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Abstract: This study proposed a probabilistic methodology based on a confidence interval with the
aim of overcoming the limitations of deterministic methods. A stability evaluation technique was
required because the output variability of renewable energy can lead to instability of the distribution
system. The proposed method can predict the possibility of violating stability in the future. It can
also provide a theoretical basis for securing distribution system stability and improving operational
efficiency by assessing the in-stability risk and worst-case scenarios. Because of steady-state analysis
in the distribution system to which solar power is connected, the probability of violating the standard
voltage during the daytime when PV fluctuations are severe was the highest. Moreover, as a result of
a simulation of a three-phase short-circuit in the distribution system that is connected to the PV and
WT, it was observed that it could violate the allowable capacity of the CB owing to the effects of the
power demand pattern and output variability.

Keywords: confidence interval; probabilistic stability evaluation; voltage stability; fault analysis;
distributed generation; distribution systems

1. Introduction

To study the impact of renewable energy on power systems, it is necessary to provide
a renewable energy output scenario by considering the output characteristics of each power
source and applying an accurate prediction technique. The deterministic prediction meth-
ods based on machine learning and probabilistic prediction methods based on confidence
intervals can be reviewed as prediction techniques. Although the stability of the system
can be evaluated through deterministic prediction methods, the accuracy of the prediction
cannot always be guaranteed. Thus, it may not be possible to accurately analyze the pos-
sibility of actual stability violations. Therefore, it is necessary to consider various output
scenarios and evaluate the stability against the worst-case scenario by applying probabilis-
tic prediction methods. Therefore, this study provided a probabilistic methodology that
considers various RES outputs for distribution systems with inverter-based DGs.

According to the worldwide energy conversion policy, the interconnection of inverter-
based distributed generation (DG) is increasing. However, renewable energy has problems
with output variability and uncertainty, which can lead to instability of the distribution
system or intensify difficulties in its operation. Unlike conventional power sources, the
inverter-based DGs have no rotational inertia; thus, it is difficult to maintain the voltage
and frequency of the AC power system [1]. Particularly, the output variability and uncer-
tainty of renewable energy sources (RES) are factors that negatively affect the stability of
distribution systems [2]. Recently, the number of renewable energy curtailments due to
output fluctuations has rapidly increased, and as the interconnection rate of inverter-based
DG increases, the duck curve deepens because of a sharp decrease in net load during the
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daytime [3]. Moreover, the existing power distribution system has a one-way power flow
owing to the radial structure; however, DGs have been mainly connected to the end of
the line, resulting in bidirectional power flow. Consequently, the method of protection
cooperation and voltage distribution differs from those of the existing system [4]. To over-
come these problems, studies on stability analysis technology in the distribution systems of
interconnected RESs have been actively conducted worldwide. Riaz et al. [5] proposed a
stochastic optimization in smart power systems to deal with the RES uncertainties wherein
deterministic approaches are used to represent specific scenarios. A. Qamar et al. [6]
presented a configuration detection model of ground grid to tackle the uncertainties and
consider various grid configurations that continuously change according to the extension
in a substation.

Studies on voltage stability evaluation and fault analysis methodology have been
conducted to evaluate the stability of the next-generation power distribution systems.
Voltage stability refers to the ability of the power system to allow the bus voltage to
maintain the voltages of all bus lines within the allowable voltage range after a disturbance
occurs from the initial operating conditions [7]. When the voltage of the system is unstable,
the power system can experience a power outage or voltage collapse. Therefore, it is
necessary to improve the efficiency of a power system by evaluating its voltage stability.
Furthermore, fault analysis refers to the calculation of the fault current or voltage flowing
through each bus or fault point in the event of a fault in the power system. Inaccurate fault
current calculation may degrade system reliability and increase physical loss such as the
replacement of protective devices; therefore, an efficient fault current calculation method
considering renewable energy characteristics is required [8].

