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Abstract: In this paper, the authors studied the impact of human activities on the groundwater
environment to reduce the impacts such activities for sustainable groundwater use. The authors took
the monthly water table depth data of 32 long-term observation wells in the Daxing District of Beijing
from 1986 to 2016 as samples. The authors used seven interpolation methods in the statistics module
of ArcGIS by comparing the average error (ME) and root mean square error (RMSE) between the
measured and predicted values so that the authors can select the best interpolation method. Using the
geostatistical variogram model variation, the authors analyzed the nugget effect through time in the
study area. On the basis of the set pair analysis, the main factors causing the increase in groundwater
exploitation intensity were quantitatively evaluated and identified. The results were as follows.
(1) After comparing the simulation accuracy of the seven interpolation methods for water table
depth, ordinary Kriging interpolation was selected as the best interpolation model for the study area.
(2) The spatial correlation of the water table depth gradually weakened, and the nugget effect from
2006 to 2016 was 25.92% (>25%). The data indicated that human groundwater exploitation activities
from 2006 to 2016 greatly influenced the spatial correlation of the water table depth. (3) The average
mining intensity of groundwater from 2006 to 2016 was medium (Level II), and a bleak gradual
deterioration trend was observed. The evaluation results of the subtraction set pair potentials in
2010 and 2013, the years of key regulation of groundwater exploitation intensity, are partial negative
potential and negative potential, respectively. In 2010, three indicators had partial negative potential:
industrial product, tertiary industry product, and irrigated field area. In 2013, five indicators were in
negative potential: irrigated area, vegetable area, facility agricultural area, fruit tree area, and the
number of wells. Herein, the spatial and temporal variations in the water table depth of the study
area are analyzed using a geostatistical method. Moreover, the influence of each water part on the
groundwater exploitation intensity is further diagnosed and evaluated based on set pair analysis. The
obtained results can provide a theoretical and methodological reference for the sustainable utilization
of groundwater in regions where groundwater is the main water supply source, providing a basis for
industrial regulation policies in the region.

Keywords: geostatistical analysis; water table depth; interpolation model; set pair analysis

1. Introduction

As an important freshwater resource, groundwater is significant for urban life and
industrial and agricultural production. Especially in areas lacking surface water, ground-
water may be the only stable water supply source. In Beijing, a city located north of
North China Plain, the average annual rainfall is 585 mm. Its average water resource is
165 m3 per capita, accounting for approximately 8% of China’s water resources per capita.
Moreover, Beijing is located in a semiarid and semihumid region affected by a continental
monsoon climate, and the uncertainty of groundwater exploitable volume increases. These
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reflect the dire water resources situation in Beijing. In addition, rapid urbanization in the
past 20 years has changed the original natural underlying surface and, consequently, the
groundwater recharge and discharge processes. It has caused environmental problems,
such as the continuous water table depth decrease in regional groundwater, settling of the
ground surface, and deterioration of water quality. Even with the South-to-North Water
Diversion Project in Beijing, groundwater still covers a significant proportion of the city’s
water supply. The exploitable amount of groundwater resources refers to the maximum
amount of water that can be obtained from the aquifer without causing deterioration of
the ecological environment, which is mainly related to the recharge and consumption of
groundwater. According to the relevant research results from 1989 to 2000 [1], the average
annual recharge of groundwater in the Beijing plain area was 27.66 × 108 m3/a, in which
rainfall infiltration accounted for 47.92%, lateral recharge in mountainous areas accounted
for 24.74%, irrigation recharge accounted for 12.86%, and canal infiltration recharge ac-
counted for 14.48%. More than 92% of the lateral supply in mountainous areas comes from
the atmospheric precipitation. Furthermore, atmospheric precipitation accounts for a large
proportion of groundwater recharge. According to the Beijing Water Resources Bulletin,
the average rainfall in Beijing from 2006 to 2019 was 549.86 mm, and from 1989 to 2000 was
549.92 mm, a minute difference indicating that the overall change in groundwater recharge
was not considerable. The average annual groundwater consumption in Beijing plain
from 1989 to 2000 was 30.27 × 108 m3/a, in which groundwater exploitation accounted
for 87.64%. The artificial exploitation of groundwater has an absolute advantage over
the consumption of groundwater. Therefore, studying the spatiotemporal variability of
groundwater exploitation intensity is of great practical significance and theoretical value
for reducing the impact of human activities on the groundwater environment and realizing
the sustainable utilization of groundwater.

