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Abstract: An abandoned open green space in the urban setting of the Municipality of Pisa (Tuscany,
Italy) has been designed for renewal to foster the development of recreational activities and improve
the lives of the surrounding communities. However, the geochemical site characterization revealed
Pb, Cu, Zn and Hg concentrations in the soil exceeding the thresholds imposed by Italian regulations
for residential use. Pb, Cu and Zn contents likely reflect the effects of urban vehicle traffic, while
Hg contamination represents the legacy of a past artisanal tannery that used Hg(II)-chloride in
leather processing in the mid-1900s. Mercury is widely distributed in the area, with the highest
concentration in the uppermost soil layer, and reaching about 170 mg/kg in the common dandelion
rhizosphere. Chemical extractions and thermal desorption experiments have indicated that most
Hg is in the elemental free and matrix-bound fraction, with a possible minor amount (less than
4 wt%) of HgS and negligible methylated forms (0.1 wt%). The data suggest that soil processes
could reduce Hg2+ to volatile Hg0. Mercury in groundwater, hosted in a shallow aquitard in the
area, was below 0.2 µg/L. However, the presence of chloride in groundwater might result in the
formation of Hg stable aqueous complexes, increasing Hg release from solids. Future water quality
monitoring is hence recommended. The risk assessment highlighted that mercury in soil carries a
risk of non-cancerous effects, in particular for children, posing the basis for management planning.

Keywords: mercury contamination; mercury speciation; urban area; risk analysis

1. Introduction

Mercury is highly toxic for humans, ecosystems, and wildlife (e.g., [1–4]) and has been
included among the ten chemicals of major health concern by the World Health Organiza-
tion [5]. In particular, organic mercury is a potent neurotoxin [6] which accumulates in the
biota and becomes biomagnified in the food chain [7,8], representing an important route
for human exposure. Inorganic mercury is generally found in the environment in different
oxidation states as elemental Hg0 that can be converted to vapor at ambient temperature
due to its low latent heat of evaporation: mercuric ion Hg2+ and mercurous ion Hg2

2+. The
latter is metastable and rarely investigated in natural settings [9], since it is expected to be
rapidly disproportionate to elemental mercury and Hg2+ complexes. The organometallic
compounds of Hg2

2+ are also scarce, whereas mercuric ions in water and soil may be
readily converted to organic methylmercury (MeHg, CH3Hg+) and re-methylated to form
dimethylmercury (DMeHg, CH3HgCH3) across a great diversity of bacterial species [10].
In particular, methylation under reducing conditions primarily occurs through the role of
sulfate-reducing bacteria [11–13]. Indeed, methylation is a complex process [14–20], and
methylation rates depend on a large number of physico-chemical and biological factors,
including the total amount of Hg2+ [21] and the occurrence of specific molecules (e.g., [22]).
Demethylation may occur through abiotic and biotic processes [23], and the extent of MeHg
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in the ecosystem is the result of both methylation and demethylation processes. Hg2+ in
the water–soil system may form a variety of complexes and matrix-bound compounds,
and it is mostly sorbed by natural organic matter [24–27], Mn-Fe oxy-hydroxides [28,29],
and clays. Hg2+ can be reduced by Fe2+-bearing minerals through surface reactions and
by humic substances [30–35] yielding the formation of gaseous Hg0. Mercury vapor may
also be sorbed by soil, and transformation to mercuric form may occur. Under favorable
conditions, Hg2+ reacts with sulfur sources leading to the formation of the sparingly soluble
cinnabar (α-HgS) and metacinnabar (β-HgS). This process inhibits Hg2+ methylation and
immobilizes mercury in soils and sediments, even though some studies report that HgS
in nanoparticles may be a source of MeHg [36]. Since mercury is not degraded by the
ecosystem, many cases of present-day Hg contamination are a legacy from the past, adding
further complexity in the assessment of contaminated sites. Major anthropogenic sources
for mercury include chloralkali plants [37], cement production [38], iron and steel produc-
tion [39], coal burning [40], mining [41–43], and oil refinement [44]. Mercury compounds
have been widely used in the past as biocides and preservatives in a variety of applications,
before their use became highly restricted or forbidden. In particular, mercury chlorophe-
nol (C6H5ClHgO3) and mercuric chloride (HgCl2) were extensively applied in cereal and
leather tanneries, leaving behind a large risk to the soil/aquifer system. Indeed, traditional
tanning processes produced putrefied solid wastes and wastewaters with high concen-
trations of inorganic salts, heavy metals, and organics, although cleaner approaches to
leather processing have been more recently developed [45]. In Italy, tanneries are generally
characterized as small–medium size enterprises, often concentrated within municipalities,
as in the tanning district of the Tuscany region [46].

Quantifying the total Hg content in soil is not sufficient for assessing the risk of an
exposed population; it is necessary to determine the bioaccessible, soluble, and soil Hg
vapor fractions. In the literature, several procedures have been proposed to quantify
mercury fractionation and speciation [47], including thermal desorption and chemical
sequential extraction procedures, even if inconsistent results have been obtained in some
cases [48]. It is worth noting that consensual protocols for mercury speciation and certified
materials for some Hg species are still lacking.

In the present study, the mercury environmental issues related to the legacy of a small
bovine leather tanning manufacturer in an abandoned area within the Municipality of
Pisa (Tuscany, Italy) have been investigated. In this context, the aim of this work was to
evaluate the impact of Hg contamination in an urban area by determining concentration
patterns, as well as the geochemical factors that contribute to mercury’s fate. Specifically,
the major objectives were: (i) to determine the degree of Hg distribution in soil and
groundwater; (ii) to investigate the Hg speciation in soil using thermal desorption and
sequential extraction methods; and (iii) to assess the health risk of exposure to mercury
within a requalification project for the urban area.