A traditional method for evaluating voltage stability is power flow calculation using
the Newton–Raphson method. However, mathematical singularity problems occur at
the voltage collapse point and a solution cannot be obtained. To solve this problem, a
continuous power flow (CPF) method can be used to determine the approximate point
of voltage collapse in the system [9,10]. This algorithm has strong convergence character-
istics; however, the computational time and convergence characteristics are significantly
influenced by the step size. An optimal power flow (OPF) can be performed to solve this
problem. This method can simply and accurately solve the problem of the voltage collapse
point of the Newton–Raphson power flow and the computational speed problem of the
CPF method [11]. However, because these methods are based on mathematical formulas,
there are limitations owing to time complexity.

Recently, simulation-based probabilistic techniques such as Monte Carlo simulation
showed rapid and accurate voltage stability evaluation [12]. The probabilistic voltage
stability can be analyzed based on the normal and cumulative distribution functions for the
bus voltage that is derived by applying various output scenarios [13]. The author of [14]
proposed a global sensitivity analysis methodology that considered RES variabilities and
identified specific variables that affect the variability of the load margins. The author of [15]
proposed a sequential Monte Carlo simulation to consider dynamic security assessment
wherein acceleration methods are applied to improve the computational efficiency.

The authors of [16] computed the confidence interval and analyzed the probabilistic
stability in distribution systems with inverter-based DGs. In [17], six types of Monte Carlo
sampling techniques were presented for various RES output scenarios. Additionally, the
scenario-based voltage stability was evaluated by calculating 95 and 99% confidence in-
tervals; errors were compared using R2 and RMSE according to the sampling technique.
The authors of [18] proposed a risk-based probabilistic stability methodology based on a
confidence interval by applying specific index which they compared with the determinis-
tic methodology.

Fault current calculation using the principle of superposition has relatively fast compu-
tation for large-scale power systems compared with a time-domain analysis technique that
enables dynamic simulation. When a fault analysis is performed based on a symmetrical
component circuit, the synchronous-machine-based DGs can be modeled by a Thevenin
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equivalent power source, and inverter-based DGs can be interpreted by implementing a
constant current source that supplies 1 to 1.2 times smaller fault current in consideration
of IEEE Std 1547 [19]. Furthermore, fault analysis that considers the characteristics of the
distribution system is being actively studied. When a single- or two-phase DG is connected,
an unbalanced current may be supplied to each distribution system to adversely affect
the operation of the bidirectional protective device. Moreover, studies on fault analysis
considering photovoltaic (PV) control characteristics are being conducted. Studies are being
actively conducted on fault-section estimation technology in power-distribution systems
using real-time monitoring technology and fault-analysis methods. In this environment,
fault analysis of an imbalance distribution system was conducted to examine the fault con-
tribution characteristics of the imbalance current source [20]. Additionally, studies on fault
analysis have been conducted considering photovoltaic (PV) control characteristics [21],
and real-time monitoring and fault section estimation technologies in distribution systems
have been studied [22].

This study proposed a probabilistic methodology based on a confidence interval (CI)
to improve the reliability of the distribution-system operation. Existing deterministic
methodologies cannot consider the variable nature of RES which is a limitation in the
analysis of stability violations. Accordingly, various output scenarios were implemented
and updated to evaluate the stability of the test system.

Meanwhile, refs. [12–15] performed a probabilistic stability evaluation to consider
the renewable energy variability. The stability evaluation was analyzed based on various
output scenarios; however, this study improved the methodology and proved the efficiency
of the stability analysis by calculating the confidence interval. Based on the CI, the prob-
ability of the deterministic prediction value can be predicted in advance. Furthermore,
refs. [16–18] calculated the confidence interval and analyzed its stability. Additionally, the
proposed methodology evaluated stability based on two criteria related to the distribution
system that allowed us to determine the probability of violating stability in advance.

The main contributions of this study are as follows.

1. This study proposed a probabilistic methodology based on a confidence interval that
complements the limitations of deterministic methods. The proposed method can pre-
dict cases of violating stability that cannot be predicted using deterministic methods.

2. The possibility of violating stability was evaluated using two criteria related to the
distribution systems: allowable bus voltages and circuit breaker breaking current
ratings. This approach could facilitate stability analysis and preemptively determine
the violation probability that may occur in the near future.

