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Abstract: Rosemary (Rosmarinus officinalis L.) is a plant with needle-shaped leaves. It is mainly
found in Mediterranean regions (Algeria, Morocco and Tunisia). Rosemary essential oil (EO) has
several therapeutic virtues that were widely studied. However, the use of this EO is restricted due
to its sensitivity to oxidation. Nanoencapsulation based on EO and polymers has been developed
as one of the promising techniques to overcome this limitation. In this study, the emphasis was on
optimizing the extraction and formulation of a food additive based on rosemary EO. In fact, the
results showed that rosemary EO extraction depended on the parameters of the extraction process,
and the optimum heating temperature and extraction time were determined using an experimental
design methodology. The parameters for extraction were chosen as follows: heating temperature
of 250 ◦C and a hydrodistillation time of 180 min. This optimization revealed that the maximum
oil yield can be obtained. Rosemary EO was characterized by a dominance of 1,8-cineole, camphor,
α-pinene, borneol and camphene as well as by high antioxidant and antibacterial capacities with
low acute toxicity. The obtained formulation of a stable rosemary EO powder can be used as a food
additive in several industrial applications.

Keywords: rosemary (Rosmarinus officinalis L.); essential oil; antioxidant properties; antibacterial
properties; toxicology; nanoencapsulation

1. Introduction

Consumer interest in natural food products is on the rise today. To limit the need
for synthetic additives, natural compounds derived from aromatic and medicinal plants,
herbs and spices are added to foods. Rosemary, Rosmarinus officinalis L., is a widely used
medicinal herb all over the world. It is without a doubt one of Tunisian’s most popular
plants, and it exists as a single species with numerous chemotypes. Rosemary is a natural
source of several metabolites with a wide range of biological activities. Rosemary has a
particular essential oil that gives it its distinctive characteristics. Rosemary essential oil
has anti-asthmatic [1], antidepressant [2], antinociceptive and anti-inflammatory proper-
ties [3]; and antirheumatic [4], antiseptic [5], antispasmodic [6], bronchodilator, diuretic [7],
gastroprokinetics [8], hepatoprotective [9] and antioxidant [10] properties. As a result,
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increasing essential oil yields has become a primary concern. In addition, the use of statis-
tical techniques such as the design of experiments makes this improvement increasingly
attainable. These methods, which allow for a small number of tests [11], allow the screening
of parameters from the most important to the least important, as well as the optimization
of operating conditions to achieve the desired outcome.

Several publications have highlighted the use of experimental designs in the optimiza-
tion of the hydrodistillation process. Some authors have proceeded straight to optimization
using response surface designs [12,13], while others have used other types of designs such
as full factorial designs [14,15]. This research study is a follow-up to a study that examined
the parameters influencing rosemary essential oil yields obtained through hydrodistilla-
tion [16]. It was also possible to identify a set of parameters that were thought to have an
effect on the reaction in trials of response surface optimization. Response surface designs
are the best advised for optimizing operational variables because this is an optimization
rather than a research study of the effect of each factor [17]. The improvement of these
variables has an impact on the process of rosemary EO extraction. After rosemary EO
extraction, the step of enhancing rosemary EO has been well studied. Several researchers
have proved the possibility of the direct use of rosemary EO in food formulation [18], other
studies have proposed a change of the physical aspect of rosemary EO to widen its field of
use and to reduce the risk of degradation of some molecules [19,20].

The nanoencapsulation of the active ingredient is the most popular method for preserv-
ing the characteristics of essential oils. The goal of encapsulation is to preserve the stability
of bioactive compounds during processing and storage, prevent unwanted interactions
and slow down degradation processes (e.g., oxidation or hydrolysis) until the product is
released to the desired sites [20,21]. Encapsulation can modify the physical characteristics
of the original product to facilitate its carriage, helps separate components of the mixture
that otherwise react with each other and provide adequate concentration and uniform
dispersion of an active agent [22].

To the best of our knowledge, there was no study focusing on optimizing the parame-
ters for the essential oil extraction from Tunisian rosemary aerial parts using methodology
design. Therefore, this study was summarized by looking for the optimal extraction
method of rosemary essential oil by using the response surface methodology (RSM). The
obtained essential oil was evaluated for its antioxidant, antibacterial, cytotoxicity and
anti-inflammatory activities. Finally, rosemary EO was subjected to a nanoencapsulation
treatment to facilitate its subsequent use in food applications.

2. Materials and Methods
2.1. Plant Material

Fresh aerial parts of wild rosemary (Rosmarinus officinalis var. typicus L.) were collected
in June 2016 from Zaghouan (Northeastern Tunisia, Altitude 176 m; Latitude: 36◦24′10′′

North; Longitude: 10◦08′34′′ East). The botanist Abderrazzak Smaoui of the Biotechnology
Center of Borj-Cedria (Tunisia) confirmed the herbarium specimen. A voucher specimen
was deposited in the herbarium of our laboratory (RO20160025). Fresh rosemary leaves
were left to dry at ambient temperature for eight days until reaching a constant mass of the
plant material. Then, they were ground to a fine powder (particle size fraction smaller than
0.5 mm) using a knife mill (Grindomix GM 200, Retsch, Germany).

