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Abstract: Mangrove trees generally play important roles in protecting intertidal ecosystems. The
mangrove root-associated sediments provide a repertoire of microbial communities that contribute
to pivotal ecological functions in the system. In the present study, we used the high-throughput
sequencing and PICRUSt-predicted functional information (based on 16S/18S rDNA profiles) to
investigate the bacterial, archaeal, and fungal communities in two mangrove systems, located in the
estuary of the Jiulong River (China), with different contaminated conditions and frequencies of hu-
man activity. Diverse distribution patterns for microbial communities were observed in six sediment
samples collected from the two survey areas, which were found to be related mainly to the sub-
strates in mangrove sediments. The sediments were predominated by relatively higher ratios of
heterotrophic bacteria that participated in the degradation of organic matters, including phylum of
Chloroflexi, Acidobacteriota, Desulfobacterota, and Proteobacteria. In addition, Crenarchaeota and
Ascomycota presented the highest abundances of archaea and fungi, respectively. The relatively high
concentrations of calcium, nitrogen, magnesium, and phosphorus in mangrove sediments correlated
significantly with the microbial communities. In addition, although the potential functions were
similar in the two sites based on COG and KEGG pathways, the abundances of enzymes involved in
the degradation processes of cellulose and hemicellulose and the metabolism of nitrogen and sulfur
presented distinctions. These results provide insights into the environmental conditions shaping
microbial assemblies of the mangrove sediments under the impacts of human activities; for instance,
a more abundant amount of calcium was found in urban areas in this study.

Keywords: mangroves; sediment; prokaryote; eukaryote; microbial communities; human activities

1. Introduction

The intertidal ecosystems are generally known as the interacted regions of the ocean,
atmosphere, and terrestrial environments and are believed to be the most momentous
coastal habitats in view of their biological productivity and economic value [1]. Mangroves
are well known as the dominant flora in intertidal zones such as coastal lagoons, coast-
lines, and estuaries, where the hydrological conditions are relatively complicated [2,3].
Nonetheless, the unique characteristics of mangroves provide them the ability to accom-
modate the dynamic environments of intertidal regions and, in addition, to protect coastal
environments, aquacultures, and living conditions for numerous organisms [4]. Moreover,
mangrove sediments and trees along the coastlines have also been planted to efficiently
absorb most of the substrates possessed in contaminated soils and wastewater over the last
40 years [5–7].
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Similar to the plants in terrestrial environments, mangroves also rely on the recip-
rocal benefits with various microbial assemblies [8]. Compared with sediments of bare
intertidal flats, sediments from mangrove ecosystems comprise abundant organic carbon
produced by a litter of mangrove plants, root exudates, and sedimentary fragments of
phytoplanktons [9], providing adequate ecological niches for the development of microbial
communities’ composition and function [10,11]. Active organic matters are secreted by
roots of mangrove plants to subsurface sediments, which lead to higher microbial abun-
dances and relevant activities in rhizosphere sediments than those of neighboring bulk
sediments [9]. In addition, the microbial communities were found to be distinguishing
between the inner and outer regions of mangrove sediments [12]. Therefore, elucidating
the interactions or relationships between the mangroves and microbial communities is
of great importance in revealing the mechanisms involved in the biological functions of
mangrove forests. The collaborations of mangroves and microbial communities in sed-
iments were found to drive the maintenances of biodiversity, community stability, and
ecosystem functioning [13]. Microbial communities, either bacteria or fungi, have been
reported to function importantly in decomposition processes of organic carbon, as well
as other substrates in the sediments of mangroves [14–16]. High-throughput sequenc-
ing of 16S rDNA and 18S rDNA genes have been applied in studying the prokaryotic
and eukaryotic communities, respectively, and their metabolic potentials in sediments of
mangroves [17,18]. However, even though several general patterns between the mangroves
and related microbial communities were reported, a few studies were conducted to investi-
gate the diversity and functions of microorganisms under different contaminated sediments
of mangroves.