• It can provide a theoretical basis for securing distribution system stability and
improving operation efficiency by evaluating the instability and worst-case sce-
narios. The operator and planner can use it as an indicator for decision making
on how to establish the operation and design of the distribution system.

The remainder of this paper is organized as follows. In Section 2, probabilistic stability
evaluation procedures based on the confidence intervals are presented. Subsequently, in
Section 3, the simulation environments for the two types of case studies are explained.
Case studies were conducted in two ways using the MATLAB simulation tool: probabilistic
voltage stability and probabilistic fault analysis. Finally, Section 4 concludes the paper.

2. Proposed Methodology

In this study, a probabilistic stability evaluation methodology based on a confidence
interval is presented and an algorithm for this is presented in Figure 1. First, various
renewable energy output scenarios were implemented to complement the limitations of
stability evaluation techniques through deterministic prediction. The number of renewable
energy output scenarios selected by the user was used as the input data for the probabilistic
stability evaluation. However, 10,000 output scenarios were generated in this study. Fur-
thermore, iterative power flow and fault current calculation algorithms were applied to
the two probabilistic stability evaluations. The confidence interval was computed based
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on the bus voltages and fault currents derived using each algorithm. After computing the
cumulative distribution function based on the results for each parameter, we determined
whether the stability is violated based on the distribution system stability index selected in
this study. In this study, the allowable bus voltages and circuit breaker breaking current
ratings were selected as indicators of the violation of stability in the distribution system.
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2.1. Confidence Interval Computation

It may not be possible to accurately determine whether the stability that may occur
is violated because the deterministic prediction technique does not consider the output
variability of the RES. However, calculating the confidence interval based on various
output scenarios could solve the problems of the deterministic prediction techniques. The
confidence interval could be calculated using normal or cumulative distribution functions
based on parameters such as the output, bus voltage, and fault current.

Figure 2 shows the calculation results of the confidence intervals using each function.
Figure 2a shows the 90% CI based on the normal distribution function of the input variable
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of 5 and 95%. Similarly, Figure 3b presents the 90% CI based on the cumulative distribution
function of the input variable of 0.05 and 0.95. The range of each section, having an input
variable with an hourly cumulative distribution function of 0.05 and an input variable of
0.95, may be expressed as a confidence interval of 90%. Similarly, the range between the
point where the cumulative distribution function is 0.45, and the input variable at the point
where the cumulative distribution function is 0.55, can be expressed as a confidence interval
of 10%. Additionally, the actual output value was assumed to be the result value based on
the deterministic prediction technique, as shown in Figures 3b and 4b. Thus, because the
deterministic prediction technique does not consider the variability of renewable energy, it
may not have been possible to determine whether the stability that may occur is violated
accurately. However, calculating the confidence interval based on various output scenarios
overcame the limitations of deterministic prediction techniques. In advance, it could be
determined whether the actual output was included within a specific confidence interval.
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Figure 3. Implementation for scenario: (a) PV output scenario; (b) PV output scenario based on CI.
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Figure 4. Implementation for scenario: (a) WT output scenario; (b) WT output scenario based on CI.

2.2. Implementation of Renewable Energy Output Scenario

In this section, a scenario creation method is presented. First, historical data of
renewable energy output were analyzed for probabilistic stability evaluation. In this study,
PV and WT output data from Jeju Island from January to June 2021 were used. Second, the
normal distribution function was derived using the average (µ) and standard deviation (σ)
of the hourly output as the parameters. The formula below is a probability density function
equation that represents a normal distribution. Third, based on the aforementioned factors,
renewable energy output scenarios were generated by sampling and were used as input
data for the system analysis models. The scale of the output scenario was adjusted to
proceed with a case study suitable for a systematic situation. Finally, this study analyzed
the possibility of violations of allowable bus voltages and circuit breaker breaking current
ratings using the confidence intervals of bus voltages and fault currents.

f (x) =
1

σ
√

2π
e−

(x−u)2

2σ2 (1)

Figure 3a shows the PV output scenario with the actual and average outputs. The
PV output had a convex bell shape and showed similar patterns daily because it was
only generated during the day. Figure 3b presents the profile obtained by calculating the
confidence interval based on the results of the PV output. The uncertainty of the actual
output was evaluated by calculating the confidence interval. In the figures, the term ‘meas’
means the result of applying the actual RES output profile, and the term ‘mean’ represents
the average of RES output every hour.