2.2. Optimization of Essential Oil Extraction by Using Response Surface Methodology (RSM)

The extraction temperature (X1) and the extraction duration (X2) were two experi-
mentally accessible parameters that were optimized by this method. The entire two-level
factorial plan of the two parameters selected allowed for a simultaneous change of the two
parameters, allowing the collection of the most amounts of data on the system’s behavior
and the establishment of a mathematical model. [23]. The lower, medium and upper levels
of the parameters to be optimized were placed by considering the capacity of the instal-
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lation and drawing inspiration from previous studies [13,16,24,25]. The values of the real
and coded variables of the two parameters are gathered in Table 1.

Table 1. Parameter levels to optimize the extraction process of rosemary EO: temperature and time.

Independent Variables

Extraction Level Parameters

−1
(Minimum)

0
(Medium)

+1
(Maximum)

Extraction temperature in ◦C (X1) 190 225 260
Extraction time in minute (X2) 35 137.5 240

The variation in EO yield was expressed by the first-order polynomial function in X1
and X2.

Rosemary EO was extracted in triplicate from 100 g of dried rosemary leaf powder
using the hydrodistillation by Clevenger apparatus (Sigma-Aldrich, L’lsle d’Abeau Chesnes,
France) in 1500 mL of distilled water for 250 min. The condensed vapor obtained resulted in
the essential oil, which was separated from the hydrolate (aromatic waters) by decantation
after adding magnesium sulfate (MgSO4, Sigma-Aldrich, Oakville, ON, Canada) to remove
traces of water. The essential oils were directly collected without adding any solvent. Yield
percentage was calculated as weight (w/w) of essential oil per 100 g of dry plant matter.
The essential oil was stored in opaque bottles (Sigma-Aldrich, L’lsle d’Abeau Chesnes,
France) at 4 ◦C.

2.3. Characterization of Essential Oils by Chromatographic Analysis
2.3.1. GC-FID Quantification Method

The analysis was carried out on a Hewlett-Packard 6890 chromatograph (Agilent
Technologies, Palo Alto, CA, USA) equipped with an electronic pressure control injector,
a flame ionization detector and an HP Innowax (polyethylene glycol capillary, Agilent
Technologies, Palo Alto, CA, USA) column (30 m × 0.25 mm; 0.25 µm) [10].

2.3.2. Identification of Volatile Compounds by GC/MS

GC/MS coupling made it possible to identify volatile compounds [14]. The released
ions will be classified according to their mass/charge ratio (m/z). The analysis is carried
out by a chromatograph coupled to an Agilent (Agilent Technologies, Palo Alto, CA, USA)
mass spectrometer (5975C inert XL MSD) and electron impact ionization (70 eV). An HP-
5MS capillary column (30 m × 0.25 mm, 0.25 µm film thickness) coated with 5% phenyl
methyl silicone and 95% dimethylpolysiloxane (Agilent Technologies, Palo Alto, CA, USA)
was used.

2.4. Methods for Evaluating the Activity of Essential Oils
Determination of Antioxidant Capacity

The percentage inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical degra-
dation was determined by spectrophotometry according to Hatano et al. [26]. The lipid
peroxidation inhibitory activity was performed by the measurement of the inhibitory power
of β-carotene bleaching according to the method of Kaur and Kapoor [27]. The total an-
tioxidant capacity was established by the measurement of reducing power by the Ferric
Reducing Antioxidant Power assay (FRAP) method according to Benzie and Strain [28].
The measurement of the trapping capacity of the cationic radical ABTS•+ (2,2′-azino-bis-3-
ethylbenzthiazoline-6-sulphonic acid) was determined by spectrophotometry according
to Re et al. [29]. For microcapsules, antioxidant capacity was measured in recovered hex-
ane from the aqueous phase after the rehydration of spray-dried microcapsules [30]. All
measurements of DPPH, FRAP, β-carotene bleaching and ABTS assays (Sigma-Aldrich,
Oakville, ON, Canada) were carried out in triplicate.
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2.5. Antibacterial Activity of Essential Oil

The antibacterial activity of rosemary EO was performed by disk diffusion [31]. The
antibacterial activity of rosemary EO has been tested on Gram-negative strains such as
Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Enterobacter aerogenes
(ATCC 13048), Campylobacter jejuni (ATCC 33560) and Salmonella enterica (ATCC 14028)
as well as Gram-positive strains such as Bacillus subtilis (ATCC 6051), Enterococcus faecalis
(ATCC 29212) and Staphylococcus aureus (ATCC 29213). These bacterial strains were obtained
from the microorganism collection of the laboratory of Aromatic and Medicinal Plants,
CBBC, Tunisia.