Jiulong River is the second largest river in Fujian Province, China. The estuary of the
river presents a complicated hydrological condition owing to the influence of the tide and
is a typical wetland where mangroves are the dominant vegetation. Many studies have
focused on the environmental conditions and organisms inhabited in this region. However,
the diversities and potential functions of prokaryotic and eukaryotic communities in
mangrove sediments were seldom investigated. In this study, the mangrove systems,
under different contaminated conditions and frequency of human activities, were selected
as the survey areas where grew the same mangrove species, Kandelia candel, to ensure
consistency. The KC-U site was located in an urban area with relatively high human
impact, while the KC-I site was located in Haimen Island in the estuary with aquacultures
around. Sequencing of both 16S and 18S rDNA was carried out to reveal the compositions
of microbial communities, and how they were influenced by environmental factors in the
sediments of mangrove ecosystems. Based on 16S rDNA profiles, we finally predicted
the potential functions that were distinct (e.g., degradation activities of cellulose and
hemicellulose and functional enzymes involved in nitrogen and sulfur metabolism) between
the two areas.

2. Materials and Methods
2.1. Sample Collections

Two different locations, where K. candel is the primary mangrove plant, were selected
as the sampling sites in the present study. The sediment samples KC-I were collected
from Haimen Island located at the Jiulong River Estuary, Fujian Province, China (KC-I:
117◦57′ E, 24◦24′ N, Figure 1A). Samples KC-U were gathered from Haicang Bay in the
western sea area of Xiamen, Fujian Province, China (KC-U: 118◦2′ E, 24◦27′ N, Figure 1A).
Due to the pivotal driving function of temperature in shaping microbial communities in
sediments [19–21], the samplings were conducted on 10 and 12 November 2020 (18–24 ◦C)
to reduce the influence of temperature. All samples were collected from the uppermost
10–20 cm of sediment near the roots of K. candel. For each location, three biological replicates
were sampled. The sediment samples were then transported to the laboratory and pre-
filtered with a 2 mm pore-size sieve (with the purpose of removing debris, stones, large
metazoans, and grains), followed by being separated as two groups. One group was
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air-dried at room temperature for the determination of environmental parameters and the
other group was stored at −20 ◦C until DNA isolation.
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Figure 1. (A) The locations of sampling sites. KC-U site: 118◦2′ E, 24◦27′ N; KC-I site: 117◦57′ E,
24◦24′ N. Diagonals and light green represented regions with relative more urban human activities
and more natural vegetation, respectively. Mangrove forests dominated by K. candel were labeled
with dark green; (B) photo of KC-I site and (C) photo of KC-U site.

2.2. Environmental Parameters Measurement

The physical and chemical parameters of the sediment samples were measured. The
concentration analysis of total nitrogen and ammonium (NH4-N) was carried out using
the Kjeldahl method in terms of digestion and distillation [22,23]. The determination of
total phosphorus was implemented by the molybdate colorimetric measurement using
the 721-spectrophotometer. For the total organic carbon (Corg) concentration, the analysis
was performed with dichromate oxidation, followed by titration with acidified ferrous
ammonium sulfate [24]. Samples were also undertaken to determine the amount of sedi-
ment sodium, potassium, calcium, and magnesium by inductively coupled plasma atomic
emission (ICP–AES) spectroscopy. In terms of pH, a digital pH meter (pH6+, Thermo
Scientific, Waltham, MA, USA) was applied to measure the values.

2.3. DNA Extraction, PCR, and Illumina Sequencing

Extraction of DNA was conducted using the FastDNA SPIN extraction kit for soil (MP
Biomedicals, Santa Ana, California, USA). The V3-V4 hypervariable region of prokaryotic
16S rDNA was amplified utilizing the primers 515 F (5′-GTGYCAGCMGCCGCGGTAA-3′)
and 806 R (5′-GGACTACNVGGGTWTCTAAT-3′) [25]. The eukaryotic 18S rDNA was
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amplified using the primers SSU0817 F (5′-TTAGCATGGAATAATRRAATAGGA-3′) and
1196 R (5′-TCTGGACCTGGTGAGTTTCC-3′) [26]. Each DNA sample was individually
PCR-amplified. All PCR reactions were carried out in 30 µL reactions with 15 µL of
Phusion® High-Fidelity PCR Master Mix (New England Biolabs), 0.2 µM of forward and
reverse primers, and about 10 ng template DNA. Thermal cycling was as follows: initial
denaturation at 98 ◦C for 1 min, followed by 30 cycles of denaturation at 98 ◦C for 10 s,
annealing at 50 ◦C for 30 s, elongation at 72 ◦C for 60 s, and finally, 72 ◦C for 5 min. Negative
PCR controls without template DNA were included for the reactions. Subsequently, all
amplicons were sequenced on a single run using the Illumina MiSeq 2x300 bp platform
(Illumina, San Diego, CA, USA).