2. Site Location and Geomorphological Outlines

The study area was located in the center of the Municipality of Pisa (Tuscany, Italy)
(Figure 1), approximately 0.5 km south of the Leaning Tower and Cathedral Place (the so-
called “Square of Miracles”), a UNESCO World Heritage Site. The city of Pisa is located in
an alluvial plain, a flat low-lying area with a mean elevation of about 2.5 m a.s.l., bounded
by the Ligurian Sea to the west, the Serchio River to the north, the Mt. Pisani to the east,
and crossed by the Arno River (Figure 1a). An abrupt change in elevation is recorded in the
proximity of the study area; indeed, the area east of the medieval city walls has an elevation
of about 5 m a.s.l., whereas the area to the west is located at about 2.5 m a.s.l. (Figure 1b).
The reason for this change in elevation is not totally clear [49].
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Figure 1. (a) The Pisa plain area (base map: Bing images) with indicated study site (red dot). (b) The
study area (red square) in the context of the topographic features of the Pisa urban area. The red line
represents the medieval city walls (base map DTM obtained from LiDAR data).

Since protohistoric times, this area has been characterized by a dense hydrographic
network related to the combined fluvial activity of the Arno and Serchio rivers [50]. These
highly sinuous and low-gradient rivers have frequently changed their course over time, as
documented by several geomorphological studies. In particular, a north–south palaeochan-
nel located between 9 and 13 m below ground level was identified nearby the study
area [51]. During the last glacial–interglacial transition (MIS 2–MIS 1), the Arno River
played a dominant role in the sedimentary and geomorphological evolution of the Pisa
plain, forming a prominent incised valley, 40–45 m deep and 5–8 km2 wide [52]. This
palaeovalley was developed in response to the last phase of sea-level fall (culminating
in the Last Glacial Maximum) and was progressively filled with estuarine and paludal
deposits during the Late Glacial–Early Holocene transgression (about 13,000–8000 cal yr
BP). The valley-fill succession is overlain by a laterally extensive, 3–15 m thick lagoonal
unit composed of soft grey clays, accumulated approximately between 8000 and 5000 cal
yr BP at the time of maximum marine ingression and during the early phases of sea-level
highstand. Upwards is a 10–15 m thick deltaic alluvial sedimentary wedge originating from
approximately 5000 yr BP. Eneolithic swamp clays, 1–3 m thick, form the lower portion
of the late highstand fluvial succession and exhibit upward transition to poorly drained
and then well-drained floodplain fine-grained deposits of protohistoric and historic age,
respectively. Isolated to locally amalgamated fluvial-channel sand bodies, crevasse/levee
sands and sand–silt alternations occur at different stratigraphic profiles. This prograda-
tional trend was temporarily interrupted by widespread backswamp development in Pisa’s
city center at the transition from the Iron age to the early Etruscan age. Stratigraphic
profiles and hydrogeological context revealed the occurrence of a silty horizon, about 8 m
thick, of alluvial origin with interbedded lenses of sandy deposits forming an aquitard.
This succession is bordered below by a continuous sandy level representing the main
semi-confined aquifer.

The study site consisted of an abandoned green space (about 1500 m2) adjacent to
the medieval defensive walls surrounding the city of Pisa, and was being included in an
urban renewal project to become an important public playground and recreational site
for inhabitants and tourists. A reconstructed history of the activities on the site revealed
that a slaughterhouse operating from the middle of the 19th century to the 1960s was
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located about 0.1 km south of the study area. Bovine hides were transferred from the
slaughterhouse to a small artisanal tannery, located in the area under study, to be processed
into leather. The tannery plants were built without any treatment facilities and environment
management systems; as a result, hazardous metals including mercury (in the form of
HgCl2 powder) were discharged directly into the soil. After the tanning activity ceased, the
derelict infrastructures were removed to improve the urban landscape without performing
any appropriate environmental reclamation work.

3. Materials and Method
3.1. Sampling

In order to assess the current state of mercury pollution, soil, groundwater and plant
environmental media were considered. An illustration of the spatial distribution of sam-
pling stations is given in Figure 2. Two boreholes (PZ1 and PZ2) were drilled in July
2019 by non-destructive techniques, reaching the depth of 9 m below ground level. The
extruded cores were collected and carefully stored in plastic core boxes. The cores were
examined and cut into sections using a stainless-steel cutter; the outer layer in contact with
the core tube was removed to eliminate possible contaminations. Two samples were taken
from each drilling at depths between 0.1 m and 1.0 m (samples PZ1-A and PZ2-A), and
between 1.2 m and 1.6 m (samples PZ1-B and PZ2-B) in accordance with Italian regula-
tions for risk analysis. Each sample was mixed thoroughly to give a 1 kg composite. An
additional borehole (PZ3) was drilled, reaching the depth of 3.0 m below ground level in
order to investigate the soil and subsoil layer sequence in more detail. In PZ3 samples were
collected from the core at nine different depths from ground level: PZ3-1 (0.31–0.34 m);
PZ3-2 (0.54–0.57 m); PZ3-3 (0.82–0.85 m); PZ3-4 (1.11–1.14 m); PZ-5 (1.31–1.34 m); PZ3-6
(1.80–1.84 m); PZ3-7 (2.22–2.24 m); PZ3-8 (2.54–2.56 m); PZ3-9 (2.79–2.81 m). Soil was also
collected throughout a trench (2 m wide, 1 m deep) excavated by a ditching machine. A
1 kg composite sample was collected along the full length of the exposed face of the trench,
obtaining a composite sample (sample T1-A, 0.1–0.5 m), and one sample was collected
from the bottom (sample T1-B, 1 m). During sampling, larger (>20 mm) fragments were
removed in the field. Spatially distributed rhizosphere soils surrounding naturally growing
dandelion (Taraxacum officinale) plant roots were collected in November 2018 (samples R1
to R12, Figure 2). In order to study the Hg migration from soil to roots and leaves, and to
evaluate the exposure to gaseous Hg, the roots and leaves of dandelion were collected in
correspondence with rhizosphere stations. One plant of dandelion taken from outside the
contaminated area was transferred in a vase in order to prevent Hg uptake from soil and
left in the site nearby station R4 from April 14 to May 27, 2019.

