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Abstract: Cost and CO2 are two factors in the optimum design of structures. This study proposes a
modified harmony search methodology for optimization of reinforced concrete beams with minimum
CO2 emissions. The optimum design was developed in detail by considering all possible combinations
of variable loads, including dynamic force resulting from earthquake motion. Moreover, time-history
analyses were performed, and requirements of the ACI-318 building code were considered in the
reinforced concrete design. The results show that the optimum design based on CO2 emission
minimization is greatly different from the optimum cost design results. According to these results,
using recycled members provides a sustainable design.

Keywords: optimization; harmony search; reinforced concrete frames; earthquake; CO2 emission
minimization; cost minimization

1. Introduction

Carbon footprint is a measure of the damage caused by human activities to the environ-
ment in terms of the amount of greenhouse gas produced, measured in units of carbon diox-
ide, and consists of two main parts: a direct (primary) footprint and an indirect (secondary)
footprint. The primary footprint is a measure of direct CO2 emissions from the combustion
of fossil fuels, including domestic energy consumption and transportation (for example,
cars and airplanes). The secondary footprint is indirect CO2 emissions from the entire life
cycle of the products we use, related to their manufacture and eventual degradation.

In an engineering design, a challenging task is to provide additional factors that are
not related to compulsory safety requirements. These additional factors may be a minimum
cost design or an eco-friendly design. In this manner, safety is a must, and an advan-
tageous design needs an optimum design according to a factor that makes engineering
design important.

In the design of reinforced concrete (RC) structures, due to the strength and serviceabil-
ity requirements in design codes and composite designs of concrete and steel reinforcement,
the optimum design problems that minimize cost or CO2 emissions can only be solved
via iterative methods. The best and most time-saving methodology for an iterative find-
ing of different design–variable combinations is provided via metaheuristic methods.
Especially for frame members that include both tension-controlled beam members and
compressive-controlled column members, the importance of the need for an advanced
method becomes evident.

In the optimum design of steel structures, weight optimization can provide a reduction
in cost and CO2 since it is constructed from a single material. The reduction in the material
used in the construction will both reduce CO2 emissions and cost in the same way. This
cannot be for RC structures, and cost optimization is needed to find a balance between the
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amounts of concrete and steel used [1]. Moreover, this is the reason for the different design
concepts of minimizing the amount of CO2 emissions since the cost and CO2 emission
ratios of concrete and steel are different.

For the cost optimization, Adeli and Sarma [2] reviewed the soft computing applica-
tions of optimum RC design, including Genetic Algorithm (GA), fuzzy logic, and parallel
computing. GA is the most-used algorithm, and Coello et al. [3] optimized RC beams via
GA to achieve a realistic and practical design. By applying a declarative approach that
is used to check the exact bending capacities, GA is employed in the optimum design of
biaxial columns by Rafiq and Soutcombe [4]. Koumousis and Arsenis [5] aimed to provide
sets of rebars of specific diameters instead of a rebar area in their study employing GA for
RC members. Rajeev and Krishnamorarthy [6] employed GA for RC frames with discrete
variables. Rath et al. [7] employed a natural velocity field method in the shape optimiza-
tion of RC members under a flexural moment using GA in optimizing rebar variables.
Camp et al. [8] optimized RC frames via GA and demonstrated the efficiency of the method
for simply supported beams, uniaxial columns, and multi-storey frames. Continuous
beams that were optimized via a hybrid algorithm of GA and simulated annealing (SA)
were presented by Leps and Sejnoha [9]. Lee and Ahn [10] proposed a GA-based approach
for RC plane frames using lateral equivalent static earthquake loads. Govindaraj and
Ramasamy [11] optimized RC continuous beams by using GA for cross-section variables
and reinforcement templates for rebar variables. Sahab et al. [12] employed GA following
the Hook and Jeeves method in the optimization of RC flat slab buildings. Govindraj and
Ramasamy [13] developed a method based on GA for RC frames by using a sub-level
optimization problem detailing of rebar of beams. For CO2 minimization, Park et al. [14]
optimized RC columns with GA by converting CO2 emission values into costs using the
concept of the certified emissions reductions (CERs). Lee et al. [15] employed GA in the
reduction in the cost and CO2 emissions of RC frames. Mergos [16] employed GA to
optimize RC frames via seismic analysis and CO2 minimization.