The WT output scenario is shown in Figure 4a. The WT output exhibited irregular
and highly volatile characteristics. Additionally, in Figure 4b, the confidence interval
computed using the cumulative distribution function based on the wind power output
is shown. However, in this study, the confidence interval was not calculated based on
the renewable energy output scenario as shown in Figures 3b and 4b. After applying
10,000 output scenarios to the test model, the stability was evaluated by calculating the
confidence interval based on the bus voltage and fault current results. The output scenario
was reflected in the probabilistic stability evaluation through this procedure. In this study,
it was used as the input data for probabilistic voltage stability evaluation and fault analysis.
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2.3. Iterative Power Flow Algorithm

This section considers iterative power flow algorithm to evaluate the probabilistic
voltage analysis. In this paper, renewable energy output scenarios were entered and the
Newton–Raphson method was applied. The Newton–Raphson method is an algorithm
that precisely calculates the approximation of high-order nonlinear equations through
iterative equations.

f (x) = f (a) + f (1)(a)(x− a) (2)

If the initial value a is xi in this approximation, this approximation can be represented
as follows.

f (x) = f (xi) + f (1)(xi)(x− xi) (3)

The solution can be obtained by making the above approximation zero. If the approxi-
mation derived from applying xi is xi+1, the error is equal to |xi+1 − xi|. This is repeated
until the error is less than the specified error. Here, f1(x, y), f2(x, y) expand the Taylors
Series formula, respectively.

f1(xi+1, yi+1) = f1(xi, yi) +
∂ f1
∂x (xi, yi)(∆xi) +

∂ f1
∂y (xi, yi)(∆yi) = 0

f2(xi+1, yi+1) = f2(xi, yi) +
∂ f2
∂x (xi, yi)(∆xi) +

∂ f2
∂y (xi, yi)(∆yi) = 0

(4)

To find a solution to the higher-order nonlinear equation, we left the right side of the
Taylor series at zero. The above equation can be expressed as a vector product as follows.[

f1(xi, yi)

f2(xi, yi)

]
+

 ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

[ ∆xi

∆yi

]
= 0 (5)

Here, the Jacobian matrix j is defined as follows.

j =

 ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

 (6)

And ∆xi, ∆yi are defined as follows.

∆xi = ∆xi+1 − xi
∆yi = ∆yi+1 − yi

(7)

The initial value xi, yi is a known value, and xi+1, yi+1 is a value to be obtained. If
xi+1, yi+1 are placed on the left side, it is summarized as the following equation.

[
xi+1

yi+1

]
=

[
xi

yi

]
−

 ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

−1[
f1(xi, yi)

f2(xi, yi)

]
(8)

2.4. Fault Current Analysis Algorithm

This section presents fault current analysis algorithm to evaluate the probabilistic fault
current analysis. In the case study of this paper, the three-phase short-circuit fault was
applied for the simulation of the worst-case situation. The conditions of the voltage and
current in each phase are as follows.

Ia + Ib + Ic = 0
Va + Vb + Vc = 0

(9)
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where Ia, Ib, and Ic are the phase-A, -B, and -C currents, respectively. Here, Va, Vb, and
Vc are the phase-A, -B, and -C voltages, respectively. Then, Equation (11) represents the
sequence components of the fault voltage.

V0 = −Z0 I0 = − Z0
3 ( Ia + Ib + Ic) = 0

V1 = 1
3
(
Va + aVb + a2Vc

)
= 1

3
(
1 + a + a2) Va = 0

V2 = 1
3
(
Va + a2Vb + aVc

)
= 1

3
(
1 + a2 + a

)
Va = 0

(10)

where V1, V2, and V0 are the positive-, negative-, and zero-sequence voltages, respectively.
Then, Equation (5) represents the sequence components of the fault voltage. This formula
can be summarized as follows.