Changes in water table depth significantly correlate with groundwater exploitation
intensity [2–4]. Thus, these can reflect the intensity of groundwater extraction in a region by
collecting water table depth data from monitoring wells at the water level and establishing
a correlation model. However, because water table data around monitoring wells are
limited, the authors should choose a spatial interpolation model with the slightest error if
the authors must characterize the spatial variation of the water table depth in the whole
region. Deterministic and geostatistical interpolation methods are commonly used for this
purpose [5–9]. On the basis of similarity or smoothness within the study area, determin-
istic interpolation methods create surfaces using known points [10,11]. The deterministic
interpolation methods can be divided into two types: global and local. Global interpola-
tion methods use the sample data set of a whole study area to calculate predictive values
(e.g., global polynomial interpolation [GPI]). In contrast, local interpolation methods use
known sample points within a small spatial area of a large study area to calculate predictive
values (e.g., inverse distance interpolation [IDW], radial basis interpolation, and local poly-
nomial interpolation [LPI]). Geostatistical interpolation methods mainly include ordinary
Kriging interpolation (OK), simple Kriging interpolation (SK), pan-Kriging interpolation,
probabilistic Kriging interpolation, disjunctive Kriging interpolation, and collaborative
Kriging interpolation. These methods are based on the theory of variation function and
structural analysis. These methods are used for the optimal unbiased estimation of region-
alized variables in limited regions [12,13].

As a unique function of geostatistical analysis, semi-variation is a quantitative ex-
pression of the theorem of close geographic resemblance [14,15]. The strength of the
geographical spatial correlation can be reflected by the nugget effect (nugget/sill). The
larger the nugget effect, the greater the variation between samples caused by random fac-
tors [16,17]. Structural factors can enhance the spatial correlation of the water table depth,
such as precipitation, topographic undulations, and water-containing rocks. Contrarily,
human exploitation belongs to stochastic factors, which weaken the spatial correlation.

Although the nugget effect can identify the spatial variability of water table depth
over time, further diagnosing and evaluating the main factors affecting groundwater
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exploitation is necessary for controlling it. Some evaluation methods are used in developing
and utilizing groundwater. These include the water balance method [18,19], numerical
simulation method [20,21], isotope tracer method [22], principal component analysis, fuzzy
comprehensive analysis, risk matrix method, projection pursuit method [23], and set
pair analysis method [24,25]. Among these, set pair analysis can reflect the uncertainty
relationship between evaluation indexes and evaluation standards from the three aspects
of identity, difference, and opposition. Thus, it has unique advantages for treating water
resources systems. The adjoint functions of set pair analysis include subtraction set pair
potential [26], a partial linkage coefficient [27], and a neighbor-joining coefficient [28].

To reduce the impact of human activities on groundwater environment for the sus-
tainable utilization of groundwater, in this study, the Daxing District in Beijing is used
as the research area, and the best interpolation model is selected from the seven interpo-
lation methods in the ArcGIS statistics module. The spatial variability characteristics of
groundwater depth are analyzed using the geostatistical function model. The main source
of water supply in the study area is groundwater, and the types of water use mainly include
agricultural water, industrial water, tertiary industry water and domestic water. Therefore,
this paper uses the agricultural irrigation area, industrial output value, tertiary industry
output value, population, and the number of wells as the evaluation indexes. Using set
pair analysis, the authors quantitatively evaluated and identified the main factors causing
the increase in groundwater exploitation intensity. The research results can provide a
theoretical and methodological reference for the sustainable utilization of groundwater
in areas where groundwater is the main source of water supply, providing a basis for
industrial regulation policies in the region.

2. Materials and Methods
2.1. Study Area

The Daxing District is located in the southern plains of Beijing (39◦26′–39◦51′ N,
116◦13′–116◦43′ E). It has 14 townships and an area of approximately 1036 km2. It has a
warm, temperate, semihumid, semiarid continental monsoon climate with well-defined
seasons: cold and less rainy in winter and spring, hot and rainy in summer, and comfortable
in autumn. The average annual rainfall is 510.1 mm, with large annual and interannual
rainfall distributions. The annual average temperature is 11.7 ◦C, and the maximum
frozen soil depth is 69 cm. The Daxing District belongs to the Yongding River floodplain,
which has a flat topography elevated from 9 to 73 m and a topographic slope of about
0.5–2.0‰. The soil type is predominantly sandy loam with a coarsening gradient from
west to east. The Daxing District is an important strategic node for the Beijing–Tianjin–
Hebei coordinated development. It has four primary industries: metropolitan industry,
modern service industry, cultural creative industry, and urban modern agriculture. With
the construction of the Beijing Daxing International Airport, the Daxing District is slated to
become one of the fastest-growing regions in Beijing.

2.2. Data Sources
2.2.1. Groundwater Water Level Data

Long-term monthly water table depth monitoring data from 32 observational logs in
the study area from 1986 to 2016 were collected to monitor the dynamics of water table
depth. The monitored well locations are shown in Figure 1.



Sustainability 2022, 14, 4341 4 of 17

Figure 1. Geographic location map of the study area.

2.2.2. Statistical Information

The annual statistical data used in this paper were collected from relevant data,
including the Beijing water service statistical yearbook from 2012 to 2017, the Daxing
District statistical yearbook from 2005 to 2017, the groundwater harvest well census results
of the Beijing census of water services from 2013, and the third agricultural census data
compilation from the Daxing District of Beijing in 2016.