Harmony search (HS) is another algorithm that has been widely used in the optimiza-
tion of RC structures. Akin and Saka [17] proposed a detailed optimization methodology
for RC frames by employing HS and considered the provisions in ACI 318-05 [18]. Nigdeli
et al. employed HS in the optimization of biaxially loaded RC columns [19]. Bekdaş opti-
mized post-tensioned axially symmetric cylindrical RC walls via HS and considered both
post-tension and RC design variables [20]. Garcia Segura et al. proposed a hybrid HS using
threshold optimization to optimize the geometry and materials of post-tensioned concrete
box-girder pedestrian bridges [21]. Bekdaş and Nigdeli investigated the cost optimization
of RC frames subjected to earthquakes by proposing a modified HS [22]. Medeiros and
Kripta conducted a discrete optimization for the cost minimization of RC columns via a
modified HS [23]. Shaqfa and Orban used a parameter-setting free HS to optimize RC
beams for cost and weight objectives [24]. Kayabekir et al. proposed a multi-objective
optimization, including cost and CO2 objectives for RC-retaining walls, and employed
HS [25]. Yucel et al. hybridized adaptive HS with the Jaya algorithm in the optimum
design of RC-retaining walls [26]. RC cantilever soldier pile-retaining walls have been
optimized via HS for cost optimization [27] and multi-objective optimization, including
CO2 emission minimization [28]. Recently, Kayabekir et al. proposed adaptive HS for the
cost optimization of RC columns [29].

The algorithms used in the optimum design of RC members are large in number,
and only recent applications were mentioned. Nigdeli et al. optimized RC footings via
various metaheuristic algorithms, including HS, the flower pollination algorithm (FPA),
and teaching–learning-based optimization (TLBO) [30]. Particle swarm optimization (PSO)
with multi-criterion decision making was proposed by Esfandari et al. [31] to optimize RC
frames subjected to time-history loadings, and the two objectives were taken as cost and
weight. RC beams were optimized by Afshari et al. [32] using a multi-objective version
of five algorithms, and the objectives were cost and deflection. Mergos and Mantoglou
employed FPA for the cost optimization of RC cantilever-type retaining walls [33]. Uray
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and Carbas evaluated the optimum design of RC-retaining walls via HS by using different
soil characteristics and earthquake loads [34]. Sanchez-Olivares and Tomas employed a
modified firefly algorithm and optimized RC members, which were subjected to compres-
sion and biaxial bending based on two design codes, including Eurocode 2 and ACI318 [35].
For CO2 emission minimization, RC footings were optimized via a hybrid big bang–big
crunch algorithm (BB–BC) [36]. RC frames were optimized via simulated annealing for
CO2 optimization [37]. BB–BC was also applied to RC frames [38].

In the present study, RC frame structures are optimized according to CO2 emission
minimization by using a modified HS algorithm. This algorithm has been tested on
various structural engineering applications and is proven to be an effective algorithm via
modifications [17–29]. By dividing the randomization process into stages, the convergence
is provided by quickly eliminating the violated results of the design constraints. Moreover,
the problem of additional random steps is considered due to complex analysis of the
system considering a time-history analysis via seismic loads and combinations of variable
action loads.

2. Methods

The optimization of RC frames contains the optimum design of multiple structural
members. Additionally, these members are of two types: beams and columns. Beams
are subjected to bending and designed according to tension-controlled member rules.
Columns are subjected to compression and bending and designed according to compressive-
controlled member rules.

Generally, in engineering optimization via metaheuristic algorithms, all design vari-
ables are randomized, and then the calculations are performed for design constraints and
objectives. In the proposed method, the randomization of design variables is conducted
in different stages. This methodology employs HS, with additional randomization stages
to shorten the optimization process. Due to the existence of various members and types,
the analysis for all members is only a time loss if only one constraint is not provided for
a member. Additionally, in the case of violation of the final checked constraints, random-
ization stages that are iteratively conducted for providing the constraints are included.
Until violated members are assigned with non-violated design variables, randomization of
design variables of the corresponding members is repeated.