All soil samples were air-dried for 24 h to reduce Hg0 losses [53]. Soils from boreholes
were sieved to 2 mm in order to compare contaminant concentration against guideline values.

Dandelion roots were cleaned to carefully remove soil particles; roots and leaves were
washed with Milli-Q water, dried at ambient temperature and ground in a mortar.

Boreholes PZ1 and PZ2 were equipped with PVC piezometers with a screen interval
between 3 and 6 m below ground level in order to collect groundwater from the aquitard, as
the water body most prone to contamination. Groundwater was collected from the PZ1 and
PZ2 piezometers in two surveys in July 2019 (groundwater low-stage condition, samples
PZ1_W1 and PZ2_W1) and January 2020 (groundwater high-stage condition, samples
PZ1_W2 and PZ2_W2) using a low-flow (0.5 L/min) plastic 12 V pump, after purging.
Water samples were filtered in the field through 0.45 µm nylon filters and refrigerated in
pre-cleaned polyethylene bottles. Ultrapure nitric acid was used as a preservative for major
cation and trace element analysis.
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3.2. Analytical Procedures

Soil samples from boreholes PZ1 and PZ2 and trench T1 were digested by using a
Milestone Ethos Easy microwave platform (US EPA Method 3051A). The concentration
of a set of elements was determined by ICP-MS using a Perkin Elmer NexION 300X. The
analytical uncertainty was evaluated by the analysis of the soil reference material NIST SRM
2711a. In general, the accuracy was better than 10%. Precision values, as relative standard
deviation, were better than 5% for Li, Be, Mn, Ni, Ag, Sn, Cd, Tl, Pb, Fe and As, and within
10% for Co, Cu, Zn, Sr, Sb, Ba, Th, U, V, and Cr. Hexavalent Cr was measured following
the US EPA Method 3060A. Total organic carbon (TOC) was determined according to EN
15936:2012. Additionally, soil pH was measured [54].

The total mercury content in borehole (PZ1, PZ2 and PZ3), trench (T1) and rhizosphere
soil (samples R1 to R12), water (PZ1_W1, PZ1_W2 and PZ2_W1, PZ2_W2) and plants
(samples R1 to R12) was determined by a Milestone DMA-80 (US EPA Method 7473).
Repeated analysis of NIST 2711a (Montana soil), ERM-CC018 (contaminated sandy soil),
MESS-3 (marine sediment) were used as reference materials. RSD and accuracy were less
than 10%.

In order to quantify the Hg species in PZ1-A and PZ2-A soils, mercury speciation was
investigated by sequential chemical extraction according to [55]; the average value for Hg
recovery was 86 ± 5%. Methyl-Hg analyses were performed using the extraction scheme
proposed by [56] and approved by the Tuscany Region Environmental Protection Agency.
The elemental mercury fraction in soil was estimated by thermal desorption techniques:
continuous heating experiments from ambient temperature to 250 ◦C were performed by
weighting about 50 mg of soil samples into a 250 mL borosilicate glass flask in a heating
furnace. Temperature was digitally controlled to ±1 ◦C; the applied heating rate ranged
from 8 to 35 ◦C/min. Hg-release curves during heating were recorded by measuring the
vapor emission by online Lumex RA-915M, using air flow as a carrier.

On-site measurements were conducted to determine the Hg gas release of the soil
using a probe assembly inserted at a depth of 50 cm into the ground nearby the PZ1 station.
Mercury soil gas was extracted by connecting a syringe to the probe and collected (after
purging) through Carulite sorbent traps and analysed by Milestone DMA-80.

Water physico-chemical parameters (temperature, pH, electrical conductivity (EC),
redox potential (Eh), and dissolved oxygen (DO)) from PZ1_W1, PZ1_W2 and PZ2_W1,
PZ2_W2 were measured in the field. Alkalinity (expressed as HCO3

−) was determined by
acidimetric titration. Major ions were determined by ion chromatography using Thermo
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Fisher ICS 900. RSD was less than 5%. Trace elements were determined by ICP-MS using a
PerkinElmer NexIon 300X. The water reference solutions NIST SRM 1640a and 1643f were
analysed. Deviations from the certified values (20 replicates) were less than 5%, except for
As, Ba, Cr, Cu, Fe, Li, V (5–10%), and Zn (10–12%). Precision was better than 10% RSD.

3.3. Risk Assessment

In the present study, the mercury risk assessment was performed using a site-specific
approach [57,58] and the Risk-net software (version 3.1.1, September 2019, available at
http://www.reconnet.net/Software.htm (accessed on 21 February 2022)). The exposure
routes considered were shallow soil ingestion, dermal contact, particulate inhalation, and
outdoor vapour. Human receptors were identified for both adults and children.