2.4. Sequence Assembly, Clustering, and Annotations

After the separation of raw data to each sample based on the barcodes, both barcodes
and primer sequences were removed. Separated raw data were then merged into raw tags
with the software FLASH (V1.2.11, https://ccb.jhu.edu/software/FLASH/index.shtml,
accessed date: 10 April 2021) [27], followed by the filtrations of the raw tags by quality
filters processed using QIIME (V1.9.1, http://qiime.org/index.html, accessed date: 14
April 2021) [28]. Filtered tags were then classified into operational taxonomic units (OTUs)
at a similarity of 0.97 with the removal of chimera using USEARCH (V7.0 http://drive5
.com/uparse/, accessed date: 19 April 2021) [29]. OTUs from all sequencing datasets were
annotated accordingly, using the RDP classifier (V11.5, http://rdp.cme.msu.edu/accessed
date: 22 April 2021) [30] confronted against the Silva (release 128) [31] by a confidence
threshold of 0.7. The OTUs with ambiguous annotation or unclassified results by one of the
given taxonomic groups were presented as “others”.

2.5. Predicted Profiles of Functions

On the basis of 16S rDNA data, the potential functional information was reestablished
for bacterial and archaeal assemblages from the mangrove sediments using the software
PICRUSt [32]. Closed-reference 97% OTU picking was conducted and then normalized
by PICRUSt for each OTU. For all samples, estimable gene families were predicted from
metagenomic predictions according to the Cluster of Orthologous Groups (COGs) and
KEGG Orthology (KO). The nearest sequenced taxon index (NSTI) represents the accuracy
of prediction and the lower values generally suggest better accuracies. Predicted KO
terms were classified into the second hierarchy of the KEGG pathway. Based on the
KEGG identification, the pathways, comprising enzymes that participated in the biological
degradation of (hemi-)cellulose and the metabolic processes of nitrogen and sulfur, were
then acquired. According to the 18S rDNA data, functional classifications of fungi were
analyzed using FUNGuild [33].

2.6. Statistical Analysis

For the analysis of α-diversity, the community diversity parameters (Shannon in-
dex) were calculated using the Mothur software (V1.30.2, https://www.mothur.org/wiki/
Download_mothur, accessed date: 9 May 2021) [34], and the rarefaction curves were drawn
by R (version 4.1.0). A two-tailed Student’s t-test was conducted to test whether the envi-
ronmental factors of each location were significantly discrepant. The results of α-diversity
were subsequently compared using one-way ANOVA and Student’s t-test. For β-diversity
analysis, principal component analysis (PCA) was operated in R. The analysis of similarity
(ANOSIM) was applied to statistically test for significant variations in assemblages between
the two sites. Mantel tests were performed in R using the “vegan” package to obtain the
correlations between the environmental factors and the microbial communities (based on
Bray–Cutis similarity). For environmental parameters, Euclidean distance matrices were
calculated via the R-based dist. function. Partial Mantel tests were also performed between
class richness and environmental factors.

https://ccb.jhu.edu/software/FLASH/index.shtml
http://qiime.org/index.html
http://drive5.com/uparse/
http://drive5.com/uparse/
http://rdp.cme.msu.edu/accessed
https://www.mothur.org/wiki/Download_mothur
https://www.mothur.org/wiki/Download_mothur
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3. Results and Discussion
3.1. Overview of the Sediments from the Survey Region

The investigation was carried out in the offshore area, as described above, from
10 November 2020 to 12 November 2020, and the sediment samples from the mangrove
forest of K. candel were collected. Based on the subsequent determinations of physical and
chemical parameters, the results shown in Table 1 revealed several differences between the
sampling sites. The concentrations of magnesium and calcium in KC-I were much lower
than that in KC-U. By contrast, the concentrations of nitrogen and phosphorus in KC-I were
obviously higher, which may be the result of the aquaculture around the estuary of Jiulong
River. Moreover, discrepancies were also observed for the concentrations of organic carbon
and pH between the two sampling regions, presenting an inverse relationship. Previous
studies reported that the total organic carbon and pH in various natural environments
generally have a negative correlation owing to their innate internal relationship [35,36].
The decomposition of a relatively high abundance of organic carbon could reduce the
environmental pH by producing organic acids [37]. This was consistent with the adverse
concentrations of organic carbon and pH in this study, also indicating that the sediments
from Haimen Island were more fertile.