The optimization code employing HS is a music-inspired metaheuristic algorithm
developed by Geem et al. [39]. The process code was written in Matlab by Simulink [40]. It
includes not only the dynamic analysis, but also considers the seismic records downloaded
from the PEER database [41]. The optimization includes 4 steps.

In the first step, the design constants are defined. These constants include structural
data such as number of bays, stories, and joints with boundary conditions, coordinates of
element endpoints, material properties, design variable ranges, and loading conditions.
The design variables are cross-section dimensions such as breadth (bw) and height (h), and
reinforcement amounts such as number and size. The material properties, including the
structural protection measures, are clear cover (cc), maximum aggregate diameter (Dmax),
elasticity modulus of steel (Es), specific gravity of steel (γs), specific gravity of concrete
(γc), compressive strength of concrete (fc

’), yield strength of steel (fy), unit cost of concrete
per m3 (Cc), unit CO2 emission of concrete per m3 (Cc,co2), unit cost of steel per ton (Cs),
and unit CO2 emission of steel per ton (Cs,co2).

In step 2, an initial solution matrix is generated, and the candidate design variables are
checked for objective function and design constraints. In this study, the design constraints
are calculated according to ACI-318-14 [15]. This step contains 7 sub-steps.

In step 2.1, the randomization process starts with the assignment of cross-sectional
dimensions of the beams. The following constraints of Equations (1) and (2) are checked:

g1 = d− l
4
< 0 (1)
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g1 = bw − 0.3h ≥ 0 (2)

The depth of the beam is shown as d, and the clear length of the beam is given as l. The
design variables are randomized for bw and h until these two constraints are provided. The
dimensions are discrete variables that are suitable for practical design. Since reinforcement
bars are not known, the depth of the beam is taken as 50 mm less than the height.

In step 2.2, the cross-section dimensions of columns are randomized, and Equation (3)
is checked. In this equation, b is the breath of the supporting column. The randomization
of column dimensions is performed until this constraint is provided:

g3 = bw − b− 3
2

d ≤ 0 (3)

In step 2.3, a structural analysis is performed for the defined cross-section dimensions
of beams and columns. The optimization involves both static and dynamic analyses. In the
analyses, the system matrices are calculated by using the stiffness method. As shown in
Equations (4) and (5), mass (Me) and stiffness matrices (Ke) of a member are calculated by
considering the rotation and two displacements in each joint, without assuming that the
system is a shear building for the dynamic analysis:

Me =
γcAl + (D + nL)(l − a)

420g



140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2

70 0 0 140 0 0
0 54 13l 0 156 −22l
0 −13l −3l2 0 −22l 4l2

 (4)

Ke =



EA
l 0 0 −EA

l 0 0
0 12EI

l3
6EI
l2 0 − 12EI

l3
6EI
l2

0 6EI
l2

4EI
l 0 − 6EI

l2
2EI

l
−EA

l 0 0 EA
l 0 0

0 − 12EI
l3 − 6EI

l2 0 12EI
l3 − 6EI

l2

0 6EI
l2

2EI
l 0 − 6EI

l2
4EI

l


(5)

where A, I, l, E, n, and g represent the cross-sectional area of the element, moment of inertia
of the element, length of the element, modulus of elasticity, live load participation factor,
and gravity, respectively.

In the static analysis, including live loads (L) that are of variable action, the com-
binational cases of spans with loadings are considered to calculate the worst internal
forces. The self-mass of the beams and columns are added to the dead load (D), which is a
permanent action.

The dynamic analyses were conducted in Matlab using Simulink [40], and Equation (6)
is solved for a ground acceleration defined as

..
xg:

M
..
x(t) + C

.
x(t) + Kx(t) = −M{1} ..

xg(t) (6)

where x(t) is the displacement as shown in the vector, and a dot on it represents derivative
with respect to time; [1] is a unit vector of ones. The damping matrix is calculated via the
Rayleigh method by considering 5% damping in the first two vibration modes. In the study,
three different seismic records are used for a time-history analysis, and internal forces due
to earthquake acceleration (u) are calculated. Then, these forces are divided into the elastic
response parameter (R), and the worst condition is searched by using the combination from
Equations (7)–(9). The most critical response is used in the design of RC members:

