AF systems ranged from 108.0 to 328.1 t ha−1 for two of the three AF systems, which were
lower than Cacao agroforests of Cameroon (304 t ha−1) [54]. However, the total biomass
values in our study are still greater than the global average values reported for forests and
some tropical AF practices (149 t ha−1), as reported in [55]. The variation in biomass among
different AF systems might be attributed to several factors, for instance, the types of trees
and shrubs included, environmental conditions, type of soil, level of land degradation, and
age of the AF system [10]. Very low land degradation, good environmental conditions, and
longer-aged AF systems probably show high biomass production and storage. The studied
AF systems being permanent systems with very little land degradation and of older age,
exhibited larger biomass.

The total biomass of fruit and nonfruit trees in the C–Ft–E based AF system was
significantly different compared to the two remaining systems. This might be due to
C–Ft–Ebased AF having a much larger number of fruit trees with vigorous growth and
thus accumulated more biomass both aboveground and belowground. The contribution of
enset, coffee, and litter to the mean aboveground and belowground biomass C stock of the
AF system was by far lower than the contribution from trees across all AF systems. Similar
studies also reported greater C contribution from trees [22,23].

Concerning individual AF farms, the highest total biomass C stock recorded in the
current study was substantially higher when compared with shaded Coffee AF systems in
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southwestern Togo, reported by [15] with a value of 82 t ha−1, tree–enset based homegarden
AF systems of Hawassa Zuria district (20–50 t ha−1; [54]), and Enset based, Enset–Coffee
based, and Fruit–Coffee AF systems in a region similar to where our study was conducted
(22–122 t ha−1; [22]). Additionally, [13] did extensive reviews on the biomass C stocks
for West African Sahel countries. In their study, areas that encompassed extremely arid
and humid regions of Guinea reported values ranging from 22.2 to 70.8 t ha−1. These
C values are lower than values reported in the current study. In a review on biomass C
stock of AF systems globally, [10,18] reported ranges from 12 to 228 t ha−1. Therefore, it
is possible to summarize that the biomass C stocks of the studied AF systems fall within
the global value range for AF systems and compare favorably to those of tropical forests
and savanna in Brazil [56]. However, our results are lower than tropical Cocoa-based AF
systems (304 t ha−1) reported in Cameroon [54]. The high biomass C stock reported in
this study, specifically in the C–Ft–E based AF system, is due to higher tree density, a
high number of fruit and nonfruit trees growing vigorously, and their considerable age.
Similarly, [57] and [58] pointed out that variance in the biomass C stock is influenced by a
variety of factors, including tree age, species, density, and type and extent of management
employed by the practitioner. Similarly, the sort of allometric equation utilized by different
researchers to estimate biomass C stock could also cause discrepancies in the reported
numbers [59].

The soil is considered a compartment of terrestrial ecosystems where a higher quantity
of organic C is stored [60], and it is estimated 2300 billion tonnes globally within one-meter
soil depth [61]. This value is nearly 4.5 times the C stored in vegetation (610 billion tonnes).
Higher SOC stocks are regularly observed in the uppermost soil horizons because they
receive the initial organic matter input from falling litter either by leaching or by biogenic
activity. This pattern is universally encouraged in most terrestrial ecosystems [62]. Similarly,
in this study, the greater share of SOC was found in the upper layer (0–20 cm). The highest
total mean SOC stock in Enset based AF could be attributed to practitioners’ efforts to trim
down old enset leaves and mulch the ground, together with slower mineralization rates
due to the higher altitude (colder weather condition) [22]. From these results, AF, which
had the highest biomass, showed lower SOC stock and vice versa. The canopy closure and
shading under C–Ft–E based AF is higher compared to Enset based AF system. However,
the average SOC stock under C–Ft–E based AF was lower due to high decomposition rate
of the biomass assisted by high temperature and better nutrient recycling.