Table 1. Sampling site locations and environmental parameters.

KC-U KC-I

Date 10 November 2020 12 November 2020

Location 118◦2′ E, 24◦27′ N 117◦57′ E, 24◦24′ N

S1 S2 S3 S1 S2 S3

Na (g/kg) 17.03 19.57 18.14 16.29 17.18 18.37
Mg (g/kg) ** 16.66 17.94 18.23 11.37 12.4 10.22

K (g/kg) 28.22 27.32 25.98 29.71 27.43 28.59
Ca (g/kg) ** 14.14 15.35 14.75 4.1 3.92 4.39
P (mg/kg) ** 529.14 479.6 455.87 705.87 693.09 788.34
N (mg/kg) ** 783.47 747.25 699.71 939.45 1009.8 996.62

NH4-N (g/kg) 15.67 14.53 16.85 14.06 15.68 15.97
Corg (g/kg) * 15.3 14.56 11.63 19.64 17.98 17.27

pH ** 8.25 8.15 8.24 6.19 6.36 6.2
t-test comparison statistics are shown: * p < 0.05, ** p < 0.01.

3.2. Diversity and Distribution of Prokaryotes and Eukaryotes

For prokaryotic microbial communities, 16s rDNA sequencing obtained 586,767 high-
quality sequences, which were clustered subsequently into a total of 11,460 OTUs. As
for eukaryotic microorganisms, 18s rDNA sequencing produced 349,972 high-quality
sequences, which were then clustered totally into 300 OTUs. The rarefaction curves were
basically saturated for each sample (Figure 2A). According to the results of Mann–Whitney
U test, the Shannon index value of prokaryotes samples in KC-U was significantly higher
(p ≤ 0.05) than that in KC-I (Figure 2B). In β-diversity analysis, PCA results for prokaryotes
and eukaryotes both suggested that the communities shifted across the two areas by
partitioning of the sites (Figure 2C). According to the scatter plots of the first two axes, these
four variables illustrated two sampling locations with distinct environmental factors at
both organismal levels: the KC-U site was associated with the concentration of magnesium,
calcium, and pH, while the KC-I station was related to the concentrations of nitrogen and
phosphorus.