2.3. Research Method
2.3.1. Error Calculation Methods for the Interpolation Model

In this paper, seven methods are used to model the groundwater water level: IDW,
GPI, LPI, tension spline interpolation (Tspline), OK, SK, and the universal Kriging method
(UK). The advantages and disadvantages of each interpolation method are shown in Table 1.
The average errors (MEs), root mean square errors (RMSEs), and Nash–Sutcliffe efficiency
coefficient (NSE) of the different methods are compared to select the best model.

Table 1. Advantages and disadvantages of each interpolation method.

Method Advantages Disadvantages

IDW Wide application range and fast calculation speed IDW can produce bullseyes around data

GPI Suitable for surface with slow change in spatial data and
fast calculation speed

The edge position of data has great influence on the
interpolation result

LPI Suitable for reflecting short-range change of spatial data
and medium computing speed Prone to strip phenomenon

Tspline
Suitable for surfaces with flat spatial data. Compared
with GPI, this method provides accurate interpolation

and has medium calculation speed

In a short range, when the data change considerably or
the sampling point data have great uncertainty, the

interpolation results will be greatly affected

OK
The interpolation accuracy is less affected by the sample
density and number, and the interpolation effect is good

with high accuracy
Intensive calculation and slow operation speed

SK
SK is the same as OK, but also the linear estimation of

regionalized variables; the interpolation effect is slightly
worse than OK

Intensive calculation and slow operation speed

UK UK is an extension of OK, which can add explanatory
variables to the model Intensive calculation and slow operation speed

The mean square error, root mean square error, and Nash–Sutcliffe efficiency coefficient
(NSE) are calculated as follows:

1. The mean square error

ME =
1
n

n

∑
i=1
|z∗(pi)− z(pi)| (1)
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2. Root mean square error

RMSE =

√
1
n

n

∑
i=1
|z∗(pi)− z(pi)|2 (2)

3. Nash–Sutcliffe efficiency coefficient

NSE = 1−

n
∑

i=1
(Z∗(pi)− Z(pi))

2

n
∑

i=1
(Z∗(pi)− Z∗)2

(3)

In these equations, ME represents the mean error, RMSE is the root mean square error,
NSE represents the Nash–Sutcliffe efficiency coefficient, n represents the sample size, Z(Pi)
is the measured value for position Pi, Z*(Pi) is the predicted value for position Pi, and Z∗ is
the total average of measured values. According to formula (1), formula (2), and formula
(3), the average error (ME), root mean square error (RMSE), and Nash–Sutcliffe efficiency
coefficient (NSE) of seven interpolation methods were compared. The interpolation method
with the smallest ME and RMSE and the closest NSE to one was selected as the best
interpolation method.

2.3.2. Calculating the Nugget Effect

The semi-variation coefficient expresses the geographic proximity of similarly quanti-
fied expressions [14].

Figure A1 shows that the semi-variation value r(h) increases with distance h because
the semi-variation function manifests the spatial correlation coefficient of things. These
things are more similar when they are closer to each other and have smaller half mutation
values. At greater distances, their similarity weakens, and the half mutation value increases.

When the sampling site distance is 0, the semi-variation function value should be 0.
However, when two sampling sites are so close because of measurement error and spatial
variation, the semi-variation function value is not 0; that is, these sites form a nugget.
The abutment value is when the sampling point increases with the distance h and the
semi-variation function r(h) reaches a relatively stable constant from the initial nugget
value, called the sill. The spatial correlation does not exist when the variant function value
exceeds the abutment value; that is, the functional value does not change with the sampling
site interval distance. The variable range is the interval distance between sampling sites
when the value of the semi-variation function is taken to reach the abutment value from an
initial tuber value.

The nugget effect, which is the ratio of the nugget to the sill, characterizes the strong
spatial correlation across samples. The smaller the nugget effect, the smaller the impact
of artificial mining on water table depth, and the greater the spatial correlation of water
table depth. The greater the nugget effect, the greater the influence of artificial mining on
water table depth, and the smaller the spatial correlation of water table depth. A nugget
effect <0.25 indicates that the variables are strongly influenced by natural structural factors
and have strong spatial correlations. A nugget effect between 0.25 and 0.75 indicates that
the variable is influenced by both natural structural and stochastic factors, and the spatial
correlation is moderate. When the nugget effect is >0.75, the variables are greatly affected
by stochastic factors and have a weak spatial correlation [29].

The nugget effect is calculated as

Nugget e f f ect =
Nugget

Sill
(4)
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2.3.3. Evaluation and Diagnosis of Groundwater Exploitation Intensity Based on Set
Pair Analysis

The connection number of set pair analysis is calculated, and the grade of exploitation
intensity determined to establish the evaluation and diagnosis model of groundwater
exploitation intensity. Then, subtraction sets are used to identify the main factors affecting
the intensity of groundwater extraction. The main steps are as follows:

1. Establishment of an evaluation index system and classification of regional groundwa-
ter extraction intensity

Because the local natural surface water resources in the study area are insufficient, have
low water quality, and cannot be used directly as a water supply, the regional water supply
is mainly groundwater and regenerated water. Groundwater composes about 70% of the
total water supply. Regenerated water is primarily used for ecological river use, accounting
for about 30%. The types of water used in the study area mainly include agricultural water,
industrial water, tertiary industry water, domestic water, and ecological water. Agricultural
water is used mainly in grain fields, gardens, facility agriculture, and fruit tree irrigation,
and the irrigation area of each type is taken as an evaluation indicator. The industrial
output is taken as an industrial water evaluation indicator. The tertiary industry output is
taken as a tertiary industry water evaluation indicator. The population number is taken
as a domestic water evaluation indicator. In addition, the number of wells in the study
area is used as a groundwater mining index of groundwater extraction intensity. Therefore,
considering practicality, hierarchy, and operability [30], an evaluation index system for
evaluating the intensity of groundwater extraction in the township and town areas of the
Daxing District and jurisdiction is constructed in this paper. The evaluation indicators of
this system are the population (10,000 people), total industrial output (100 million yuan),
tertiary industry output (100 million yuan), irrigated area (10,000 mu), vegetable area
(10,000 mu), facility agriculture area (10,000 mu), fruit tree area (10,000 mu), and number of
machine wells (10,000 eyes).

By referring to the results of previous studies [31] and comprehensively considering
economic, social, ecological, and other factors and expert opinions, the intensity of ground-
water extraction is classified into three levels, namely, Levels 1, 2, and 3, representing
“weak,” “medium,” and “strong” groundwater extraction intensity, respectively.

2. Calculation of connection numbers for evaluation samples

Equation (5) is used to calculate the connection number of evaluation samples. u1i
represents the number of ternary contacts of sample i. na, nb, and nc indicate the number of
evaluation indicators of sample i that are in Levels 1, 2, and 3, respectively. wj is the weight
value of the jth indicator. a1, b1, and c1 respectively denote the sample set pair degrees of
identity, divergence, and antagonism, and their values are v1i1, v1i2, and v1i3, respectively. I
and J denote the coefficient of difference and the coefficient of opposition, respectively.

u1i =
na

∑
j=1

wj +
na+nb

∑
j=na+1

wj I +
na+nb+nc

∑
j=na+nb+1

wj J = v1i1 + v1i2 I + v1i3 J =a1 + b1 I + c1 J (5)

3. Calculation of the connection number of the evaluation index

The number of contact u2ijk of the evaluation index must be calculated to represent the
affiliation degree between the evaluation index xij and the evaluation standard Skj, where i
is the ith sample, j represents the jth indicator, and k represents the rank number.

If the evaluation index is a positive indicator and S0j < xij ≤ S1j or it is a reverse
indicator and S0j > xij ≥ S1j, the index contact number is calculated using equation (6):

u2ij1 = 1

u2ij2 = 1− 2(S1j−xij)
(S1j−xij)

u2ij3 = −1

(6)
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If the evaluation index is a forward indicator and S1j < xij ≤ S2j or it is a reverse
indicator and S1j > xij ≥ S2j, the index contact number is calculated using Equation (7):

u2ij1 = 1− 2(xij−S1j)
S2j−S1j

u2ij2 = 1

u2ij3 = 1− 2(S2j−xij)
S2j−S1j

(7)

If the evaluation index is a forward indicator and S2j < xij ≤ S3j or it is a reverse
indicator and S2j > xij ≥ S3j, the index contact number is calculated using Equation (8):

u2ij1 = −1

u2ij2 = 1− 2(xij−S2j)
S3j−S2j

u2ij3 = 1

(8)

A forward indicator occurs when the rank value increases with the index value;
otherwise, it is a reverse indicator. S0j, S1j, S2j, and S3j are the minimum, critical value of
Levels 1 and 2, critical value of Levels 2 and 3, and maximum value of index j, respectively.

The degree of membership between the contact number of sample indicators and the
evaluation criteria can be expressed as follows:

v∗2ijk = 0.5 + 0.5u2ijk (9)

In calculating the contact number of sample indicators u2, Equation (9) is first normal-
ized, and the calculation formula is as follows:

v2ijk =
v∗2ijk

3
∑

k=1
v∗2ijk

(10)

u2i =
na

∑
j=1

wjv2ij1 +
na+nb

∑
j=na+1

wjv2ij2 I +
na+nb+nc

∑
j=na+nb+1

wjv2ij3 J = v2i1 + v2i2 I + v2i3 J = a2 + b2 I + c2 J (11)

In the formula, v2ijk represents the contact number component of the jth indicator
in the ith sample. u2i indicates the contact number of sample indicators i. a2, b2, and
c2 respectively represent the sample index set pairs’ degree of identity, divergence, and
antagonism, and their values are v2i1, v2i2, and v2i3, respectively.

4. Calculation of average contact number

The average contact number by sample is obtained by taking the contact number of a
sample and the contact number of an index to sufficiently extract sample information [26]:

vik =
(v1ikv2ik)

0.5

3
∑

k=1
(v1ikv2ik)

0.5
(12)

ui = vi1 + vi2 I + vi3 J (13)

In the formula, vik represents the mean number of contact components of the ith
sample. ui indicates the average number of contacts for the ith sample.