V0 = −Z0 I0 = 0 ∴ I0 = 0

V1 = Ea − Z1 I1 = 0 ∴ I1 = Ea
Z1

V2 = −Z2 I2 = 0 ∴ I2 = 0

(11)

Accordingly, the short-circuit current of each phase may be expressed using the
following equation.

Ia = I0 + I1 + I2 = I1 = Ea
Z1

Ib = I0 + a2 I1 + aI2 = a2Ea
Z1

Ic = I0 + aI1 + a2 I2 = I1 = aEa
Z1

(12)

3. Case Study
3.1. Probabilistic Voltage Stability Analysis

First, various renewable energy output data were implemented and used as the input
data for the system analysis model. An iterative power flow was applied to evaluate
probabilistic voltage stability. By analyzing the steady state and calculating the confidence
interval based on the bus voltage result, we evaluated whether it exists within the standard
voltage range.

3.1.1. Test System Setup for Probabilistic Voltage Analysis

Generally, ‘voltage stability’ refers to the ability of a power system to allow all bus
voltages to remain within the standard voltage range after a disturbance from the initial
operating conditions occurs. However, the ‘voltage stability’ in this study indicated a stan-
dard voltage violation in the reliability criterion. According to the performance standard
of electrical equipment for the distribution of KEPCO, the standard voltage range in the
low-voltage distribution system was specified as shown in Table 1. This section examines
the possibility of violating the standard voltage of a low-pressure distribution system based
on various renewable energy output scenarios.

Table 1. Standard voltage range in the low-voltage distribution system.

Nominal Voltage Standard
Voltage Range (V)

Standard
Voltage Range (pu)

low voltage 220 207–233 (±13) 207–233 (±1.06)

The renewable energy output scenario implemented using MATLAB was reflected in
the test system. Figure 5 presents a KEPCO standard distribution system consisting of a
main generator, MTR, loads, recloser, interconnection transformer, and inverter-based DG.
Table 2 presents rated powers and voltages of each component. Figure 6a,b show the PV
output and load profile, respectively. PV had the highest output at 1 p.m., and the load
decreased during the day but gradually increased in the evening.
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Figure 6. Parameter based on the test system: (a) PV output profile; (b) Load profile.

The case study considered that grid integration of renewable energy would continue
to increase in the future. Additionally, the ratio of the total facility capacity of the PV to
load of the day was assumed to be 24:5 to evaluate the worst-case scenario for voltage
stability. The test system had eight PVs with a capacity of 3 MW and five loads with a
capacity of 1 MW.

The results of the bus voltage for the number of output scenarios for 24 h were stored
as a matrix (10,000 × 24) using the power flow calculation algorithm. In the subsequent
section, the confidence interval calculated based on the bus voltage results and the proba-
bilistic analysis performed to determine whether the standard voltage is violated hourly
are presented.

3.1.2. Probabilistic Voltage Analysis Based on CI

The confidence interval was calculated based on the bus voltage results to evaluate
whether the standard voltage was violated. Figure 7 shows the voltage results for the
31-bus system. In the box plot, the base and upper side of the blue box represent the bus
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voltage when the cumulative distribution function is 15% and 85%, respectively. Thus,
the area of the blue box can be expressed as a confidence interval of 70%. Therefore,
assuming that the red line in the blue box is a deterministic prediction result obtained
by inputting the actual output, it was not possible to determine whether the standard
voltage is violated. However, the standard voltage violation case could be determined by
computing a confidence interval of 70% based on various output scenarios. Table 3 lists
the maximum voltage and the probability of violation of the 31-bus voltage. Consequently,
overvoltage occurred from 10 a.m. to 4 p.m., and overvoltage occurred at approximately
30% probability at 1 p.m. when the solar power output fluctuations were severe.
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Figure 7. 31-bus voltage results of the box plot shape.

Table 3. Maximum voltage and probability of violation for the 31-bus voltage.