The relative abundances of prokaryotic and eukaryotic classifications in the two
locations presented different patterns (Figure 3). The abundance analysis of OTUs at 16S
rDNA level showed that a total of 6219 (54.27%) OTUs were detected in both samples,
and 2931 (25.58%) and 2310 (20.16%) OTUs were observed exclusively from KC-U and
KC-I, respectively (Figure 3A). At the 18S rDNA level, the results showed that a total of
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115 (38.33%) OTUs were detected in both samples, and 85 (28.33%) and 100 (33.33%) OTUs
existed exclusively in KC-U and KC-I, respectively (Figure 3A).
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Among the prokaryotic communities, bacteria accounted for 85.5% of the total se-
quences, comprising 79.3% and 91.7% in KC-U and KC-I, respectively. The account of
archaea in KC-U (20.6%) was more than in KC-I (8.3%). The diversities of bacteria commu-
nities were similar between the KC-U and KC-I sites (Figure 3B). At the taxonomic order
of phylum, the most abundant group from the two locations was Chloroflexi, of which
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the Anaerolineae was the dominant class. Chloroflexi was also detected in other studies
focused on the mangrove root-associated microbial communities, while it usually presented
relatively low abundances [16,38–40]. The class Anaerolineae, as high abundant anaerobic
bacteria in mangrove sediments, functioned in the biological reactions of reducing dissimila-
tory nitrate to ammonium under facultative hypoxia environments and made contributions
to the generation of ammonia nitrogen [41]. Moreover, the heterotrophic bacteria Anaero-
lineae was reported to occupy higher proportions in the upper soil zones of mangroves
and participate in the degradation of organic compounds [9]. In this study, the relative
abundance of Anaerolineae was positively correlated with organic carbon, nitrogen, and
phosphorus, indicating a potential promotion of Anaerolineae by these substrates, especially
in the KC-I site, with higher concentrations of nitrogen and phosphorus discharged from
nearby aquaculture (Figure 4A). Moreover, Acidobacteriota, Desulfobacterota, and Pro-
teobacteria also exhibited high abundances in the investigated areas, which was consistent
with previous studies [39,42]. These results suggested that Chloroflexi, Acidobacteriota,
Desulfobacterota, and Proteobacteria might constitute the core prokaryotic communities
of mangrove sediments. On the other hand, the Bacteroidota was identified in both re-
gions. Generally, Bacteroidota was considered as the specialists during the degradation of
macromolecules in the mangrove sediments, such as complex polysaccharides and proteins,
to acquire carbon, amino acids, and sulfur [43]. In terms of archaea, Crenarchaeota was
observed in both sites, consistent with the fact that Crenarchaeota were usually found to
predominate among the archaeal communities in subsurface sediments of mangroves [17].
In addition, the majority of obtained Crenarchaeota belonged to Bathyarchaeota class, a
worldwide distributed taxon in anoxic sediments [44]. The abundance of Bathyarchaeota
was suggested to be related to the total organic carbon [45,46]. However, in this study,
Bathyarchaeota was detected to show higher abundances from KC-U (16.8%) than that from
KC-I (4.4%), in which the total organic carbon was relatively lower. Further investigations
might be required to elucidate this feature. Moreover, several other archaea such as Eur-
yarchaeota and Asgardaeota were found in this study. These groups function possibly in
transporting and assimilating peptides in mangrove sediments, but they were observed as
the minor phylum in both sites. Further analysis at the classification level of family was
focused on several dominant phyla mentioned above. In Chloroflexi, the family Anerolin-
eaceae presented the highest abundances, followed by SBR1031, both of which belonged to
the order Anaerolineae. Unlike this, diverse subgroups at the family level showed similar
abundances in both phyla of Desulfobacterota and Proteobacteria. Moreover, only the
family Nitrosopumilaceae from Crenarchaeota was identified with a relatively lower content,
while no detailed classification information was obtained for Bathyarchaeia (Figure 5A).

As for the eukaryotes in mangrove sediments, fungi communities were primarily
focused. Fungi accounted for 82.78% of total sequences based on the 18S rDNA sequenc-
ing, comprising 77.0% and 88.5% in KC-U and KC-I, respectively. The composition of
eukaryotic communities differed obviously between the two sites (Figure 3B). At the level
of phylum, Ascomycota was the dominant taxonomic group in both sites, while the class
compositions of Ascomycota were different. Among the subdivided class, Dothideomycetes
and Eurotiomycetes exhibited a higher proportion of eukaryotic communities in KC-U,
while the Sordariomycetes were the dominant class in KC-I. Moreover, the Saccharomycetes
present higher abundance in KC-I (20.8%) than that in KC-U (1.3%). Previous investigations
reported that the groups Dothideomycetes and Sordariomycetes were detected to be highly
abundant in the mangrove leaves and soils [15,39,47]. Saccharomycetes was detected mainly
in the rhizosphere soil compartment [39] or as the dominant group (99.5%) in polycyclic
aromatic hydrocarbons (PAHs) contaminated mangrove forest [48]. Members from the
Saccharomycetes class grew frequently in anthropogenically polluted sites [49] and could
enhance the bioavailability and degradability of PAHs [50]. Therefore, the more abundant
Saccharomycetes detected from KC-I suggested a possible higher PAHs pollution in man-
grove sediments from Haimen Island. In addition, microbial assembly in Ascomycota
showed a high diversity of compositions at the family level, as shown in Figure 5B. The



Sustainability 2022, 14, 3333 9 of 16

family Saccaromycetaceae and Lulworthiaceae, which presented higher content in KC-I, were
the dominant subclusters in the order of Saccharomycetes and Sordariomycetes, respectively.
For Dothideomycetes, almost no family group with high abundances was observed at the
family level. In the phylum Basidiomycota, the class with the highest abundances was
Agaricomycetes from the KC-I site, while for the KC-U site, the dominant class was Tremel-
lomycetes. On the other hand, the multiformity of communities in Basidiomycota was
relatively lower than that in Ascomycota. Detection of the phyla described above was
consistent with the previous studies on mangrove ecosystems, indicating potential usages
of these fungi from mangrove sediments for bioremediation [51,52].