The average SOC stock value (137.1 t ha−1) of all AF systems (0–40 cm) in this study
was comparable with the global average, 121–123 and 110–117 t C ha−1 (0–60 cm soil
depth), for tropical forests and tropical savanna, respectively [20]. However, the values
were considerably higher than those reported for lowland homegardens of southern Tigrai
in Ethiopia (109.75 t C ha−1, 0–60 cm soil depth; [16]) and semiarid Acacia etabica woodland
in southern Ethiopia (43 t C ha−1) [63]. AF systems in other tropical regions were reported,
such as: homegarden AF systems of humid lowlands with a tree density of >750 stems ha−1

(70–120 t C ha−1); silvopastures (grazing and fodder) of humid lowlands with a tree density
of >25 stems ha−1 (80–120 t C ha−1); humid lowland and tropical highland wood lots
>10 years old (80–100 t C ha−1); humid lowland tree intercropping with a tree density of
>100 stems ha−1 (50–120 t C ha−1) [5]; and for AF systems in central India (27 t C ha−1) [64].
These reports showed a lower SOC stock than the AF systems of the current study. The
mean SOC stock value for soil depth 0–20 cm under C–Ft–E, Enset based, and C–E based
AF systems of this study was, however, lower than that reported for Inga-shade organic
coffee systems, Taungya systems, and polyculture–shade nonorganic coffee systems in
Chiapas, Mexico [62].

Depending on the ecosystem type, the amount of total AF C stock fluctuates sub-
stantially from one AF practice to the next and from region to region. The insignificant
difference in total AF C stock and SOC stock between the investigated AF systems was
because high biomass C stock does not mean it yields high SOC stock. This is because
the increase or decrease in SOC is highly affected by other factors such as management
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and extraction of biomass from the components of AF system, and soil management and
land-use history [5]. These additional factors may play an important role in the SOC
dynamics. The contribution of SOC to the total AF C stock was higher in Enset based AF.
This finding is consistent with the study reported by [22]. The relation between biomass C
stock and SOC stock is discussed in detail in Section 4.2.

The type of ecosystem and latitude also affects C stock distribution between biomass
and soil. The biomass C and SOC stocks (for 1 m soil depth) showed variation among
different forest ecosystems of the globe [14]. For instance, the highest SOC stocks were at
high latitudes (343 t ha−1), and the lowest was at low latitudes (121 t ha−1). The highest
biomass C stocks were in low latitudes, whereas the lowest was in high latitudes [14]. The
authors added the proportion of forest ecosystem C stock in biomass increased toward
the tropics, from 16% at high latitudes to 50% at low latitudes. In general, most organic
matter storage in tropical forests resides in biomass, which is followed by soil and litter
with values of 58%, 41%, and 1%, respectively [65].

The average total AF C stock (biomass plus SOC) of the studied AF systems (207.1 t ha−1)
were higher than reported for lowland homegardens of southern Tigrai in Ethiopia, which
have 148.3 t ha−1 for 60 cm soil depth [16]. They were 2.5 times higher than shaded coffee
plantations of southwestern Togo [15]. It was also reported in a similar range in the shade-
grown Coffee system of Indonesia 82 t ha−1 for 40 cm soil depth [17]. Considering the C
stock values reported above, we can say that the studied AF systems sequester considerably
more C than other tree-based ecosystems generally do in the tropics. However, it was lower
than the tropical forest biomes (244 t ha−1) [14].

4.2. Correlation between Biomass Carbon and SOC of Agroforestry Systems

The relationship between biomass carbon (BC) stock and soil organic carbon (SOC)
stocks of AF systems can vary depending on different factors. Considering vegetation as
one of the many factors influencing SOC stocks [66,67], studies conducted in wide areas
of the tropics showed that a consistent addition of tree/shrub prunings and their root
turnover over the years have contributed to the accumulation of SOC [8]. Results that
support the contribution of biomass C to the SOC were reported from different countries.
For example, a trial of hedgerow intercropping that incorporated Giliricidia sepium and
Leucaena leucocephala was done for 12 years in Nigerian Alfisol. As a result of incorporating
the trees, the surface SOC was increased by 15% (2.38 t ha−1); [68]. Similarly, after a five-
year trial of hedgerow intercropping that incorporated Inga edulis on a Typic Paleudult
soil in Peru, an increase of 12% (0.23 t ha−1) SOC stock was also observed [69]. On the
contrary, having more tree cover in a given land use may not necessarily produce additional
SOC stocks to the system. It is also affected by the existing extent of soil disturbances
and other human interferences, especially extraction of biomass or AF products [70]. This
might be the reason why a very weak correlation between biomass and SOC under C–Ft–E
based AF and C–E based AF was found. Other authors [71] also explained that SOC stock
was influenced mainly by soil properties, although topography and vegetation had an
insignificant impact. Additionally, [10] revealed that the contribution of biomass C stock
to SOC stocks at farm and landscape level was attributed to factors such as soil types,
precipitation, landuse, and land management.