Violation Time Maximum Voltage (V) Probability of Voltage Violation Based on
Scenarios (%)

10 a.m. 1.0675 4.05
11 a.m. 1.0674 14.9
12 p.m. 1.0675 25.97
1 p.m. 1.0676 30.68
2 p.m. 1.0674 28.66
3 p.m. 1.0673 20.48
4 p.m. 1.0671 6.65

Figure 8 shows the voltage results for the 31-bus and Table 4 shows the overvoltage
ratio to the 90% confidence interval. Outliers that could not be confirmed through the
box plot were analyzed by calculating the confidence interval at 90%. Additionally, when
the distribution system operator calculated a confidence interval of 70%, there was an
economic margin in terms of system design and operation. However, there was a possibility
of violating the stability in the section outside the predicted range. Conversely, when the
confidence interval was high, more results could be considered and stability violations
could be evaluated in detail. Compared with the low confidence interval, the system should
be designed and operated considering the risk section that violates the standard voltage.
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Figure 8. Result of 31-bus voltage based on 90% CI.

Table 4. Probability of 31-bus voltage violation based on 90% CI.

Violation Time Voltage Range for 90% CI (pu) Probability of Voltage Violation
Based on 90% CI (%)

11 a.m. 1.0037–1.0692 17.38
12 p.m. 1.0086–1.076 27.92
1 p.m. 1.0139–1.0777 32.94
2 p.m. 1.0091–1.0771 30.82
3 p.m. 1.0055–1.0729 21.86
4 p.m. 0.9989–1.061 7.5

Figure 9 shows the voltage results for the eight-bus voltage and Table 5 presents the
overvoltage ratio to the 90% confidence interval. The results of the eight-bus voltage were
compared with those of the 31-bus voltage. When calculating the confidence interval in
the 70% section, all voltages were within the standard voltage range unlike the result
of the 31-bus voltage. Moreover, when the confidence interval was calculated as 90%,
overvoltage occurred, and violations compared with the confidence interval were within
approximately 30%.

Table 5. Probability of eight-bus voltage violation based on 90% CI.

Violation Time Voltage Range for 90% CI (pu) Probability of Voltage Violation
Based on 90% CI (%)

11 a.m. 1.0019–1.0674 14.9
12 p.m. 1.0065–1.0675 25.97
1 p.m. 1.009–1.0676 30.68
2 p.m. 1.0069–1.0674 28.66
3 p.m. 1.0036–1.0673 20.48

Finally, Figure 10 shows the confidence interval profile for the 24-bus voltage and
Table 6 presents the probabilistic analysis. The time when overvoltage occurred was the
same as that of the eight-bus voltage; however, the ratio of violation cases to the confidence
interval was slightly higher. Moreover, in the eight-bus voltage, it was included within the
standard voltage range in the 70% confidence interval, representing the interval between
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the voltage with the cumulative distribution function of 0.15 and a voltage of 0.85. However,
the 24-bus voltage was not within the standard voltage range.
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Figure 10. Results of 24-bus voltage based on 90% CI.

Table 6. Probability of 24-bus voltage violation based on 90% CI.

Violation Time Voltage Range for 90% CI (pu) Probability of Voltage Violation
Based on 90% CI (%)

11 a.m. 1.0031–1.067 13.6
12 p.m. 1.0079–1.0736 25.22
1 p.m. 1.0107–1.0753 29.99
2 p.m. 1.0085–1.0747 30.68
3 p.m. 1.0049–1.0705 18.92
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The possibility of a violation of the standard voltage in the distribution system con-
nected to the PV system was examined, and it was discovered that the standard voltage was
violated according to the PV variability. Particularly, the probability of standard voltage
violations increased during the day when the PV output rapidly increased. Accordingly,
the variability problem may adversely affect the load-side or power facility.

3.2. Probabilistic Fault Analysis

In this study, various output data were implemented and used as the input data for
the system analysis model. The confidence interval was calculated based on the result
of the fault current after the three-phase short-circuit fault to evaluate whether it existed
within the allowable capacity range of the circuit breaker (CB).