3.3. Environmental Factors Shaping the Microbiome Communities

A Mantel test was conducted to ascertain the influence of each environmental param-
eter on constructing the microbiome communities in the selected locations of mangrove
forest. Among the different factors, calcium exhibited the relatively highest impact on
the communities at the eukaryotic and prokaryotic levels (Table 2). Calcium is generally
required to maintain cell structure, motility, and cell division, and plays an important
role in the permeability of ions, sugar, and amino acids [53,54]. The high correlation val-
ues between calcium and microbiome communities were found in samples of mangroves
sediments from the urban area [55]. Coincidentally, the KC-U site was also located in
the urban area and presented high correlations with calcium (Figure 2C). These results
suggest the possibility that the microbiome communities of mangrove sediments might
be influenced indirectly by human activities, which resulted in more discharge of calcium
near the urban area. Moreover, nitrogen, magnesium, and phosphorus also presented less
significant correlations, indicating that they may have potential contributions to shaping
the composition of microbial communities. Generally, these macronutrients are of high
relevance to the activity and growth of microorganisms [14,56].
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Table 2. The correlations between assemblages and environmental factors based on the Mantel test.

Na Mg K Ca P N NH4-N Corg pH

16S rDNA Level 0.354 0.436 * −0.164 0.768 ** 0.393 0.529 * −0.114 0.282 0.225

18S rDNA Level 0.079 0.654 −0.218 0.914 ** 0.657 * 0.786 * −0.254 0.454 0.526

The significances are tested based on 999 permutations: * p < 0.05 and ** p < 0.01.

For prokaryotic groups, numbers of prokaryotic communities were significantly influ-
enced by nitrogen, especially the taxonomic classes of Syntrophobacteria, alpha-proteobacteria,
and Dehalococcoidia (Figure 4A). Additionally, phosphorus, organic carbon, magnesium,
and calcium showed either positive or negative correlations with several groups, such
as Desulfuromonadia, Phycisphaerae, Gemmatimonadota, etc. It is worth mentioning that
pH only presented a negative correlation with several classes from prokaryotic communi-
ties. In terms of eukaryotic communities, Dothideomycetes and Saccharomycetes presented
significant correlations with magnesium and phosphorus (Figure 4B) but with opposite
trends. According to the abundances of Dothideomycetes and Saccharomycetes, shown in
Figure 3B, the reversed relationship indicated their diverse requirements of the magnesium
and phosphorus in mangrove sediments. Another class of Ascomycota, Sordariomycetes,
which differed from Dothideomycetes and Saccharomycetes, presented a low correlation with
the environmental factors.

3.4. Microbial Functional Prediction

PICRUSt and FUNGuild software programs were utilized to predict the functional
profiles of microorganisms from the two sites based on the clusters of orthologs groups
database. The PICRUSt-based NSTI values of the sediments were higher than 0.03 (NSTI
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= 0.14 ± 0.01), and therefore, the prediction of microbiome functions and pivotal genes
suggest a general indicator of the trends in community functions on the prokaryotic level.
PICRUSt assignment of predicted metagenomics contents at the level of COGs indicated a
similar functional pattern between KC-U and KC-I sites (Figure 6A). Based on the integra-
tion of OTUs from both sites, the main prokaryotic community functions in the mangrove
sediments were found to participate mainly in amino acid transport and metabolism, en-
ergy production and conversion, and signal transduction and mechanisms (Figure 6B).
The results of FUNGuild analysis assigned all the OTUs to a total of 7 trophic modes and
19 guilds, of which the dominant trophic mode was Saprotroph, with a percentage of
48.23%, followed by Pathotroph–Saprotroph–Symbiotroph (2.29%) and Pathotroph (1.99%)
(Supplementary Table S1). The high abundance of fungal groups belonging to Saprotroph
was expectable in view of the growth conditions in mangrove ecosystems. Moreover, the
compositions of fungal trophic modes were similar to the situation reported, and almost all
guilds showed no significant differences between the two sites [57].
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In addition, the results of KEGG pathways also suggested that the metabolic pro-
cesses related to the prokaryotic community functions were similar between the two sites
(Figure 6C). In terms of the decomposition of (hemi-)cellulose, which is generally abundant
in the sediments of mangrove wetland, many enzymes involved in the degradation of them
were detected (Figure 7A). The abundances of these enzymes presented higher abundances
in KC-I than that in KC-U, especially the enzymes such as beta-glucosidase (EC:3.2.1.21),
cellulose (EC:3.2.1.4), α-galactosidase (EC:3.2.1.22), and β-galactosidase (EC:3.2.1.23). The
more plentiful enzymes in KC-I samples might suggest a more active degradation of (hemi-
)celluloses in the KC-I site, even if the two sites exhibited a similar pattern of carbohydrate
metabolism based on KEGG pathways.
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metabolisms of nitrogen and sulfur in the two sites. t-test comparison statistics are shown: * p < 0.05,
** p < 0.01.