The Hazard Quozient (HQ) for non-carcinogenic chronic effects in humans was cal-
culated for each exposure pathway. In case of direct ingestion and dermal contact, HQ
(i.e., HQingestion and HQdermal) was calculated by dividing the chronic daily intake (CDI,
mg/kg/day) by the corresponding reference dose (RfD, mg/kg/day) [59–61], defined as
the maximum daily exposure to a toxic agent that would not produce any appreciable
deleterious effects on human health:

HQ =
CDI
RfD

where CDI represents the exposure to a toxic agent, averaged over a long period of time,
through ingestion (CDIing) or dermal contact (CDIderm):

CDIing = CPOE ∗
Ring ∗ EF ∗ ED

BW ∗AT
∗ 10−6

CDIderm = CPOE ∗
SA ∗ SAF ∗ABS ∗ EF ∗ ED

BW ∗AT
∗ 10−6

where CPOE is the exposure point concentration of mercury in soil (mg/kg); EF is the
exposure frequency (150 day/year, a value suitable for a non-residential use). For the
remaining parameters, recommend values [62–64] were used: Ring is the ingestion rate
(100 mg/day for adult, 200 mg/day for children); ED is the exposure duration (24 years
for adults, 6 years for children); SA is the exposed skin area (5700 cm2 for adults, 2800 cm2

for children); SAF is the skin adherence factor (0.07 mg/cm2 day for adults, 0.2 mg/cm2

day for children); ABS is the dermal absorption factor (0.01 unitless); BW is the average
body weight (70 kg for adults,15 kg for children); AT is the average time of exposure to
non-carcinogens (ED × 365 day/year).

In case of inhalation pathways (vapor and dust), HQ (i.e., HQinhalation) was calculated
by dividing the exposure concentration (EC, mg/m3) to the reference toxicity concentration
value (RfC, mg/m3), rather than on the inhalation rate and average body weight:

HQ =
EC
RfC

where RfC was set to 3.0 × 10−4 mg/m3 [61] and EC was estimated as starting from the
predicted concentration in air (mg/m3), according to:

EC =
CPOE ∗ ET ∗ EF ∗ ED

AT

ET is the exposure time (3 h/day, suitable for a recreational area), AT is given by
ED × 365 day/year × 24 h/day and CPOE is the concentration in air at the exposure
point (mg/m3) given by:

CPOE = CS ∗ FT

http://www.reconnet.net/Software.htm
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FT is the estimated transport factor and CS is the concentration at the source of
emission (<CPOE). FTs are obtained by mathematical models considering direction, rate,
and extent of chemical migration, if the point of exposure for a receptor is not at the source.
According to the ASTM standard [57], the transport model related to dust inhalation
pathways is identified with the particle emission factor (VFp), while in the case vaporization
of a compound from surface soil to outdoor air, the FT is the volatilization factor (VFSS).
Both VFp and VFSS, predicting the attenuation of chemical concern away from the soil
source, were calculated by using both the site-specific data (source geometry, vadose zone
soil feature and metereological parameters) and physico-chemical properties obtained
during field investigations, in addition to the conservative default values suggested by the
ASTM standard: 7.42 × 10−7 and 4.60 × 10−12 (mg/m3-air)/(mg/kg-soil), respectively.

The cumulative risk from simultaneous exposure to several non-carcinogens is defined
by the screening level hazard index (HI) as:

HI = HQingestion + HQdermal + HQinhalation

An HI value less than unity indicates that the risk is acceptable; otherwise, if HI exceeds
one, non-carcinogenic effects are in danger of occurring, with probability increasing as the
value of the HI increases.

4. Results
4.1. Soil and Plants

TOC, pH, trace element data and total Hg concentration in borehole samples, rhi-
zosphere, and dandelion leaves are reported in Tables 1 and 2. The total organic carbon
content ranged between 0.42 and 1.92 wt%. Samples from both boreholes and trenches were
characterized by relatively high Fe, Mn, and Cr content (from 22 to 35 g/kg; from 495 to
1143 mg/kg; and from 76 to 129 mg/kg, respectively). Lead concentration in PZ1-A, PZ1-B,
PZ2-A, T1-A, and T1-B exceeded the maximum concentration level (MCL) imposed by
Italian regulations for residential and recreational areas (100 mg/kg). Cu and Zn exceeded
the MCL (120 mg/kg and 150 mg/kg, respectively) in PZ1-A, T1-B, PZ2-A, and T1-B. It
has to be noted that the Cr, Ni, and V contents overlapped with the concentration patterns
that characterized the natural background of the Pisa plain sediments [65], interpreted as
having originated from erosion and the weathering of ophiolitic rocks in the Serchio and
Arno River Apennine catchments. Pb, Cu and Zn enrichments were not attributable to the
Olocene sediments of the Pisa floodplain, and reflected inputs from anthropogenic sources
such as the effects of urban vehicles [66]. Total mercury was above the MCL (1 mg/kg) in
the borehole and trench samples (except PZ2-B), reaching 54 mg/kg; the HgT concentration
in the PZ3 profile showed that Hg contamination was confined to the shallower soil layers.
Mercury in the dandelion rhizosphere soil was widespread at concentrations exceeding
MCL for almost the entire area, even if not homogeneously distributed, reaching 172 mg/kg.
The Hg in dandelion leaves ranged between 0.42 and 1.50 mg/kg; no correlation with the
Hg content in the rhizosphere was observed. The Hg content in the roots was between
0.01 and 0.03 mg/kg, indicating that the level of Hg uptake by plants from soil was mini-
mal, or mercury does not reside in the roots. It is worth noting that leaves from dandelion
plants growing in vases had comparable Hg content to the leaves of plants growing in the
field. This suggests that the Hg uptake in leaves mainly comes from atmospheric mercury
(e.g., [67]), most likely Hg0. It is worth noting that the mercury vapor concentration during
soil gas sampling obtained by suck-up techniques [68] reached 1300 ng/m3, confirming
that gaseous elemental mercury in soil has been spilled outside.
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Table 1. TOC (wt%), pH, and trace element (mg/kg) analysis of soil, together with the maximum
concentration level (MCL, mg/kg) imposed by Italian regulations for residential and recreational
areas. Values exceeding the MCL are in bold.