U = 1.4D + 1.7L (7)

U = 0.75(1.4D + 1.7L)± E (8)
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U = 0.9D± E (9)

In step 2.4, the maximum capacity of axial force (Nmax) and shear force (Vnmax) are
controlled for columns to ensure brittle fracture conditions:

g4 = Vnmax −min
{

5.5A
0.2f′cA

}
≤ 0 (10)

g5 = Nmax − 0.5f′cA ≤ 0 (11)

In addition, the following constraint is considered in the optimization for the beams
as shown in Equation (12):

g6 = Nmax − 0.1f′cA ≤ 0 (12)

If the constraints checked in this sub-step are not provided, the candidate dimension
values are randomized by considering the other constraints in steps 2.1 and 2.2.

In step 2.5, the longitudinal reinforcements for tensile fiber of beams are randomized.
The brittle fracture constraint given as Equation (13) is calculated, and if it is not provided,
the randomization of reinforcements for compressive sections of beams is also conducted.
The reinforcement ratio is symbolized by ρ:

g7 = ρ− (0.75)(0.85)β1
f′c
fy

(
600

600 + fy

)
≤ 0 (13)

Furthermore, the reinforcement ratio must be suitable for the maximum reinforcement
ratio for beams, which is 0.025, as shown in Equation (14):

g8 = ρ− 0.025 ≤ 0 (14)

In addition, the positioning of reinforcements is controlled. The clear distance between
the bars (aφ) must be provided, as shown in Equation (15):

g9 = aφ −max


φavarage
25 mm
4
3 Dmax

 > 0 (15)

where Dmax is the maximum size of aggregates used in concrete and φaverage is the average
value of assigned reinforcement sizes. The optimization code allows for two-line placement
of reinforcements.

To reduce the possibility of using reinforcement bars that are more than what is
required to provide internal forces for the randomly assigned values, the constraint in
Equation (16) is checked. As-random is the reinforcement bars and As-needed is the value
calculated for the internal forces:

g10 = As−random − (1 + r)As−needed < 0 (16)

where r is a user-defined value. If Equation (16) cannot be provided and r is not taken
as a physical value, the process may become trapped in this step. For that reason, r
value is increased by 0.01 after every 500 iterations of this sub-step. In addition, after
20,000 iterations in this sub-step, the objective function is penalized.

Furthermore, the minimum reinforcement area (As,min) is provided in this sub-step.
These are given as Equations (17) and (18):

g11 = As,minimum −
√

f′c
4fy

bwd ≥ 0 (17)

g12 = As,min −
1.4
fy

bwd ≥ 0 (18)
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Equations (17) and (18) are considered for both tensile and compressive sections of the
beam. For the joint points, the reinforcement in compressive sections must be also half of
the reinforcements in tensile sections.

After the design and randomization of longitudinal reinforcements of the beam,
shear reinforcements (stirrups) are assigned and the constraints in Equations (19)–(21)
are checked:

g13 = V−
√

f′c
6

bwd−
Avfyd

s
≤ 0 (19)

g14 =
Avfyd

s
− 0.66

√
f′cbwd ≤ 0 (20)

g15 = Av −
1
3

bws
fy
≥ 0 (21)

where V, Av, and s represent shear force, shear reinforcement area, and spacing of stirrups,
respectively. In addition, the s value must be less than the value of Equation (22) according
to the Vs value, which is the shear force capacity provided by stirrups. The spacing of
reinforcements is a discrete variable that is in multiples of 10 mm:

g16 =

{
s− d

2 ≤ 0 if Vs ≤ 0.33
√

f′cbwd
s− d

4 ≤ 0 if Vs ≥ 0.33
√

f′cbwd
(22)

In step 2.6, the design of columns is controlled by considering the slenderness effect
according to the moment magnification concept. To represent the state just before the
ultimate load, the values of moment of inertia are reduced by 65% and 30% for beams and
columns, respectively. If the design flexural moment is less than the minimum value (Mmin)
in Equation (23), then the minimum value is used:

Mmin = Pu(15 + 0.03h) if h in mm (23)