3.2.1. Test System Setup for Probabilistic Fault Analysis

Figure 11 shows the KEPCO standard distribution system with inverter-based DGs.
The sequence impedances of the aerial lines are the actual values used in Korea. DGs were
interfaced through six feeders, with DG 1–4 representing PV and DG 5–6 representing
WT. Table 7 presents rated powers and voltages of each component. Additionally, Table 8
indicates the rated breaking current of the CB for the 22.9 kV distribution system. Based on
various scenarios, it was examined whether the three-phase short-circuit current violates
12.5 kA.
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Table 7. System parameters of the test system set up for probabilistic fault analysis.

Main Generator (G1) MTR Line Interconnection Transformer (T1) DG

Rated power [MVA] 100 45/15/15 100 12 12 (DG1, DG4)
12 (DG5, DG6)

Rated voltage [kV] 154 154/22.9/6.6 22.9 22.9/0.38 0.38
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Table 8. Breaking capacity for CB in 22.9 kV distribution system.

Breaking Capacity Range (kA)

Rated breaking current 12.5 and/or below

The PV and WT output scenarios were reflected in the test system, as shown in
Figure 11. Figure 12a,b represent the PV and WT output profiles, respectively, considering
the allowable capacity of the DG for each feeder. Figure 13 shows the load profile.
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Figure 12. Parameter based on the test system: (a) PV output profile; (b) WT output profile.
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Figure 13. Load profile.

This study implemented the test system above to review the maximum breaking
current considering the variability and worst-case scenario in the distribution system
connected to renewable energy. The ratio of the total facility capacity of the PV to load of
the day was assumed to be 1:5. The test system had four PVs, two WT of 12 MW, and a
load of 60 MW for each feeder.

The three-phase short-circuit fault current for the number of output scenarios for 24 h
was stored as a matrix (10,000 × 24). As shown in the subsequent section, the confidence
interval was calculated using the normal or cumulative distribution function based on the
fault-current results; the violation of the allowable breaker capacity was examined hourly.
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3.2.2. Probabilistic Fault Analysis Based on CI

Based on the results of the three-phase short-circuit fault current, the confidence
interval was calculated to evaluate whether the allowable capacity of the CB was violated.
Figure 14 shows the fault current, derived by reflecting the output scenario, in the form
of a box plot. In a box plot, the base and upper side represent the fault current when the
cumulative distribution function is 2.5% and 97.5%, respectively. So, the area of the blue
box can be expressed as the 95% CI, and an outlier is defined as a red data point located
outside of each box plot. Additionally, assuming that the short red line inside this blue box
is a deterministic prediction result obtained by inputting the actual output, it would be
impossible to determine whether the allowable capacity of CB was violated.
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Figure 14. Fault current results of the box plot shape.

However, if a 95% confidence interval is computed, it can accurately identify cases
that violate the allowable capacity of the CB. Table 9 lists the probability of violating the
allowable capacity of the CB. Between 2 p.m. and 5 p.m., fault currents exceeding the
allowable capacity occurred, and the probability of violation was the highest at 4 p.m., with
a probability of approximately 14%.

Table 9. Maximum fault current and probability of allowable capacity violation.

Violation Time Maximum Fault Current (kA) Probability of Allowable Capacity
Violation Based on Scenarios (%)

2 p.m. 13.464 11.02
3 p.m. 13.175 3.98
4 p.m. 13.704 14
5 p.m. 13.552 7.17

Figure 15 shows the confidence interval profile for the fault current and Table 10
lists the probability of allowable capacity violation based on the 95% CI. In Figure 1, the
confidence interval range was within the allowable capacity range when the confidence
interval was 70%. An overcurrent occurred when the confidence interval was 95%. Ac-
cordingly, if the confidence interval is low, there may be cases of stability violations in the
section outside the predicted range; therefore, it was necessary for the confidence interval
to be high. Thus, when the 95% confidence interval was calculated, more cases could be
considered; therefore, the worst-case situation and risk section could be evaluated in detail.
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Table 10. Probability of allowable capacity violation based on 95% CI.