Boreholes Trench MCL *

PZ-1A PZ-1B PZ-2A PZ-2B T1-A T1-B

TOC 0.98 0.96 1.28 0.42 1.92 0.68
pH 8.4 8.4 8.3 8.4 8.2 8.3
Li 37 40 27 30 43 35
Be 1.59 1.76 1.16 1.15 1.79 1.49 2
Mn 940 980 785 495 1143 911
Co 14.8 16.3 12.2 12.1 17.2 14.1 20
Ni 76 83 57 57 80 72 120
Cu 124 103 68 35 56 149 120
Zn 135 136 266 77 98 163 150
Sr 115 124 144 81 156 104

Mo 0.5 0.5 0.5 <0.5 <0.5 <0.5
Ag 0.67 0.85 0.64 0.12 1.26 0.82
Sn 8.8 9.2 6.4 2.0 8.0 9.7
Cd 0.27 0.28 0.34 0.11 0.17 0.38 2
Sb 0.77 0.63 0.49 0.24 0.43 0.72 10
Ba 213 213 320 130 209 210
Tl 0.39 0.41 0.26 0.25 0.42 0.37 1
Pb 113 127 136 21 189 124 100
Th 6.7 7.0 5.5 5.7 7.3 6.6
U 0.79 0.82 0.67 0.67 0.94 0.87
V 70 77 50 50 78 66 90

Cr(tot) 107 129 76 76 115 106 150
Cr (VI) <1 <1 <1 <1 <1 <1 2

Fe 33,035 35,463 21,994 23,523 34,749 30,510
As 9.1 9.0 6.4 5.0 8.8 8.4 20
Se 1.3 1.4 1.1 1.1 2.9 2.6 3

* Legislative Decree No. 152/2006 approving the Code on the Environment.

Table 2. Hg concentration (mg/kg) in rhizosphere and Taraxacum officinale leaves, borehole and
trench samples together with the sampling depth (m).

Boreholes Sampling Depth Hg Taraxacum Officinale Hg Rhizosphere Hg Trench Sampling Depth Hg

PZ-1A 0.1–1 26.9 R1 0.62 R1 0.99 T1-A 0.1–0.5 3.9
PZ-1B 1.2–1.6 26.3 R2 0.42 R2 0.08 T1-B 1 40
PZ-2A 0.1–1 4.6 R3 0.85 R3 8.49
PZ-2B 1.2–1.6 0.3 R4 0.26 R4 13.1
PZ-3-1 0.31–0.34 26.8 R5 0.82 R5 75
PZ-3-2 0.54–0.57 54.0 R6 0.95 R6 172
PZ-3-3 0.82–0.85 1.19 R7 0.84 R7 3.21
PZ-3-4 1.11–1.14 0.38 R8 1.17 R8 7.4
PZ-3-5 1.31–1.34 0.55 R9 0.79 R9 3.33
PZ-3-6 1.80–1.84 0.14 R10 0.11 R10 4.55
PZ-3-7 2.22–2.24 0.07 R11 1.50 R11 24.9
PZ-3-8 2.54–2.56 0.05 In vase 0.31
PZ-3-9 2.79–2.81 0.09

4.2. Hg Speciation in Soil

In order to quantify the Hg forms in soils, the PZ1-A and PZ2-A samples were chosen as
the best representative of the area in terms of soil mercury contamination (Figure 2, Table 1).
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4.2.1. Hg Determined by Chemical Extraction

The results of sequential extraction for PZ1-A and PZ2-A soils are graphically shown
in Figure 3.
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Figure 3. Normalized Hg F-fraction (wt%) extracted by each extractant solution for soil samples
PZ1A and PZ2-A (F1 = distilled water, F2 = 0.01 M HCl + 0.1 M CH3COOH, F3 = 1 M KOH,
F4 = 12 M HNO3, F5 = aqua regia).

The soil samples had similar distributions of Hg species, with the F4 fraction (12 M HNO3
extractant) being the most abundant (79 ± 9%). This fraction was intended as a repre-
sentative of both elemental mercury and mercury bound to Fe and Mn oxides. The F5
fraction (aqua regia extractant) revealed the possible occurrence of a minor amount of
mercury sulfides (3.7 ± 2.6%) suggesting that, in general, conditions were not favorable
to the spontaneous stabilization of mercury by conversion to cinnabar or metacinnabar.
The F3 fraction (1 M KOH extractant), representing organo-chelated Hg, was 2.6 ± 1.1%,
suggesting a minor fraction of Hg associated with soil organic matter. The Hg sequential
extraction experiments also revealed that the F1 fraction (distilled water) and F2 fraction
(0.01 M HCl + 0.1 M CH3COOH) extracted a negligible amount of mercury from the soil
(0.4 ± 0.3% and 0.2 ± 0.2%, respectively).