The bacterial suspensions were prepared in NaCl 0.85% (BioMérieux, Marcy-l’Etoile,
France) adjusted to a concentration of 0.5 McFarland to yield approximately 108 colony-
forming units (CFU)/mL, and 100 µL of each suspension was inoculated on Mueller-Hinton
(MH) agar. For the C. jejuni strain, defibrinated sheep blood 5% (BioMérieux, Marcy-l’Étoile,
France) was added to the MH agar. Then, sterile filter paper discs (Sigma-Aldrich, L’lsle
d’Abeau Chesnes, France) 6 mm in diameter were placed on the surface of the plate of
MH agar previously inoculated and 10 µL of rosemary EO was added to the disks. The C.
jejuni plate was incubated at 37 ◦C under microaerophilic conditions (85% nitrogen, 10%
carbon dioxide, 5% oxygen) using GENBag microaer (BioMérieux, Marcy-l’Étoile, France).
The other bacterial plates were covered and incubated for 24 at 37 ◦C. The diameter of the
inhibition zone (mm) was measured by taking into account the initial diameter of the discs.
The sterile disc was used as a negative control and the antibiotic streptomycin (10 µL/disc)
was used as a positive control. All experiments were performed in triplicate.

The minimum inhibitory concentration (MIC) was determined by microdilution tech-
nique [32]. The bacterial suspension was prepared using a dilution of the standard-
ized suspension (0.5 McFarland meaning 108 CFU/mL) for bacterial strains to yield
5 × 105 CFU/mL. Serial dilutions of rosemary EO in dimethyl sulfoxide (DMSO, Sigma-
Aldrich, Oakville, ON, Canada) were prepared to achieve various concentrations (400, 200,
100, 50, 25 and 12.5 mg/mL). In six test tubes, 100 µL of each dilution of rosemary EO,
400 µL of MH broth (BioMérieux, Marcy-l’Etoile, France) and 500 µL bacterial suspension
was added, obtaining final inoculums of approximately 0.5× 105 CFU/mL. For the C. jejuni
strain, defibrinated sheep blood 5% (BioMérieux, Marcy-l’Étoile, France) was added to MH
broth, and it was incubated at 37 ◦C under microaerophilic conditions (85% nitrogen, 10%
carbon dioxide, 5% oxygen) using GENBag microaer (BioMérieux, Marcy-l’Étoile, France).
The other bacterial tubes were covered and incubated for 24 h at 37 ◦C. MIC was defined as
the lowest concentration of each substance that was able to inhibit bacterial growth. All
experiments were performed in triplicate.

To determine the minimum bactericidal concentration (MBC), 10 µL culture from
each tube, which did not show an apparent growth as confirmed by MIC determina-
tion, was taken and plated on a Columbia agar supplemented with 5% sheep’s blood
(BioMérieux, Marcy-l’Étoile, France). The C. jejuni plate was incubated at 37 ◦C under
microaerophilic conditions (85% nitrogen, 10% carbon dioxide, 5% oxygen) using GENBag
microaer (BioMérieux, Marcy-l’Étoile, France). The other bacterial plates were covered
and incubated for 24 h at 37 ◦C. MBC was defined as the lowest essential oil concentration
able to reduce and kill more than 99.9% of the initial inoculums [32]. All experiments were
performed in triplicate.

2.6. Acute Toxicity of Rosemary Essential Oil

According to Ecobichon [33], acute toxicity is considered as a form of induced toxi-
city, which results from short-term exposure following the rapid absorption of the toxic
substance by an administration of single or multiple doses not exceeding 24 h. Three
groups of C57BL/6 mice (25–29 g, n = 3 per group) received different EO doses (10, 50 and
150 mg/kg body weight (BW)) twice daily at the same time every day for 15 days, versus
a control group that received oral distilled water. The observations of toxic symptoms
and mortality rate were achieved within 2 weeks. After this period, mice were sacrificed,
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and the blood was subjected to biochemical analysis by assaying biochemical markers
such as aspartate amino transferase (AST), alanine amino transferase (ALT), alkaline phos-
phatase (ALP), blood uric nitrogen (BUN), total protein (TP), glucose (GLU), total bilirubin
(T-BIL), creatinine (Crea) and total cholesterol (T-CHO). All experiments were performed
in triplicate.

2.7. Microencapsulation Procedure

The nanoencapsulation was carried out according to the method of Hou et al. [34]
using a solution of an emulsion of 1% EO with a quantity of 1% of Tween 80 (Sigma-Aldrich,
Oakville, ON, Canada). Then, the mixtures were mixed with a high-speed homogenizer
(Wilmington, DE, USA) at 10,000 rpm for 5 min. Then, the encapsulating agent (Maltodex-
trin, Sigma-Aldrich, Oakville, ON, Canada) was added at 5% (w/v) concentration. The
mixture was introduced into the Buchi mini-B-290 spray dryer (Buchi, Flawil, Switzerland)
to evaporate water. The inlet and outlet air temperatures were 120 and 52 ◦C, respectively.
A feed flow of the solution to be dried at 2 mL/min, a spray air flow rate of 742 L/h and a
pressure drop of 1.35 bar were used. The vacuum cleaner had a gas flow of 25 m3/h. To
maintain the homogeneity of the solution, and the suspensions were gently shaken using
magnetic stirring. After spray drying, the powder was collected, weighed and stored in a
closed metal bag under a vacuum [35].