Sustainability 2022, 14, 3333 13 of 16

Furthermore, the analyses of key enzymes in the metabolism of nitrogen and sulfur
were carried out (Figure 7B). The most abundant enzymes related to nitrogen metabolism
were the nitrate reductase, nitrous-oxide reductase, nitrite reductase (NADH) subunit, and
nitronate monooxygenase. The first three enzymes are involved generally in denitrification
or dissimilatory nitrate reduction, coupled to the pathways of oxidizing organic compounds.
In this study, the abundances of these enzymes exhibited higher levels in KC-I, which might
be related to the relatively higher concentration of organic carbon in KC-I than that in
KC-U. Nitronate monooxygenase is flavin mononucleotide (FMN)-dependent that oxidizes
(anionic) alkyl nitronates with dioxygen and, in the case of the enzyme from Neurospora
crassa, (neutral) nitroalkanes to the corresponding carbonyl compounds and nitrite [58]. A
previous study revealed that the high abundance of nitronate monooxygenase could effec-
tively promote the nitrification of NH4-N and reduce the overlying water and porewater
in the sediments [59]. However, less attention has been paid to this enzyme in mangrove
sediments. On the other hand, less than 30 genes annotated as ammonia monooxygenase
was observed in both sites. The low abundance of ammonia monooxygenase might be
caused by the periodic anaerobic condition of the mangrove sediments, due to the strict
aerobic requirement of ammonia oxidization [60]. In addition, most of the enzymes related
to sulfur metabolism were identified to participate in the processes of sulfur reduction,
which occurs constantly at low dissolved oxygen conditions (Figure 7B). The number of
oxidation genes, such as sulfite oxidase, could be reduced by the low dissolved oxygen
conditions in the mangrove sediments, which are conducive to inhibiting the production of
black and smelly compounds including FeS and H2 S [59].

4. Conclusions

This study revealed the main prokaryotic and eukaryotic groups participating in the
degradation of organic compounds and absorbing most of the substrates in mangrove
sediments under different contaminated conditions and frequencies of human activities.
In terms of the communities from bacteria, the phyla Chloroflexi, Acidobacteriota, Desul-
fobacterota, and Proteobacteria exhibited high abundances in the mangrove sediments. At
the class level of these phyla, the heterotrophic bacteria Anaerolineae were the dominant
groups in the mangrove sediments from the KC-I site under conditions of aquaculture
and less human impact. In addition, the Crenarchaeota and Ascomycota presented the
highest abundances of archaea and fungi, respectively, participating in diverse metabolic
processes in the mangrove sediments with different environmental conditions. Among the
environmental factors, calcium had the highest impact on microbial communities, which
might be influenced by human activities in the urban area. The substrates, including
nitrogen, magnesium, and phosphorus in mangrove sediments, were also observed to have
potential contributions to shaping the compositions of microbial communities. Further-
more, results indicated that the predictive potential functions utilizing COG and KEGG
pathways were similar in the two sites. However, the enzymes of interest were identified
that predominated differentially in the two regions, which might be related to the relatively
higher concentration of organic carbon in KC-I sites. Results in the present study indicated
that the diversities and potential roles of microbial communities in mangrove sediments
experience different conditions and effects of human activities. The microbial communities
played positive roles in accommodating contaminated intertidal ecosystems. Nonetheless,
more investigations are needed to investigate the spatial and temporal compositions of the
sediments’ communities in broader, more extensive regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14063333/s1, Table S1: Abundances of predicted functional
classifications of fungal communities.
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