5. Determination of the intensity levels of underground extraction
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The values of groundwater extraction intensity between sample i and index j are
calculated separately using the level eigenvalue method [32], and the calculations are
as follows:

h(i) =
3

∑
k=1

vikk (14)

h(j) =
3

∑
k=1

v2ijkk (15)

In the formula, h(i) represents the value of groundwater extraction intensity for the ith
sample, and h(j) represents the groundwater extraction intensity value of the jth indicator.

6. Diagnosis of groundwater extraction intensity based on the number of linkages

The identification of key indicators affecting the intensity of groundwater extraction
uses subtraction set pair potentials [26].

According to the set pair analysis theory, the subtraction set pair potential for the
number of contacts essentially reflects the relative ascertainment status and developmental
trends of the study subjects. The subtraction set pair potential Sf(u) is defined as

s f (u) = a− c + ba− bc = (a− c)(1 + b) (16)

In the formula, sf(u) ∈ [−1, 1]. According to the principle of uniformity, the subtraction
set pair potentials can be divided into five grades: negative potential, sf(u) ∈ [−1, −0.6);
partial negative potential, sf(u) ∈ [−0.6, −0.2); balanced potential, sf(u) ∈ [−0.2, 0.2]; partial
positive potential, sf(u) ∈ (0.2, 0.6]; and positive potential, sf(u) ∈ (0.6, 1.0]. Positive and
partial positive potentials illustrate that research subjects favorably develop. Negative
and partial negative potentials illustrate that research subjects develop in an unfavorable
direction and thus require focusing on and regulating indicators of these negative states.
The homogeneous potential is an uncertain state.

The total adjacent subtraction is obtained by calculating the difference between the
degree of identity a and the degree of difference b, degree of opposition c, and degree of
difference b, which reflects developmental changes of things [33]. The specific calculation
procedure is as follows:

u3 = (a− c) + (b− c)(a− b) + (b− a)(c− b) (17)

In the formula, u3 ∈ [−2, 1.0625], where, when a = 0, b = 1, and c = 0, u3min = −2; when
a = b = 0, c = 1, and c = 1, u3 = −1; when a = 0.875, b = 0.125, and c = 0, u3max = 1.0625.
When u3 changed from −2 to 1.0625, the trend of the research object gradually changes
from inverse potential to potential, but the critical state cannot be determined.

The potential function can also judge the trend of the set toward the development of
events. Its value is also larger, indicating that the research subjects move toward the same
potential [28]. The specific calculation is as follows:

Shi(u4) = (a/b)/(b/c) = ac/b2 (18)

3. Results and Discussion
3.1. Results of the Interpolation Calculation of Water Table Depth

The parameters selected for each interpolation method to obtain the spatial distribution
characteristics of water table depth in the study area should have minimal errors. The
selection of model parameters and error accuracy is shown in Table 2.
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Table 2. Interpolation model parameters and interpolation error table of water table depth from 1986
to 2016.

Interpolation
Model

Data
Conversion

Maximum Number of
Predicted Points within

the Search Radius

Minimum Number of
Predicted Points within

the Search Radius

Variation
Function Mean (m) Root Mean

Square (m)

Nash-Sutcliffe
Efficiency

Coefficient

IDW no 15 10 / 0.1816 4.5373 0.70
GPI no / / / 0.0787 5.2072 0.81
LPI no 20 10 / 0.1309 3.9898 0.83

Tspline no 25 10 / 0.1348 4.2010 0.80
OK no 15 5 Globular model 0.0507 3.9577 0.89
SK no 16 5 Gaussian model 0.0517 4.0492 0.86
UK no 12 5 Globular model 0.0536 3.9865 0.88

Table 2 shows the deterministic interpolation method is less accurate than the geodesic
statistical interpolation method. Among all listed methods, IDW has the largest error and
a poor interpolation effect, which may be due to the existence of some extreme points in
the interpolation process [5,15]. Tspline, similar to IDW, is susceptible to the influence of
extreme value points [7,17], resulting in less effective interpolation, as shown by its ME and
RMSE. LPI, which is suitable for local spatial interpolation, shows high simulation accuracy
for short-range variations [7,11]. However, it predicts a large fluctuation of results for the
analysis of 30 older sequences in the water table depth; thus, its interpolation accuracy
is low. GPI is based on the sample data as a whole [5,7,14]. The higher the number of
interpolations, the better the interpolation effect. However, the complexity and error are
also relatively increased. This high number of interpolations also results in the largest
RMSE and a poor prediction effect.

The ME of OK, SK, and UK differ minimally, but the RMSE of the OK method is
less than those of SK and UK. Furthermore, the NSE of the geostatistical interpolation
method is closer to 1 than that of the deterministic interpolation method, indicating that the
geostatistical method is more reliable than the deterministic interpolation method. Among
the geostatistical interpolation methods, the NSE of the OK is higher than that of SK and
UK, indicating that OK has the highest reliability. Thus, the best interpolation method
selected is the OK method.