2.8. Physicochemical Characterization of the Active Nanoemulsion

According to Yamamoto et al. [36], the particles sizes and zeta potential of the sus-
pension were measured by Dynamic Light Scattering measurements using a zetasizer
(Zetasizer Nano-ZS/Malvern Instruments, UK) after proper dilution. The zeta potential,
defined as the charge of a particle at the level of the shear plane, is also the measure of
the intensity of the electrostatic or electrical repulsion/attraction between particles. This
parameter provides an essential method to predict nanoemulsion stability. This analysis is
carried out with a Zetasizer Nano-ZS/Malvern Instruments (UK).

2.9. Statistical Analysis

To establish the average values and standard errors, the results were statistically
analyzed using the Statistica v. 7.0 program (StatSoft Inc., Oklahoma, USA). A one-way
ANOVA was utilized with Tukey’s post hoc test and a significance level of p = 0.05%.
Significance was defined as a probability level of p < 0.05%. The construction and the
statistical analysis of the experimental were designed with the NemrodW (LPRAI, version
2000) software.

3. Results and Discussion
3.1. Optimization of Essential Oil Extraction by the Response Surface Methodology (RSM)
3.1.1. Design of Experiment Methodology

To determine the effect of the extraction temperature (X1) and time (X2) as well as
their interaction on the extraction EO yield (Y1), the response surface methodology (RSM)
by adopting the plan of the central composite type was applied. In addition, the main
objective resided in the determination of the optimal conditions for EO extraction with a
good yield. Based on the preliminary study, it was determined that the domain of each
factor influenced the response (Y1: EO extraction efficiency) (Table 1).

Table 2 illustrates the 13 tests carried out according to the “central composite plane”
model describing the combination between the factor levels. It was used extraction temper-
atures ranging from 200 to 250 ◦C, extraction time from 60 to 180 min and EO yield from
1.2 to 2.70%.
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Table 2. Matrix of experiments carried out according to the two-factor model (central compos-
ite plane).

Experiments Extraction Temperature
(X1 in ◦C)

Extraction Time
(X2 in Minutes)

Yield of EO
(Y1 in %)

1 200.00 60.00 1.20
2 250.00 60.00 1.20
3 200.00 180.00 1.60
4 250.00 180.00 2.70
5 200.00 120.00 1.70
6 250.00 120.00 2.50
7 225.00 60.00 1.00
8 225.00 180.00 2.47
9 225.00 120.00 1.88
10 225.00 120.00 2.01
11 225.00 120.00 1.75
12 225.00 120.00 1.85
13 225.00 120.00 1.99

3.1.2. Factor Signification

The significance of the two factors is provided in Table 3. Results showed that the
extraction temperature (X1) was expressed by the term β1 with a significant probability
with a positive coefficient (0.317). Similarly, the extraction time (X2) was expressed by
the term β2 with significant probability and positive coefficient (0.562). These positive
coefficients clearly showed that efficiency depended on the heating temperature and the
extraction time. The interaction between these two factors was marked by the term β12
possessing a positive coefficient (0.275). All those values were significant at p < 5%.

Taking into account only the coefficients with significant factors, the model is written
as follows.

EO yield = 1.932 + 0.317× 1 + 0.562× X2− 0.288× X2× X2
+0.275× X1× X2

Table 3. Coefficient significance.

Terms Coefficients Standard Error T Pr > |t|

β0 1.932 0.071 27.22 ***
β1 0.317 0.070 4.54 **
β2 0.562 0.070 8.05 ***
β11 0.077 0.103 0.74 48.6%
β22 −0.288 0.103 −2.80 *
β12 0.275 0.085 3.22 *

β0, β1, β2, β11, β22 and β12 represent the coefficients of the quadratic equation proposed by the mathematical
model; T: t-test; Pr > |t| probability value or observed significance level. *,**,*** represent the significance levels
at 95; 99; 99.5%, respectively.

3.1.3. Variance Analysis (ANOVA)

To validate the model, the analysis of variance was performed. The examination
of Table 4 shows that “F-ratio” regression corresponded to the ratio between the mean
square of the regression (0.606) and the residue (0.029) equal to 20.74 (F Regression), which
was greater than the value-tabulated “F-ratio” tabulated (5. 7.0.05) = 3.97 < 20.740 with a
probability that was less than 5%. Thus, the factor coefficients of the postulated model were
significant. In addition, “F-ratio” validity corresponds to the ratio between the mean square
of the validity (0.053) and the experimental error (0.011). It was equal to 4.658 (F Validity),
which was less than the tabulated value “F-ratio” (3.4.0.05) = 6.59 > 4.658; (p > 5%). This
confirmed the validity of the postulated model.
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Table 4. Analysis of variance.