In general, the relationship between the two variables may also be affected by other
factors such as tree management (pruning, lopping, pollarding, etc.) and land-use his-
tory [5]. Furthermore, the age of the AF system; the type, number, and rotation age of tree
species included [12]; elevation and climate [10,62]; soil type; and soil properties [71] might
affect the relationship. The findings of the current study are consistent with several other
studies where biomass C stock and SOC stocks showed a very weak relationship, even
negatively correlated [35,53,72].

Higher SOC stock in older AF systems points toward a lasting accumulation of organic
matter over the years and an aggradation of soils from AF practices. From the r-values,
it can be understood that most AF farms with lower slope percent showed a higher SOC
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stock. This may be due to more pronounced biomass incorporation into the soil in gentle
slope AF farms as a result of the accumulation of biomass by gravity. In the upper slope
position, where loss of organic matter is more than in gentle lower slopes, are typically
accumulation sites. The r-value under the C–Ft–E based AF system was very low. This
implies farms that are situated in lower elevation and gentler slope areas are less affected
by slope percent for their SOC stock.

From these results, it can be understood that richer households have less tendency for
using biomass from trees and shrubs for the purpose of house construction, cooking, and
other uses. In addition, richer households have larger landholdings and thus extraction of
biomass per unit area of the AF farm may be less than that for poor households. However,
poor people are more or less dependent on biomass for different uses and thus lessen
the biomass input to the soil. It was assumed that households with more livestock could
utilize more biomass as forage than those who have less livestock. This implies that if
significant biomass is consumed by the livestock, the biomass input returned as a litter
to the soil could be dramatically decreased. As a result, practitioners who have more
livestock showed comparatively less SOC stock under their AF farms than those with fewer
livestock. Therefore, in the current study SOC, was negatively correlated with the number
of livestock.

4.3. Relationship between Biomass C and Abundance, Shannon Diversity, Marglef’s Richness

The level of biomass carbon stock of AF systems could also be affected by structure
and composition of the tree species, for instance, the abundance, diversity, and richness of
tree/shrub species within the AF system. The relationship between BC and plant diversity
observed in C–Ft–E based AF of the current study is consistent with the homegarden AF
of southern Ethiopia, in which [21] reported a weak correlation between woody species
diversity and biomass C stock. This implies that high plant diversity might not be linked
to greater BC stock. It may be rather due to the fact that these AF systems encounter
more human interference and greater disturbance levels, which resulted in lower number
of plants and lower biomass production [73]. Socioeconomic factors may also play an
important role.

The correlation between BC and species richness in C–E based AF was strong and
positive. Similar results were reported by [22,23], who conducted research in Enset Coffee-
tree agroforests. We hypothesized in the current study that plant abundance had a strong
correlation with BC stock rather than with plant richness. However, a weaker correlation
of plant abundance with BC stock was found compared to the correlation of BC stock with
plant richness. The authors of [74] emphasized that C stock of AF systems depends more
on their functional diversity than on woody and nonwoody plant species diversity; [75]
and [76] also pointed out the biomass increment is more likely dependent on tree richness
than tree diversity, thus AF systems, which have greater richness, are expected to produce
more biomass and then greater biomass C.

The benefits of AF acquired from enhanced C sequestration are a promising incentive
to introduce AF practices. This, in turn, contributes to sustainable land use in tropical
regions [77]. Considerably high C stocks in the studied AF systems can be a convincing
argument that they make a significant contribution to C sequestration and climate change
mitigation when compared to some other land-uses. The upcoming success in C trading and
payments through the operation of payment for ecosystem services and REDD+ programs
could help local communities maintain AF systems by utilizing these incentives [78]. In
addition, the financial cost needed to sequester C through AF is expected to be much lower
(approximately $1–69/t C, median $13/t C) than through other CO2 mitigating options [78].
This is because some costs related to tree planting and management, land management,
and planting material could be easily offset by the monetary gains from the multiple AF
products and C trading incentives.
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4.4. Soil Organic Carbon Stocks of AF Systems versus Their Adjacent Monocrop Farms