3.2. The Spatial-Temporal Distribution Rules of Water Table Depth

The water table depth in 1986, 1996, 2006, and 2016 is spatially interpolated using the
OK method.

Figure 2 shows that the overall water table depth in the Daxing region constantly
decreased. From 1986 to 2016, the water table depth of the regional subsurface decreased
from 8.1 to 17.60 m, with an average annual decline rate of 0.30 m. From 1986 to 1996, the
water table depth decreased from 8.1 to 10.80 m, with an average annual decline of 0.27 m.
From 1996 to 2006, the water table depth decreased from 10.80 to 17.34 m, with an average
annual decline of 0.65 m. From 2006 to 2016, the water table depth decreased from 17.34 to
17.60 m, with an average annual decline rate of 0.03 m.

From the above analysis, the period with the most significant decline rate of water
table depth in the Daxing District is from 1996 to 2006. This indicates that the groundwater
in this period is in a state of overdraft, resulting in a continuous decline of water table
depth. From 2006 to 2016, the water table depth was almost flat, although it decreased
slightly. This indicates that groundwater is basically in the state of mining–compensation
balance, which may be related to the extensive use of regenerated water locally. However,
environmental and geological problems caused by groundwater overmining remained
serious because of the previous continuous years of overdraft.
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Figure 2. Variation of water table depth from 1986 to 2016.

From 1986 to 2016, the decline rates of water table depth in the northern, central, and
southern Daxing District are 0.23, 0.49, and 0.18 m/a, respectively. These indicate that the
central region had the largest rate of water table depth decline, followed by the northern
and southern regions. Groundwater depression funnels can be found in the Qingyundian
and Beizangcun in the central region, with a continuous outward diffusion trend. Thus,
groundwater exploitation control in the region should be strengthened. The deepest water
table depth in the north is always higher than that in the middle and south, which may
be related to population distribution and the industrial layout in the Daxing District.
Compared with those in the northern and central regions, the water table depth and water
table decline rate in the southern region are relatively small. However, from 1986 to 2006,
the water table depth decreased from 6.04 to 11.82 m, and the water table depth continued
to decline. Thus, the southern region is also in a state of continuous overextraction.
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3.3. Spatial Variability Analysis of Groundwater Depth

In identifying the main factors causing the decline of water table depth, the nugget
effects of the three periods from 1986 to 1995, 1996 to 2005, and 2006 to 2016 are calculated
to analyze the spatial variability characteristics of water table depth using the OK method.

As shown in Table 3, the nugget effect of water table depth increased from 1986 to 2016,
indicating that its spatial correlation gradually weakened and that the influence of human
activities on water table depth increased. The nugget effect increased from 0.04 to 0.10 in
1986–1995 and 1996–2005. Compared with that in 1996–2005, the nugget effect increased
from 0.10 to 0.26 in 2006–2016 (greater than 0.25), indicating that human extraction activities
have become an essential factor affecting water table depth. Therefore, further evaluating
and diagnosing the existing groundwater exploitation intensity is necessary to reduce the
influence of human mining activities on the water table depth.

Table 3. Semi-variogram model parameters of water table depth from 1986 to 2016.

Name 1986–1995 1996–2005 2006–2016

Nugget value 1.88 5.85 28.03
Partial sill 47.06 45.53 78.95

Sill 48.94 51.38 106.98
Nugget effect 0.04 0.10 0.26

3.4. Determination of Groundwater Exploitation Intensity Levels and Identification of Key Control
Years in the Daxing District Using Set Pair Analysis

An index system and an evaluation standard level of groundwater exploitation in-
tensity in the Daxing District are determined according to the calculation method in
Section 2.3.3 to analyze the spatiotemporal variation of groundwater exploitation intensity
in the Daxing region from 2006 to 2016. The weight of each index is determined using the
entropy weight–AHP method, as shown in Table 4.

Table 4. Evaluation index, standard grade, and index weight of groundwater exploitation intensity
in the Daxing District.

No. Subsystem Evaluation Index Symbol
Evaluation Index

Index
Weight

Weak
(Level I)

Medium
(Level II)

Strong
(Level III)

1 Domestic water Population
(10,000) X1 ≤115.90 115.90–150.70 >150.70 0.1480

2 Industrial water Gross industrial production
(100 million yuan) X2 ≤109.28 109.28–202.48 >202.48 0.1476

3 Tertiary industry water GDP of the tertiary industry
(100 million yuan) X3 ≤189.81 189.81–338.37 >338.37 0.1586

4

Agricultural water

Irrigation area
(10,000 mu) X4 ≤18.42 18.42–19.35 >19.35 0.1132

5 Vegetable field area
(10,000 mu) X5 ≤3.04 3.04–3.15 >3.15 0.1141

6 Facility agricultural area
(10,000 mu) X6 ≤7.87 7.87–7.98 >7.98 0.0862

7 Fruit tree area
(10,000 mu) X7 ≤6.96 6.96–31.33 >31.33 0.0565

8 Number of
underground wells

Number of motorized wells
(10,000 eyes) X8 ≤1.17 1.17–1.23 >1.23 0.1788

The subtraction set pair potential, total adjacent subtraction, and the potential function
can all reflect the trend of event development. Thus, the potential function values and the
total adjacent subtraction of each sample are calculated using Equations (18) and (17), respec-
tively, to verify the rationality of the results of the subtraction set pair potential evaluation.