Source of
Variation

Sum of
Squares DDL Average of

Squares F Pr > F

Regression 3.030 5 0.606 20.740 ***
Residue 0.204 7 0.029
Validity 0.159 3 0.053 4.658 8.7%

Error 0.045 4 0.011
Total 3.235 12

R2 = 0.937
R2A = 0.892

DDL: degree of freedom; F: fisher test; Pr > F: probability value or observed significance level; R2: determination
coefficient; R2A: adjusted regression. *** represents the significance level at 99.5%.

3.1.4. Determination of the Optimal Conditions by Iso-Response Curves

To determine the optimal conditions for extracting EOs with a good yield, the method-
ology of response surfaces was used. Figure 1 shows the iso-reponse curves resulting
from the interaction between the two significant factors (extraction temperature (X1) and
extraction time (X2)). It was found that at 225 ◦C and by increasing extraction times, the
extraction yield of rosemary EO considerably increased, and it can reach 2 g/100 g dry
weight (DW). In this context, the optimal extraction temperature was 250 ◦C for an extrac-
tion time of 180 min. allowing an obtained extract to be rich in EOs with a predicted yield
of around 2.87 g/100 g DW.
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3.1.5. Selected Extraction Parameters and Their Effects on Rosemary Essential Oil Yield

After an appropriate choice of two variables, 13 experiments resulted in a second-
degree mathematical model linking the response (yield of EOs (Y1)) to the factors and
allowing good control of the extraction process. After performing the tests and analyzing
the data, the study determined the optimal conditions necessary for obtaining a better
yield of rosemary EO. These conditions were a heating temperature of 250 ◦C and a time
of 180 min. According to the observed results given by using the composite centred
experiment design, it was shown that the ideal yield of rosemary EO obtained was between
2.24 and 2.41 g/100 g DW. To confirm the predicted responses proposed by the experiment’s
design model, several experiments of EO extraction were performed by the optimization of
the following parameters, as indicated in Table 5. Results showed that the predicted yield
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of rosemary EO was between 2.70 and 2.78 g/100 g DW. This latter was similar to that of
the experimental yield with 2.85 ± 0.02 g/100 g DW. In fact, it can be mentioned that the
experimental design model was valid, and the optimal extraction conditions were reached.
Similar results were obtained by Fadil et al. [16] who optimized the EO extraction by a
design of experiment model and achieved a reliable rosemary EO yield (2.3 ± 0.05 g/100 g
DW).

Table 5. Influence of the parameters optimized by design of the experiment on EO yield.

Parameters Fixed Optimized Predicted Yield
(g/100 g DW)

Experimental Yield
(g/100 g DW)

Leaf drying time +
2.70–2.78 2.85 ± 0.02Extraction temperature +

Extraction time +

3.2. Characterization of Rosemary Essential Oils by Chromatographic Analysis

The EO yield of rosemary leaves was 2.85% based on dry weight. On the basis of
their mass spectra features and retention indices, 33 volatile components were identified
(Table 6).

Table 6. Chemical composition of Tunisian rosemary essential oil.

No. Volatiles Compounds RIa RIb Free EO (%) Recovered EO (%)

1 Tricyclene 919 923 0.49 ± 0.08 a ND
2 α-Thujene 929 931 0.08 ± 0.01 a ND
3 α-Pinene 934 938 12.34 ± 1.83 a 7.17 ± 0.83 b
4 β-Pinene 981 983 0.66 ± 0.1 b 0.76 ± 0.1 a
5 Camphene 952 953 11.63 ± 2.03 a 8.66 ± 0.03 b
6 β-Myrcene 988 991 0.3 ± 0.06 a 0.36 ± 0.06 a
8 α-Terpinene 1018 1084 0.12 ± 0.04 a 0.16 ± 0.04 a
7 α-Phellandrene 1024 1026 0.04 ± 0.01 a ND
9 p-Cymene 1026 1024 3.04 ± 0.33 a 1.33 ± 0.33 b
10 1,8-Cineole 1033 1029 25.26 ± 7.71 b 29.15 ± 7.71 a
11 γ-Terpinene 1059 1058 0.21 ± 0.05 a 0.26 ± 0.05 a
12 α-Terpinolene 1084 1084 0.1 ± 0.05 a 0.15 ± 0.05 a
13 trans-sabinene hydrate 1089 1070 0.04 ± 0.01 a ND
14 Linalol 1098 1089 0.1 ± 0.03 a 0.13 ± 0.03 a
15 D-Fenchyl alcoho 1112 1110 0.11 ± 0.02 a 0.13 ± 0.02 a
16 α-Campholenal 1127 1130 0.14 ± 0.02 a 0.16 ± 0.02 a
17 Borneol 1165 1169 5.05 ± 0.538 b 6.59 ± 0.538 a
18 Terpinene-4-ol 1178 1179 0.86 ± 0.19 b 1.05 ± 0.19 a
19 α-Terpineol 1185 1189 1.99 ± 0.36 b 2.35 ± 0.36 a
20 Camphor 1145 1143 29.46 ± 4.92 b 31.92 ± 4.92 a
21 Bornyl acetate 1285 1291 1.76 ± 0.37 b 2.13 ± 0.37 a
22 α-Copaene 1395 1391 0.21 ± 0.04 a 0.25 ± 0.04 a
23 Methyl-eugenol 1401 1405 0.25 ± 0.04 a 0.29 ± 0.04 a
24 α-Humulene 1440 1440 0.47 ± 0.06 0.53 ± 0.06
25 Aromandendrene 1440 1439 0.22 ± 0.03 a 0.25 ± 0.03 a
26 trans-Caryophyllene 1446 1454 1.13 ± 0.15 a 1.28 ± 0.15 a
27 α-Amorphene 1475 1478 0.09 ± 0.01 a ND
28 α-Muurolene 1489 1487 0.11 ± 0.03 a 0.14 ± 0.03 a
29 γ-Muurolene 1502 1997 0.24 ± 0.05 a 0.29 ± 0.05 a
30 δ -Cadinene 1512 1513 0.49 ± 0.08 a 0.57 ± 0.08 a
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Table 6. Cont.