Similarly, the longitudinal reinforcements of the columns are randomly assigned for
symmetric reinforcement in the upper and lower fiber of the cross-section. Then, the
positioning of reinforcement bars is provided according to Equation (24):

g17 = aφ −


1.5φavarage

40 mm
4
3 Dmax

 ≥ 0 (24)

If the clear distance between the upper and lower fiber reinforcements is more than
150 mm, web reinforcements are also placed. For columns, the minimum and maximum
reinforcement ratios (g) in Equations (25) and (26) are considered:

g18 = ρ− 0.06 ≤ 0 (25)

g19 = ρ− 0.01 ≥ 0 (26)

The randomization of column reinforcements is repeated until the constraints in
Equations (25) and (26) are provided.

The required capacity of axial force and flexural moment for the candidate design
is checked according to a procedure. In this procedure, the distance from the extreme
compression fiber to the neutral axis (c) is iteratively searched, and the c value for the
lowest flexural moment ensuring the required axial force is stored. This capacity (Mcapacity)
is checked for Equation (27) and the randomization is repeated until it is provided. For the
user-defined r value, the same procedure in the beam design is applied. Mrequired is the
required design moment value:

g20 = Mcapacity − (1 + r)Mrequired < 0 (27)
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As the final sub-step 2.7, the objective function is calculated. For CO2 emission of an
element, Equation (28) is used:

Ce = (Ag −Ast)leCc,co2 + (Ast +
Av

s
ust)leγsCs,co2 (28)

where Ce is the CO2 emission value of an element. Ag, Ast, Av, ust, and le are the area of
cross-section, area of longitudinal reinforcement, area of shear reinforcement, and length of
the element, respectively. The objective function (OF) is calculated by adding all values
of CO2 emission for all elements as shown in Equation (29). For penalized values, OF is
assigned as 106, which is a very large value:

OF =
n

∑
i=1

(Ce)i n : number of elements (29)

After all beam and column design variables are assigned and the objective function is
calculated for these values, the initial harmony memory (HM) matrix is constructed. This
HM matrix contains harmony vectors as the number of harmony memory size (HMS).

In step 3, the essential optimization process starts. New sets of design variables are
generated via sub-steps controlling the constraints via iterative randomization to ensure
these constraints. As with the modification of HS, harmony memory is considered by
changing the boundary limits of design variables. Harmony memory is chosen according to
the harmony memory consideration rate (HMCR), and it is taken as 0.5. In the local search,
the minimum or maximum range of design variables is updated with the best existing
solution (Xbest), with equal probability. Thus, both less and more of the best solution is
searched in discrete optimization. The generation of a variable (X) with respect to minimum
(Xmin) and maximum (Xmax) ranges is formulated as Equation (30). In Equation (30), rand
(0, 1) is a random number between 0 and 1. It is regenerated in all calculations:

X = Xmin + rand(0, 1)[Xmax − Xmin] if rand(0, 1) > 0

X =
Xmin + rand(0, 1)[Xbest − Xmin] if rand(0, 1) < 0
Xbest + rand(0, 1)[Xmax − Xbest] if rand(0, 1) ≥ 0

}
if rand(0, 1) ≤ HMCR

(30)

As the last step, the newly generated solutions are updated if the OF value for these
solutions is smaller than the existing ones. Steps 3 and 4 are applied for the maximum
number of iterations. The methodology of the optimization process is summarized in the
flowchart in Figure 1.
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3. Results

In the numerical example, a three-storey three-span frame structure, as shown in
Figure 2, was optimized. The column bases were fixed. The height of each storey is 3 m
from the bottom of part of the slab to the bottom of the upper slab. By considering the
load transformation case from slabs to beams, the static loads, D and L, were defined as
trapezoidal distributed loads. The frame system consists of 21 members (12 columns and
9 beams) that are optimized without grouping. For the dynamic loads, three earthquake
records, as shown in Table 1, were considered in the optimization. The optimization is
performed for the constant values and design ranges shown in Table 2. The optimization
was conducted for cost to compare the results. To promote sustainable development, the
value of CO2 emission of steel is taken as the recycled one [42].
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Table 1. Earthquake records.