However, Equation (18) shows that the difference degree b of the potential function
cannot be 0; when the difference degree is 0, the potential function method cannot judge
the trend of event development. Equation (17) shows that the subtraction of all neighbors
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can judge the trend of an event. Still, it cannot judge the critical value of the situation where
it is located. Fortunately, the subtraction set pair potential can deal with situations where
the difference degree b is 0 and determines the critical value of the development trend
of events. Therefore, it is selected for evaluating the potential of groundwater extraction
intensity in this paper.

Figure 3 shows that the evaluation results using subtraction set pair potential, evalua-
tion level, potential function, and subtractive full neighbor connection number are basically
consistent. However, the evaluation level has a trend opposite to those of the other three
methods. With greater development intensity, the evaluation level increased, whereas the
other three methods decreased. Figure 3 shows that the groundwater development intensity
is largest in 2013 in the Daxing District and smallest in 2008. The groundwater development
intensity from 2006 to 2013 had an increasing trend year by year. However, it slightly eased
from 2013 to 2016. The average connection number of groundwater development intensities
for the whole region in 2010 and 2013 had partial negative potential and negative potential,
respectively. In 2006, 2009, 2011–2012, and 2014–2016, they had balanced potential. In
2007–2008, they had partial positive potential. These were consistent with the results of
the comprehensive review of the connection numbers. According to the evaluation results,
the average mining intensity of groundwater in the Daxing District from 2006 to 2016 was
medium (Level II) with a bleak gradual deterioration trend. The evaluation results of the
subtraction set pair potential in 2010 and 2013 were partial negative potential and negative
potential, respectively, and the comprehensive evaluation results were 2.31 and 2.45. The
years 2010 and 2013 were the groundwater exploitation intensity key control years.

Figure 3. Groundwater exploitation intensity in the Daxing District from 2006 to 2016.

3.5. Identification of Main Factors Affecting Groundwater Exploitation Intensity in the Daxing
District Based on Subtraction Set Pair Potential

The authors further identified the main factors affecting the intensity of groundwater
extraction and provided technical support for groundwater management and protection. In
this paper, the subtraction set of each evaluation index was used to diagnose and analyze
the jth index of the ith evaluation sample, which can be obtained as the main index that
caused the increase in groundwater extraction from 2006 to 2016 in the Daxing District.
As shown in Figure 4, in 2010, three indicators had partial negative potential: industrial
GDP, tertiary industry GDP, and irrigation area. In 2013, five indicators had negative
potential: irrigated land area, vegetable field area, facility agriculture area, fruit tree area,
and the number of wells. In Figs. 4 and 5, the trends of the subtracted set pair potential
(evaluation level) of the gross industrial product (X2), gross tertiary industrial product
(X3), and irrigation area (X4) are basically consistent between 2006 and 2016. However, the
subtraction set pair potentials (evaluation grade) of these indicators significantly decreased
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(increased) in 2010, which may be related to the adjustment of the industrial structure in
the Daxing District. The Daxing District began vigorous industrial and tertiary industrial
developments from 2009 to 2010. Its industrial and tertiary industry output values in
2010 increased by 16.12% and 17.54%, respectively, compared with those in 2009. This
rapid development resulted in the rapid increase of industrial water and tertiary industry
water consumption.

Figure 4. Subtraction set potential of each evaluation index in the Daxing District from 2006 to 2016.

The subtraction set pair potential (evaluation rank) of vegetable area (X5) from 2006 to
2016 had a continued decreasing (rising) trend from 2008 to 2013 (Figure 5). These indicate
that the vegetable area (X5) had an increasing trend at this stage, leading to increased
water consumption. The subtraction set pair potential (evaluation rank) of the facility
agricultural area (X6) continued to increase (decrease) from 2008 to 2012, indicating that it
had a decreasing trend at this stage. In 2013, the subtraction set pair potential appeared to
increase, indicating that facility agricultural area (X6) had an increasing trend compared
with that in 2012. The subtraction set pair potential (evaluation rank) of the fruit tree area
(X7) had an increasing (decreasing) trend from 2008 to 2011 and a decreasing (increasing)
trend from 2011 to 2013, indicating that it had an increasing trend in 2011–2013 compared
with that in the previous stage. From these analyses and from Figs. 2 and 3, the authors can
observe that the use of agricultural water has continuously decreased since 2014, which
is considerably related to the implementation of agricultural water policies in Beijing.
This indicates that the Daxing region has achieved good results in its water-saving social
construction practice. The subtraction set pair potential (evaluation grade) of the number
of wells (X8) showed an increasing (decreasing) trend from 2008 to 2012 and a decreasing
(increasing) trend from 2012 to 2014. This indicates that the number of wells (X8) had a
decreasing trend from 2008 to 2012, an increasing trend from 2012 to 2014, and a decreasing
trend since 2014. The initial increasing and the ensuing decreasing trends for the number of
wells (X8) indicate rapid population growth and the development of three major industries
from 2008 to 2014, which continuously increased the demand for groundwater. Conversely,
the number of opportunistic wells (X8) tended to decrease since 2014, which may be related
to the water-affecting evaluation and approval system implemented in Beijing city and the
rigor of new water use. It may additionally be related to the substitution of some subsurface
water sources after the north-to-south water diversion into Beijing.
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Figure 5. Evaluation grade of each evaluation index in the Daxing District from 2006 to 2016.