Methylmercury from ingestion and inhalation pathways easily enter the bloodstream
and rapidly distribute to all tissues, accumulating in the brain. The presence of methylmer-
cury in soil is hence of particular importance in characterizing mercury hazard. The
extraction results indicated very low values of methylmercury species in the studied soil.
In particular, the measured MeHg concentrations of the PZ1-A and PZ2-A samples corre-
sponded to 0.1%, respectively, of total Hg content.

4.2.2. Hg Thermal Desorption Analysis

Considering the comparable results obtained during the sequential chemical extraction
for PZ1-A and PZ2-A soils, thermo-desorption experiments at different heating rates were
applied only to the PZ1-A sample. The obtained thermograms had the same shape and
were fitted by two peaks ranging between 110–130 ◦C (peak #1) and 160–200 ◦C (peak #2)
in experiments at variable heating rates. An example is shown in Figure 4.
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Figure 4. Example of thermo-desorption curve for PZ1-A soil sample (black squares). Deconvo-
lution (blue line) indicates the occurrence of peaks centered at 133 ± 2 ◦C (red dot, peak #1) and
197.4 ± 0.9 ◦C (green short dash, peak #2). R-square = 0.99.

Peak #1 is attributable to the desorption of Hg0 free in the soil matrix [69]. In order
to assign the peak #2 to Hg species, activation energy was obtained by thermo-release
curves measured at the heating rates (β) of 8, 10, 12, 20, 35 ◦C/min. As expected, the peak
maximum (Tpeak) shifted to a higher temperature with increasing β [70,71]. Tpeak and β

can be used to determine the first-order activation energy (Ea) of Hg vapor emission from
soil according to:

ln

(
T2

peak

β

)
=

Ea

RTpeak
+ ln

(
Ea

AR

)
where A represents the Arrhenius pre-exponential factor and R the Boltzmann gas con-
stant [71]. In a series of heating experiments with different β a linear correlation is hence
expected between T2

peak/β and 1/Tpeak, whose slope is given by Ea/R. The results obtained
for PZ1-A soil are graphically shown in Figure 5.
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The slope of the regression (6.60) gives an activation energy of 13.2 Kcal/mol. A range
of desorption activation energies have been reported for Hg gas emission from soils, mostly
depending on the physico-chemical properties of the soil and sorption processes [72–75].
The Ea obtained in this study was close to the enthalpy of the Hg0

liq → Hg0
gas reaction

(about 14 Kcal/mol), and might reflect the vaporization of elemental Hg more deeply
retained within the soil structure, compared with that represented by peak #1. Indeed, a
double peak for Hg0 release with a maximum at approximately 100 ◦C and 200 ◦C has
been reported in the literature (e.g., [76]) and ascribed to Hg0 as variably bound to Fe
oxydydroxides, while a higher desorption temperature (200–300 ◦C) is attributed to matrix
bound Hg2+ [69,77,78].

There is no clear consensus about this matter; however, considering the obtained Ea
we can assign peak #2 to matrix-bound Hg0, where the matrix is a mineral phase. Most of
the Hg2+ released during the pristine contamination would hence have been reduced to
Hg0. Indeed, in natural settings, divalent mercury can be reduced to elemental mercury by
specific inorganic reducing agents, such as bacteria and sunlight; the process of the biotic
and abiotic production of elemental mercury in the soil–water system via Hg2+ reduction
represents a pathway in the biogeochemical cycle of mercury. Furthermore, experimental
studies have demonstrated that the ferrous iron associated with iron oxyhydroxides, such
as magnetite grains commonly found in the Pisa plain sediments [52] and other minerals
(e.g., siderite), is a reductant of Hg2+, with the formation of elemental Hg0 by surface
reactions (e.g., [79]).

The deconvolution of the desorption curve, scaled to the % recovery in the F4 fraction
obtained by chemical sequential extraction, yielded that about 25% of total mercury in soil
was free Hg0 (peak #1) and 55% was matrix-bound Hg0 (peak #2). It is worth mentioning
that cinnabar and/or metacinnabar, released at higher temperature and highlighted by
sequential extraction, were not detected by thermograms, suggesting that their amount
was below the peak resolution.

4.3. Water

Physico-chemical parameters, major ions, and trace element content of groundwater
are reported in Table 3. In PZ1_W and PZ2_W temperature was quite constant in both
the summer and winter surveys (between 15.4 and 17.3 ◦C), despite large changes in
the air temperature. Water had a circum-neutral pH, and electrical conductivity was
somewhat lower during the dry season (July 2019; EC = 1955–2230 µS/cm) compared with
the wet season (January 2020; EC = 2600–3370 µS/cm). Dissolved oxygen ranged between
2.0 and 3.6 mg/L, indicating that the original oxygen content was significantly modified
through chemical and biological processes. In particular, the occurrence of NH4

+ might
reflect the decay of buried organic matter; indeed, at the Eh-pH conditions measured in
groundwater, NH4

+ oxidized to nitrate–nitrogen, suggesting the occurrence of water bodies
in the aquitard of anoxic conditions not directly sampled during the surveys. The major
ion chemistry indicated that PZ1_W and PZ2_W belonged to Na-Cl-type water, according
to the classification based on the Piper diagram (Figure 6). The relatively high Na and Cl
content indicated the contribution of a marine component. However, the SO4

2− content was
lower compared with what was expected on the basis of the Cl−/SO4

2− ratio in seawater,
pointing to sulfate reduction by organic matter. This hypothesis was supported by the H2S
“rotten egg” smell and the relatively high HCO3

− content measured. The seasonal reducing
environment, occurring in soil as a result of the different hydrogeochemical conditions and
sulfate reduction by sulfate-reducing microbes, might locally facilitate the formation of
minor amounts HgS from elemental mercury [80].