Earthquake Date Station Component PGA(g)

Imperial Valley 1940 117 El Centro I-ELC180 0.313
Northridge 1994 24514 Sylmar SYL360 0.843
Loma Prieta 1989 16 LGPC LGP000 0.563

The optimum results for cost and CO2 optimization are shown in Table 3. As seen
from cost and CO2 values, the exact objective function taken in the optimization process is
at the minimum level.

In the optimum design, the breadths of all members were found as the minimum
range value. In the search for the optimum results, the optimization process tends to
increase the height values, which increase the moment capacity, with a minimum increase
in cross-sectional areas that directly affect cost and CO2 emission. In cost optimization,
several members have greater height values compared to CO2 optimization results. This
situation is seen for column members.
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Table 2. Design constants and ranges of design variables.

Definition Symbol Unit Value

Range of web width bw mm 250–400
Range of height h mm 300–600
Clear cover cc mm 30
Range of reinforcement φ mm 16–30
Range of shear reinforcement φv mm 8–14
Max. aggregate diameter Dmax mm 16
Yield strength of steel fy MPa 420
Comp. strength of concrete f ′c MPa 30
Elasticity modulus of steel Es MPa 200,000
Specific gravity of steel γs t/m3 7.86
Specific gravity of concrete γc t/m3 2.5
Elastic response parameter R - 8.5
Cost of concrete per m3 Cc $ 50
Cost of steel per ton Cs $ 750
CO2 emissions of concrete per m3 Cc,co2 kg 376
CO2 emissions of steel per ton Cs,co2 kg 352

Table 3. The optimum results.

Cost Optimization CO2 Optimization

Element Number bw (mm) h (mm) bw (mm) h (mm)

1 0.25 0.40 0.25 0.30
2 0.25 0.40 0.25 0.35
3 0.25 0.40 0.25 0.35
4 0.25 0.40 0.25 0.30
5 0.25 0.30 0.25 0.30
6 0.25 0.30 0.25 0.30
7 0.25 0.35 0.25 0.35
8 0.25 0.40 0.25 0.30
9 0.25 0.40 0.25 0.30

10 0.25 0.40 0.25 0.30
11 0.25 0.40 0.25 0.30
12 0.25 0.35 0.25 0.35
13 0.25 0.40 0.25 0.40
14 0.25 0.40 0.25 0.40
15 0.25 0.40 0.25 0.30
16 0.25 0.40 0.25 0.30
17 0.25 0.40 0.25 0.30
18 0.25 0.40 0.25 0.30
19 0.25 0.40 0.25 0.40
20 0.25 0.40 0.25 0.40
21 0.25 0.40 0.25 0.40

CO2 (kg/m3) 3597.24 3308.09
Cost (USD) 1241.62 1260.43

The optimum results were checked for inter-storey drift values, which ensured that
the maximum drift values under three earthquake records in Table 1 are lower than the
2.5% height of the storey, as seen from the maximum drift plots under the critical exci-
tation (LGP000) given in Figure 3. Since the column cross-sectional areas in cost opti-
mization are greater, the maximum drift occurring at the structure is less than the CO2
optimized structure.
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4. Conclusions

For the eco-friendly design of RC structures, it is aimed to develop an optimization
methodology. It provides sustainable development by reducing the CO2 emission for RC
structures. As a complex optimum design, the problem was investigated on RC frame
structures. The proposed HS-based modified method was applied in the optimization pro-
cess. In the numerical examinations, the results of the cost and CO2 emission minimization
were compared with steel, which had the same CO2 emission value as recycled material.

According to the optimum results presented in Section 3, it is clear to say that the cost
and CO2 minimization, as the optimization objectives, have different optimum designs.
For CO2 emission minimization, it is possible to reduce CO2 emission by 8% compared
to the cost minimization results. This protection of the Earth is only possible with a 1.5%
increase in the cost minimization result. Due to this finding, the minimization of CO2 does
not cause a huge expense. In this case, an environmentally friendly optimum design is
more feasible than cost optimization, and the usage of recycled material is very suitable for
the protection of the Earth with low expense.

According to the results, the proposed algorithm was found to be effective for solving
the optimum design problem. In future work, the effect of the cost and CO2 ratios of
concrete and steel can be investigated for site-specific values after data collection from
different places in the world according to available materials in the construction region.
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