No. Volatiles Compounds RIa RIb Free EO (%) Recovered EO (%)

31 γ-Cadinene 1532 1530 0.24 ± 0.03 a 0.27 ± 0.03 a
32 Caryophyllene oxyde 1578 1582 0.09 ± 0.01 a ND
33 α-Eudesmol 1652 1652 1.7 ± 0.21 a 1.91 ± 0.21 a

Elution order with nonpolar column (HP-5MS). RIa: retention index calculated on HP5-MS; RIb: retention index
according to the literature. ND: non detected. The values shown in the table are given as mean ± SD (n = 3).
One-way ANOVA followed by Duncan’s multiple range test was used. Values with the same letters in rows did
not show significant differences at p < 0.05.

The main components of rosemary EO were 1,8-cineole (25.26± 7.71%), camphor (29.46±
4.92%), α-pinene (12.34 ± 1.83%), camphene (11.63 ± 2.03%) and borneol (5.05 ± 0.538%).
Figure 2 shows the chemical structures of some of the main components.
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The present research revealed that 1,8-cineole and camphor chemotype occurred in
Tunisian rosemary. The chemotype of 1,8-cineole was comparable to that previously de-
scribed for Tunisian rosemary [37–39]. The heterogeneity of the qualitative and quantitative
composition of rosemary EO was attributed to both intrinsic (genetics and phonological
stages) and extrinsic (climate, growing circumstances, extraction processes, etc.) factors [39].
The chromatographic analysis of rosemary EO extracted from nanocapsules showed that
it retained the same proportions of the majority compounds. These results showed that
rosemary EO encapsulation retained the biological activities of rosemary EO. Similar results
were proven by Hadian et al. [40], Karadağ et al. [41] and Silva-Flores et al. [42].

3.3. Antioxidant Activity of Rosemary Essential Oil

The antioxidant activity of rosemary essential oil was evaluated using three meth-
ods, namely DPPH, FRAP and β-carotene bleaching assays (Table 7). Although the three
assays produced quantitatively diverse antioxidant activity results, rosemary EO pos-
sessed a significant antioxidant activity. The IC50 values of DPPH were in the range
of 3.87 ± 0.21 µg/mL for free EO and 4.21 ± 0.54 µg/mL for recovered EO. The to-
tal antioxidant capacity of Eos was assessed by the FRAP assay. The values did not
significantly differ between free (IC50 = 3.88 ± 0.02 µg/mL) and recovered EO values
(IC50 = 4.11 ± 0.02 µg/mL). The results of β-carotene bleaching activity of rosemary free
(IC50 = 20.80 ± 1.22 µg/mL) and recovered EO (IC50 = 23.02 ± 1.45 µg/mL) were compati-
ble with those of DPPH. This is in accordance with previous studies showing the potential
of the combined emulsification and spray drying techniques to encapsulate rosemary leaf
extract [30]. Similar results were obtained concerning the scavenging activity of rosemary
EO [43–45].
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Table 7. Antioxidant activity of rosemary essential oil.

Antioxidant Activity Free EO Recovered EO

DPPH scavenging activity
(IC50: µg/mL) 3.87 ± 0.21 a 4.21 ± 0.54 a

FRAP activity (FRAP IC50: µg/mL) 3.88 ± 0.02 a 4.11± 0.02 a
β-Carotene bleaching activity

(IC50: µg/mL) 20.80 ± 1.22 a 23.02± 1.45 a

The values shown in this table were the mean of three replicates and given as mean ± SD (n = 3). One-way
ANOVA followed by Duncan’s multiple range test was used. Values with the same letters in rows did not show
significant differences at p < 0.05.