Groundwater was characterized by high Mn, relatively high Fe content, and in some
cases Ni above MCL (50, 200 and 20 µg/L for Mn, Fe and Ni, respectively), as expected
on the basis of the lithology of the aquitard originating from the erosion of ophiolitic
rock outcropping in the Apennine catchments, and commonly found in groundwater
in the coastal plain of Pisa. Arsenic in PZ1_W1 slightly exceeded the MCL (10 µg/L),



Sustainability 2022, 14, 4367 12 of 18

possibly reflecting As hosted in sulfide veins related to the hydrothermal activity across
the northern Apennine ophiolites. With the exception of Mn, Ni, and As in PZ1_W1, the
concentrations of potentially toxic elements were below the corresponding MCL imposed
by Italian regulations. It is worth noting that Hg was below the detection limit of 0.2 µg/L
in all water samples.

Table 3. Physico-chemical parameters, concentration of major ions and trace elements in groundwater
from PZ1 and PZ2 piezometers collected in July 2019 (samples PZ1_W1 and PZ2_W1) and January
2020 (samples PZ1_W2 and PZ2_W2) together with the maximum concentration levels (MCL, mg/kg)
imposed by Italian regulations for groundwater. Values exceeding the MCL are in bold.

Sample PZ1-W1 July 2019 PZ1-W2 January 2020 PZ2-W1 July 2019 PZ2-W2 January 2020 MCL *

Twater (C◦) 17.3 15.5 15.7 15.4
Tair (C◦) 29.6 10.5 28.5 11.8

pH 7 7.2 7.1 7.2
EC 1955 2600 2230 3370

DO (mg/l) 2.1 3 3.6 2
Eh (V) 0.17 0.28 0.22 0.42

NH4
+ (mg/L) 1.59 2.1

Hg (µg/L) <0.2 <0.2 <0.2 <0.2 1
Na+ (mg/L) 296 299 353 337
K+ (mg/L) 8.3 7.4 16 17

Mg2+ (mg/L) 57 58 60 66
Ca2+ (mg/L) 231 247 208 240
F− (mg/L) <1.5 <1.5 <1.5 <1.5 1.5
Cl− (mg/L) 485 516 578 668

NO3
− (mg/L) <10 <10 <10 <10 50

SO4
2− (mg/L) 96 119 147 194 250

HCO3
−(mg/L) 799 927 653 683

Li (µg/L) 10.3 7.7 11.6 8.2
Be (µg/L) <0.07 <0.1 <0.07 <0.1 4
Mn (µg/L) 4949 4082 2454 3404 50
Co (µg/L) 8.2 2.88 4.1 4.16 50
Ni (µg/L) 43 23.4 26.3 30 20
Cu (µg/L) <22 26 <22 23 1000
Zn (µg/L) <70 <70 <70 <70 3000
Sr (µg/L) 1882 1779 1644 1874

Mo (µg/L) 3.7 2.38 3.5 2.37
Sn (µg/L) <0.9 <0.9 <0.9 <0.9
Cd (µg/L) <0.08 <0.08 <0.08 <0.08 5
Sb (µg/L) 0.56 <0.4 <0.4 <0.4 5
Ba (µg/L) 356 277 404 376
Tl (µg/L) <0.07 <0.06 <0.07 <0.06 2
Pb (µg/L) <2 <2 <2 <2 10
U (µg/L) 2.26 1.74 3.29 2.88
V (µg/L) 1.19 <1 <1 <1
Cr (µg/L) <1 <1 <1 <1 50
Fe (µg/L) 5520 5698 842 134 200
As (µg/L) 12.3 9.7 3.7 1.68 10

* Legislative Decree No. 152/2006 approving the Code on the Environment.

4.4. Risk Analysis

Non-carcinogenic health risk assessment was performed by calculating HQ and HI.
The data obtained using the highest mercury concentration measured on site (172 mg/kg)
and speciation results (percent yields of 3.7, 25, 55 and 0.1 for mercury sulfide, free Hg0,
matrix-bound Hg0 and methylmercury, respectively; see Section 4.2) are shown in Table 4.
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Table 4. Summary of Hazard Quozient (HQ) for non-carcinogenic risk calculated for different
exposure routes for children and adult receptors (values for adults when different are in brackets)
based on mercury maximum concentration and speciation data (see text).

HQ Soil Ingestion Dermal Contact Inhalation Vapor Inhalation Dust

Free Hg0

RfDing = 1.6 × 10−4 mg/kg/day
RfC = 3 × 10−4 mg/m3

1.47 (0.16) 4.12 × 10−2 (6.30 × 10−3) 5.46 × 10−3 3.39 × 10−8

Matrix-bound Hg0

RfDing = 1.6 × 10−4 mg/kg/day
3.24 (0.35) 9.07 × 10−2 (1.38 × 10−2) - 7.45 × 10−8

Mercury sulfide
RfDing = 3 × 10−4 mg/kg/day 0.12 (1.24 × 10−2) 3.25 × 10−3 (4.97 × 10−4) - *

Methylmercury
RfDing = 10−4 mg/kg/day 9.42 × 10−3 (1.01 × 10−3) 2.64 × 10−4 (4.03 × 10−5) - *

Sum of individual hazard quotients 4.84 (0.52) 0.14 (2.06 × 10−2) 5.46 × 10−3 1.08 × 10−8

* RfC not available.

It was observed that the risk was associated with soil ingestion by children, while
dermal contact and inhalation pathways did not produce a significant health risk. In
particular, an HQingestion exceeding unit was obtained for children for the cases of free and
matrix-bound Hg0 (HQ of 1.47 and 3.24, respectively), while for sulfide-bound Hg and
methylmercury the HQ value is negligible.