3.6. Research Implications and Limitations

The above analysis shows that from 1986 to 2016, the water table depth of the study
area has been continuously declining as a whole, indicating that groundwater is in a
state of continuous overexploitation and the impact of human exploitation on water table
depth is increasing. Through set pair analysis, the main factors causing the increase in
the groundwater exploitation intensity were further diagnosed and identified, showing
that the groundwater exploitation intensity in this area had a bleak, gradual deterioration
trend. The proposed research method can provide a method and theoretical reference
for the sustainable utilization of groundwater in the region where the groundwater is the
main source of water supply, providing a basis for the industrial regulation policy in this
region. However, there are still some limitations in this paper, such as groundwater quality
problems caused by the decline in the water table depth. Moreover, the best interpolation
method selected in this paper may only be suitable for this area. Therefore, when perform-
ing spatial interpolation in other areas, the actual situation must be considered to reselect
the optimal method.

4. Conclusions

The spatial variability of groundwater table depth in the study area is combined with
the evaluation and diagnosis of groundwater exploitation intensity in this paper. The
authors studied the impact of human extraction activities on the water table burial depth
and identified the main factors affecting the groundwater extraction intensity. This research
can provide theoretical support for sustainable groundwater use and industrial regulation
policies in areas with water shortages. The conclusions are as follows:

1. The OK method is selected as the best interpolation model after comparing the
prediction accuracies of seven interpolation methods for the water table burial depth
in the study area. The OK method had significantly higher accuracy than those of
SK and UK. Its ME did not differ much from those of the other methods, but it had a
significantly smaller RMSE.

2. The spatial interpolation of groundwater table depth in the study area from 1986 to
2016 is conducted using the OK method. The interpolation results showed that the
overall groundwater table depth in the Daxing District increased from 1986 to 2016.
The rate of groundwater decline was fastest from 1996 to 2006, with an annual decline
rate of 0.65 m. The region with the largest decline rate of groundwater table depth in
the Daxing District from 1986 to 2016 is the central area, followed by the northern and
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southern areas. Groundwater downwelling funnels occurred in Qingyundian and
Beizangcun in the central region, which tended to continuously spread outward.

3. The nugget effect from 1986 to 2016 was calculated using the geostatistical variation
function model, which showed that the nugget effect of groundwater table depth
increased continuously. The spatial correlation gradually weakened from 1986 to 2016.
From 1986 to 2005, the effect of natural structural factors on the burial depth played a
dominant role. From 2006 to 2016, human extraction activities have become important
factors affecting the burial depth of the water table.

4. The evaluation grade of groundwater exploitation intensity in the Daxing District
from 2006 to 2016 was calculated using set pair analysis. The subtraction set pair
potential was used to identify the key regulation years and the main factors affecting
groundwater exploitation intensity. The results show that the groundwater extraction
intensity in the Daxing area is moderate (grade II) with a bleak gradual deterioration
trend. The evaluation results in 2010 and 2013, the years of key regulation of ground-
water exploitation intensity, are partial negative potential and negative potential,
respectively. The comprehensive evaluation results are 2.31 and 2.45, respectively. In
2010, three indicators had partial negative potential: industrial GDP, tertiary industry
GDP, and irrigation area. In 2013, five indicators had negative potential: the irrigation
area, vegetable area, facility agriculture area, fruit tree area, and number of wells.

To conclude, in the process of urbanization in the study area, the influence of human
exploitation on the water table depth is increasing. Therefore, to reduce the impact of
human exploitation on the groundwater resources, the regional water table depth moni-
toring system must be improved to understand the dynamic changes in the water table
depth in time. Then, the regional total water consumption and the water consumption
of each water-using sector must be analyzed and evaluated to understand the change in
the groundwater exploitation intensity in that year and the main water-using sector that
caused the change in the groundwater exploitation intensity. Based on the above analysis
results of groundwater consumption and groundwater exploitation intensity, it provides
the basis for groundwater exploitation planning and industrial regulation policy in the
next year. Finally, unconventional water sources should be actively developed, and areas
with water diversion conditions should actively strive for external water sources to reduce
groundwater exploitation.
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Appendix A

The Appendix is as follows:

Figure A1. Curve of the semi-variation function.
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