3.4. Antibacterial Activity of Rosemary Essential Oil

The evaluation of the antimicrobial activity showed that rosemary EO and its main
constituents (α-pinene, camphene, 1,8-cineole, borneol and camphor) possessed significant
antibacterial power (Figure 3).
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Indeed, rosemary EO provoked an inhibition of the growth of Gram-negative bacteria
C. jejuni, S. enterica, P. aeruginosa, E. aerogenes and E. coli with inhibition diameters (ID)
of the order of 15.65 ± 0.36 mm; 19.05 ± 0.24 mm; 18.22 ± 0.28 mm; 20.75 ± 0.18 mm;
and 27.30 ± 0.56 mm, respectively. These diameters are greater than those of the positive
control streptomycin (ID = 14 ± 0.77–15.50 ± 0.75 mm). In contrast, the IDs of Gram-
positive bacteria B. subtilis (ID = 11.99 ± 0.48 mm), S. aureus (ID = 13.88 ± 0.68 mm) and
E. faecalis (ID = 9.23 ± 0.58 mm) were lower than those of streptomycin (ID = 14 ± 0.77–
15.50 ± 0.75 mm). In fact, EOs act to inhibit the growth of bacterial cells and also inhibit
the production of toxic bacterial metabolites. The results showed that rosemary EO had a
more powerful effect on Gram-negative bacteria than Gram-positive bacteria. In fact, this
effect could be due to differences in cell membrane compositions. According to Salamon
et al. [46], Egyptian rosemary EO exhibited lower antibacterial activity than Tunisian EO for
E. coli (ID = 8.50± 0.29 mm). Additionally, Bosnić et al. [47] reported that Bosnian rosemary
EO has significant antibacterial activities against E. coli (ID = 13 mm) and P. aeruginosa
(ID = 9 mm). Recent studies had shown that this antibacterial activity was mainly due to
the presence of high contents of 1.8 cineole and camphor [48,49]. Generally, it is believed
that the antibacterial efficacy of an essential oil is not entirely associated with a specific
constituent but rather a synergistic effect of all of the constituents contained [50].
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In our study, the ratio of MBC/MIC was also determined to examine the antibacterial
activity of rosemary EO and its main constituents. The efficacy of an antibacterial agent
is dependent on MIC and MBC values and their ratios [51]. An antibacterial agent is
regarded as bactericidal if the MBC value is not more than four times the MIC value [52].
From Table 8, it can be observed that rosemary EO and its main constituents possessed
MBC/MIC values inferior or equal to 2. These results revealed that rosemary EO and its
main constituents had a strong bactericidal effect comparable to streptomycin. Regarding
MBC/MIC values, rosemary essential oil had lower antibacterial activity compared to its
main compounds. Similar results were obtained by Bernardes et al. [53], who determined
the antibacterial activity of rosemary EO and its major components against oral pathogen
(E. faecalis, S. salivarius, S. mitis, S. mutans, S. sobrinus and S. sanguinis).

Table 8. Antibacterial activity of rosemary essential oil and its main compounds tested by microdilu-
tion method (MIC and MBC in mg/mL).

α-Pinene Camphene 1,8-Cineole Borneol Camphor Rosemary EO Streptomycin

Bacterial Strains MBC/MIC MBC/MIC MBC/MIC MBC/MIC MBC/MIC MBC/MIC MBC/MIC

Gram-negative bacteria

C. jejuni 1.20 1.40 1.16 1.14 1.25 2 1.5
S. enterica 1.16 1.50 1.25 1.25 1.33 2 2

P. aeruginosa 1.25 1.33 1.14 1.12 1.25 2 2
E. aerogenes 1.14 1.40 1 1.20 1.33 2 2

E. coli 1.25 1.28 1.11 1.33 1.20 2 1.25

Gram-positive bacteria

B. subtilis 1.14 1.11 1.16 1.14 1.16 1.11 1.66
S. aureus 1.25 1.12 1.20 1.16 1.16 2 1.33
E. faecalis 1.12 1.20 1.14 1.12 1.25 1 1.50

MIC: minimum inhibitory concentration. MBC: minimum bactericidal concentration.