The hazard index calculated considering all the exposure routes active on-site exceeded
unity (HI = 4.99), and therefore posed a (non-cancerous) risk to children, who represent the
major target users of the playground space, and the most vulnerable group of city residents.

It is worth mentioning that the speciation data obtained in this study allowed us to
perform an actual risk assessment instead of using the total Hg concentration for each
exposure pathway, with the latter leading to an overestimation of the risk.

5. Discussion

The measured metal concentrations revealed that soil samples in the studied ur-
ban green space—planned to be converted into a recreational area in the town of Pisa—
comprised potentially toxic elements. The major threat was related to the occurrence of
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mercury, largely exceeding the guideline concentration values for residential use imposed
by Italian regulations. Mercury in the soil was not attributable to lithogenic sources, repre-
senting the legacy of HgCl2 applied in the past artisanal tannery activities that characterized
the site. The data showed that mercury contamination was widespread, with the highest
concentration, reaching 172 mg/kg, measured in the rhizosphere.

The analytical results from soil gas sampling revealed that mercury degassing is an
active process on the site, in agreement with the results obtained by the thermal desorption
laboratory experiments demonstrating the occurrence of free Hg0 and Hg0 retained in the
soil, produced by reducible matrix-bound Hg2+. Furthermore, the sequential chemical
extraction indicated that the main Hg species in soil were extracted by the 12 M HNO3
fraction, representative of both elemental and matrix-bound Hg. We can suppose that the
matrix-bound Hg mostly comprised Hg adsorbed in the mineral surface, in particular onto
Fe-Mn oxyhydroxides commonly found in the Pisa alluvial plain. The relatively high pH of
the soil may have enhanced the Fe-Mn oxyhydroxides’ sorptive capacity [81].

The chemical sequential extraction also indicated that the organo-chelated Hg fraction
was below 3 wt%. A minor amount of mercury (below 4 wt% from the sequential extraction
results) had possibly formed sulfides. Indeed, in anaerobic Hg-contaminated soils, the
microbial reduction of sulfate can lead to the in situ formation of mercuric sulfide (HgS),
occurring as cinnabar or metacinnabar.

The obtained results hence highlight that Hg2+ from the original industrial input
of mercuric chloride has mostly undergone reduction—therefore being less toxic to the
environment and comprising less reactive Hg0—but is still highly toxic to humans when
inhaled [82], heterogeneously distributed, and variably bound to the soil matrix. The
microbial reduction of Hg2+ to Hg0 has been documented in periodically flooded anaerobic
soils, such as the site under study during heavy raining events [83]. Reduction reactions in
surface soils may also be enhanced photochemically [84].

Mercury contamination has not been detected in groundwater, indicating that Hg2+

reduction does not lead to the release of a significant amount of Hg in solution. This is
interpreted as reflecting soil speciation, revealing the occurrence of insoluble HgS in soil,
stable organo-chelated Hg complexes, and Hg0 having relatively low solubility (about
6.0 × 10−5g/L at 25 ◦C). This was also confirmed by water leachates during the sequential
extraction experiments (F1 fraction), which contained negligible amounts of mercury. It
should also be noted that the water table level in the study area was generally not suffi-
ciently high enough to be in contact with the contaminated soil layer, preventing the direct
scavenging of Hg from groundwater. In addition, in the case of Hg release to groundwa-
ter, lateral fluxes in the aquitard would be limited due to the low hydraulic conductivity,
reducing the possibility of soluble Hg migration pathways. Even though, on the basis
of the available data, there is no evidence that Hg enters the groundwater, the observed
increase in the Cl− concentration might result in forming stable aqueous complexes with
Hg, enhancing mercury leaching during the interaction between groundwater and the
mercury mineral phases occurring at depth [85]. Indeed, the redox profile in the aquifer
and the dynamic between infiltrating rainwater and deeper saltwater lenses may favor
Hg-Cl complexes, promoting the possible dissolution of Hg-bearing sulfides. This requires
the monitoring of groundwater to be continued.

6. Conclusions

The re-use of dismissed areas by urban greening policies represents an effective way of
improving the quality of life for citizens, and therefore has an important social function. In
the present study, the soil and groundwater quality of an abandoned site in the city center
of Pisa, planned to become a new public green space, was investigated by geochemical
analysis. The obtained results highlighted that mercury contamination in the soil is the
major threat. According to historical records, this mercury contamination represents the
legacy of a past artisanal tannery that used HgCl2 in leather processing. The activity
ceased without a reclamation program, and specific monitoring and management were
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not carried out. The data indicate that Hg contamination is widespread, but confined to
the uppermost soil layers, and that this contaminant is not mobilized to groundwater. Soil
chemical sequential extraction, thermal desorption experiments, and field measurements
indicated that redox conversion of Hg2+ into Hg0 occurred in the soil, and that Hg0 was
heterogeneously distributed and variably bound to the soil matrix. A small fraction of
mercury was likely fixed in soil as HgS. Even if elemental mercury was less reactive and less
toxic to the environment with respect to Hg2+ and organomercurials, the risk assessment
based on the speciation data indicates an unacceptable risk (HI > 1) due to the possible
direct soil ingestion of children. This study demonstrates the usefulness of a site-specific
investigation approach providing geochemical data for modelling the risks associated with
human exposure to hazardous elements in an urban environment—in this instance mercury.
Furthermore, risk assessments should be the main basis for remedial action regarding
human health protection.
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