Violation Time Fault Current Range for 95% CI
(pu)

Probability of Allowable Capacity
Violation Based on 95% CI (%)

2 p.m. 10.919–12.812 11.62
3 p.m. 10.62–12.507 4.18
4 p.m. 11.005–12.891 14.57
5 p.m. 10.837–12.632 7.52

Figure 16 shows the limitations of deterministic prediction techniques. Table 11
represents the comparison table of fault current results of the actual output profile. As a
result, the risk section that cannot be identified through deterministic prediction could be
determined using the proposed methodology. Moreover, based on the CI calculated by the
distribution system operator (DSO), it was possible to determine the probability of the actual
output value in advance. For example, measurements one and two were outside the range
predicted to be 95%, resulting in a violation of the allowable capacity, and measurement
three was within the range predicted to be 95%. Because the deterministic technique
predicts a specific output value, it may not have been possible to determine a stability
violation case. However, by computing CI, the possibility of a stability violation could
be preemptively determined. Thus, it was possible to examine in advance the percentage
of the actual output value that is included within the confidence interval. Additionally,
through the proposed methodology, the DSO could be used as an indicator for decision
making on how to establish the distribution system operation.

Table 11. Comparison of fault current results of actual output profile.

Application of Actual Output Profile Fault Current (kA) 95% CI Violation Time

Measurement 1
[12 March 2021]

13.12
12.94

2 p.m.
4 p.m.

Measurement 2
[12 March 2021] 12.95 2 p.m.

Measurement 3
[12 March 2021] - -
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Figure 16. The limitations of deterministic prediction techniques.

The possibility of a violation of the rated breaking current was examined in the
case study, and the allowable capacity was violated according to variability such as the
power demand and variability in the distribution system connected to inverter-based DGs.
Consequently, it is imperative to expand the acceptability of distributed power to ensure
the stability of the distribution system. Furthermore, measures such as meeting low voltage
ride through (LVRT) requirements, increasing short-circuit current rating, and reducing
the fault current is required. Moreover, from the perspective of future power distribution
system plans, it can be used to select the capacity of power distribution system breakers
using the proposed methodology. Based on various output scenarios, it is possible to
plan and invest in power distribution system facilities by reviewing the maximum rated
breaking current according to the CI.

4. Discussions and Conclusions

This study proposed a probabilistic stability evaluation method based on CI in distri-
bution systems with inverter-based distributed generation. The proposed methodology
could preemptively identify stability violations that may occur in the future. Further,
the feasibility of the proposed methodology was demonstrated by predicting relatively
accurate risk sections that could not be predicted using deterministic prediction techniques.
Finally, the proposed methodology can be used by distribution system planners to establish
appropriate mitigation measures and facility plans. The important points that should be
considered in terms of operation and design may vary because the DSO calculates the CI.

The primary limitation in the analysis of stability violation was that the deterministic
methodology cannot consider the variable nature of renewables. Therefore, it was necessary
to determine the possibility of stability violation based on probabilistic scenarios. Based on
the historical renewable energy output data, 10,000 output scenarios were generated and
used as input data for probabilistic stability evaluation. An iterative power flow calculation
algorithm was used for the probabilistic voltage stability evaluation, and a symmetric
component circuit that considers imbalanced components was used for probabilistic fault
analysis. At this time, the inverter-based DG was implemented with a current source that
supplied a fault current that was smaller than the rated current and Norton equivalent
impedance by a value of 1–1.2. This study analyzed the possibility of violations of allowable
bus voltages and circuit breaker breaking current ratings using the confidence intervals of
bus voltages and fault currents.

The primary findings of this study can be summarized as follows.
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1. Performing a steady-state analysis in the distribution system to which PV is con-
nected, the probability of violating the standard voltage during the daytime when PV
fluctuations are severe was the highest.

2. Because of the simulation of a three-phase short-circuit in the distribution system
that is connected to the PV and WT, it was discovered that it could violate the al-
lowable capacity of the CB owing to the effects of the power demand pattern and
output variability.

The recent machine-learning techniques can improve the prediction accuracy of re-
newable energy output, by which the proposed method can produce more credible stability
analysis results.
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