3.5. Acute Toxicity of Rosemary Essential Oil in Mice

The acute toxicity was checked when the EO was administered twice/day at the
same time every day for 15 days to batches (n = 3) of mice by gavage at three doses/day
(10mg (D1), 50 mg (D2) and 150 mg/kg BW (D3)). Table 9 shows the blood analysis for
the determination of biochemical markers as aspartate amino transferase (AST), alanine
amino transferase (ALT), alkaline phosphatase (ALP), blood uric nitrogen (BUN), total
protein (TP), glucose (GLU), total bilirubin (T-BIL), creatinine (Crea) and total cholesterol
(T-CHO). The analysis of the acute toxicity results showed that rosemary EO had no toxicity
in the subjects treated for 15 days. There were no significant differences between the
different groups compared to the control group (p < 0.005). In addition, no evidence of
physiological deterioration or abnormal behaviour was reported for animals. Additionally,
no symptoms occurred, and no signs of death were reported during treatment. Indeed,
these results were in agreement with Hamed et al. [54], who found that the administration
of 100 mg of Tunisian rosemary extract did not affect biochemical markers such as Crea
(1.99 ± 0.3 against a control 2.31 ± 0.4 mmol/L) and BUN (0.18 ± 0.05 against a control
0.17 ± 0.03 mmol/L). These authors also reported that the oral administration of rosemary
EO (500 mg/kg) showed no signs of toxicity and no mortality in any of the mice treated
for 15 days during the observation period. Therefore, the oral lethality 50 (LD50) dose of
rosemary EO was greater than that of 150 mg/kg.
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Table 9. Acute toxicity of essential oil in mice.

Biochemical Markers D1 D2 D3 Control

Amino transferase (U/L) 53.96 ± 0.81 a 54.15 ± 0.81a 54.23 ± 0.81 a 53.99 ± 0.81 a
Alanine amino transferase (U/L) 42.84 ± 0.25 a 42.75 ± 0.25 a 42.74 ± 0.25 a 42.60 ± 0.25 a

Alkaline phosphatase (U/L) 264.48 ± 11.24 a 263.95 ± 11.01 a 263.89 ± 19.99 a 263.98 ± 11.13 a
Blood uric nitrogen (U/L) 8.68 ± 0.06 a 8.66 ± 0.06 a 8.66 ± 0.06 a 8.595 ± 0.064 a

Total protein (mg/dL) 65.24 ± 0.55 a 64.91 ± 0.55 a 65.10 ± 0.55 a 64.99 ± 0.55 a
Glucose (mg/dL) 5.69 ± 0.02 a 5.73 ± 0.02 a 5.72 ± 0.02 a 5.70 ± 0.02 a

Total bilirubin (mg/dL) 1.97 ± 0.01 a 1.96 ± 0.007 a 1.95 ± 0.01 a 1.98 ± 0.01 a
Creatinine (mg/dL) 58.79 ± 0.03 a 58.77 ± 0.03 a 57.99 ± 0.03 a 58.86 ± 0.03 a

Total cholesterol (mg/dL) 37.52 ± 0.14 a 36.54 ± 0.14 a 37.44 ± 0.14 a 37.47 ± 0.14 a

The values shown in the table are given as mean ± SD (n = 3). One-way ANOVA followed by Duncan’s multiple
range test was used. Values with the same letters in rows do not show significant differences at p < 0.05. D1, D2
and D3 represent the three doses/day (ranging from 10mg, 50 mg and 150 mg/kg BW, respectively).

3.6. Physicochemical Characterization of the Active Nanoemulsion

Using the polysaccharide’s natural shell material as maltodextrin and Tween 20, very
small sized encapsulated oil particles of the order of 256.56 nm were observed. Furthermore,
the data obtained from the emulsion stability diagram revealed that using maltodextrin
as the coating support and Tween 20 as the surfactant allowed for the creation of an
emulsion with a zeta potential of the order of −37.31 mV (Figure 4). Likewise, carvacrol
encapsulated with chitosan revealed an average diameter particle size ranging between
532.5 and 716.6 nm [55]. Esmaeili and Asgari [56] had used essential oils to prepare
the ionic gelation process and found that nanoparticles had an average diameter of 236–
721 nm. Particle size and zeta potential were the key conditions to have a successful drug
delivery [57].
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4. Conclusions

Extraction optimization was conducted by using the response surface methodology
(RSM). It showed that the obtained rosemary EO exhibited good antioxidant and antibac-
terial activities with a very low toxicological profile. The antimicrobial activity and the
acute toxicity of the optimized EO were evaluated before the encapsulation process, and
it was demonstrated that the EO was characterized by a considerable antibacterial prop-
erty against Gram-negative bacteria C. jejuni, S. enterica, P. aeruginosa, E. aerogenes and E.
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coli. Likewise, rosemary EO had low-level toxicity, which was proved by the biochemical
markers to evaluate the renal and hepatic balance. The antioxidant activity of rosemary
EO was evaluated before and after the encapsulation process, and it was found that the
encapsulation technique using the spray drying process can preserve the antioxidant poten-
tial of the encapsulated EO. This considerable antioxidant and antimicrobial activity of the
rosemary EO can be related to the conservation of high contents of 1.8-cineole and camphor
in rosemary essential oils. According to the physicochemical analysis of the nanoemulsion,
it has been found that the use of maltodextrin as the coating support and Tween 20 as a
surfactant allowed an improvement in stability with -37.31 mV as the potential zeta and
256.56 nm as the particle size. Finally, these results clearly show that this formula can be an
important alternative for any industrial process using this particular rosemary EO.
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