The higher litter input from tree and shrubs in AF systems adds more decayed plant
material to the soil and thus has the capability to increase SOC through the decomposition
process [79–81]. It is not surprising to see greater SOC stock in AF systems than the adjacent
monocrop farms, but the aim was to investigate the extent of significant difference. The
difference was highly significant except for Enset based AF. The reason for insignificant
difference in Enset based AF versus its adjacent monocrop farms may be due to soil
management employed to these monocrop farms, such as addition of livestock manure,
ashes, and compost by farm owners. The high amount of SOC stock in the three AF
systems may be due to the AF systems having more litterfall, which contributes organic
matter to the soil, while in monocropped fields a smaller amount of crop residue might
be left in the field. Another reason could be due to the lignified cells found in tree litter,
branches, bark, roots, etc., which could lead to C stabilization and slower mineralization
in the soil [82]. The slower oxidation rate of organic matter under tree shade [83], the
addition of root exudates [84], and accumulation of more organic matter as a result of
fine root degradation in the underground [85] may also initiate higher SOC stock. Similar
results were reported by [75], who found higher SOC stock in homegarden AF than food-
crop monoculture land; [86] homegarden AF systems showed 114% greater SOC stock
than rice paddies, and [79] observed increased soil organic C by 11–52% in AF systems
compared to monocropped fields. Additionally, in a study which was conducted by [87]
in central Amazonia, Brazil, similar levels of SOC under AF were reported. Therefore,
we can understand that AF systems have higher SOC levels than monocropped fields,
even occasionally at a similar level with forest areas, depending on the plant mixture and
management of the AF system.

5. Conclusion and Recommendations

Higher C stores, either aboveground or belowground, are achieved when the land-
use systems integrate perennial plant species, and an effective management is employed.
Agricultural techniques that integrate sufficient trees and shrubs, for example, AF systems,
have a higher C repository. As several authors reported, most C sink in AF land-use systems
happens in the soil. Similarly, the investigated AF systems showed a higher SOC stock. This
is a good advantage to sequester more C in the system sustainably because soils have the
capacity to maintain and store most C fractions for a longer period than biomass. From the
findings of the current study, it can be understood that the variation in biomass and total C
stock among the AF systems is mainly influenced by altitude, silvicultural management,
types of trees and shrubs included, and density of the stand. Relatively higher C stock
in the indigenous AF systems of the southeastern Rift-Valley landscapes in Ethiopia is an
indicator of their potential to serve as large sinks for C. As a result, these landuse systems
might have a great role in sequestering significant amounts of C and thus contributing
to mitigate climate change. Quantifying the C stock and understanding the potential
of the studied AF systems to store C may help to design and develop climate change
mitigation strategies. It further contributes to developing a national policy concerning the
mitigation of climate change and the implementation of international mechanisms such as
REDD+ (Reducing Emission from Deforestation and Forest Degradation) and CDM (Clean
Development Mechanism).

To maintain and utilize the great potential of AF systems to sequester C sustainably,
the government should consider ways to expand these practices to different parts of the
country. A strategy that benefits AF practitioners from carbon trading should also be
designed and planned. This would encourage farmers to conserve woody and nonwoody
perennial plants for the long-term, thus fostering more C to be stored in the biomass
and in soil permanently. This could be accomplished by linking with governmental or
nongovernmental projects working on carbon trading.
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Appendix A

Table A1. Correlation between BC stock and SOC stock in the three AF systems.

BC Stock of
C–Ft–E

Based AF

SOC Stock of
C–Ft–E

Based AF

BC Stock of
Enset

Based AF

SOC Stock of
Enset

Based AF

BC Stock of
C–E

Based AF

SOC Stock
of C–E

Based AF

BC stock of
C–Ft–E based AF

Pearson
Correlation 1

Sig. (2-tailed)
N 10

SOC stock of
C–Ft–E based AF

Pearson
Correlation −0.005 1

Sig. (2-tailed) 0.989
N 10 10

BC stock of Enset
based AF

Pearson
Correlation 0.184 −0.186 1

Sig. (2-tailed) 0.612 0.606
N 10 10 10

SOC stock of
Ensetbased AF

Pearson
Correlation 0.080 0.055 0.458 1

Sig. (2-tailed) 0.825 0.881 0.183
N 10 10 10 10

BC stock of C–E
based AF

Pearson
Correlation −0.088 −0.069 0.029 −0.527 1

Sig. (2-tailed) 0.810 0.850 0.937 0.117
N 10 10 10 10 10

SOC stock of C–E
based AF

Pearson
Correlation −0.552 .008 −0.412 0.415 −0.246 1

Sig. (2-tailed)
N

0.098
10

0.983
10

0.237
10

0.233
10

0.493
10 10
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