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Abstract: Given they are two critical infrastructure areas, the security of electricity and gas networks
is highly important due to potential multifaceted social and economic impacts. Unexpected errors or
sabotage can lead to blackouts, causing a significant loss for the public, businesses, and governments.
Climate change and an increasing number of consequent natural disasters (e.g., bushfires and floods)
are other emerging network resilience challenges. In this paper, we used network science to examine
the topological resilience of national energy networks with two case studies of Australian gas and
electricity networks. To measure the fragility and resilience of these energy networks, we assessed
various topological features and theories of percolation. We found that both networks follow the
degree distribution of power-law and the characteristics of a scale-free network. Then, using these
models, we conducted node and edge removal experiments. The analysis identified the most critical
nodes that can trigger cascading failure within the network upon a fault. The analysis results can be
used by the network operators to improve network resilience through various mitigation strategies
implemented on the identified critical nodes.

Keywords: network science; energy networks; cascading failure; percolation theory; scale-free
network; Barabási-Albert model

1. Introduction
1.1. The Resilience of Energy Networks

Power grids are considered one of the most complex networks in the modern era. These
networks connect power generators to end-users through transmission and distribution
lines over long distances [1]. The complexity of power networks is also increasing due to the
transformation that these networks are undergoing due to factors such as renewable energy
uptake and decentralisation. Given their role as critical societal infrastructure, maintaining
a high level of resilience in these networks against any fault that can lead to blackouts is
vital. Even if rare, such events entail catastrophic socio-economic and life threats. Hence,
energy network resilience has been given greater importance in researching blackouts and
obtaining more resilient power networks for preventing future devastating events.

There is evidence of large blackouts causing disruptions in different parts of the
world, including developed countries such as the USA, Canada, and Germany. These
events eventually affect interdependent essential infrastructure systems including energy,
transportation, economy, or communication systems. For example, 50 million North
Americans observed a widespread blackout on 14 August 2003, which took two days
to restore power fully in some locations [2]. On 4 November 2006, a major blackout in
Germany triggered a ripple effect on the power network, causing 15 million Europeans
to lose access to power [3]. In northern and eastern India, major power blackouts, on
30 July and 31 July 2012, are considered two of the most extensive power outages in
history, impacting 620 million people, which is half of India’s population [4]. In 2016, South
Australia experienced a widespread power outage triggered by a storm event that affected
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850,000 people throughout the state [5]. These large blackouts are technically described as
cascading failures of the power network.

Sometimes, cascading failure can be initiated by a limited number of disturbances or
errors leading to a ripple effect throughout the whole network. North American Electric
Reliability Corporation (NERC) defines cascading failure as “the uncontrolled successive
loss of system elements triggered by an incident at any location” [6]. Studies have also
shown how an extensive complex power network can disintegrate due to the collapse of a
single transformer, which eventually supports cascading failure theory [7]. More recently,
in May 2021, Taiwan witnessed a blackout with cascading failure mechanism triggered by
a power plant in southern Taiwan which off-guarded 24 million residents affecting four
million households [8]. In May 2021, an explosion at Callide Power Station in Queensland,
Australia, led to a catastrophic failure affecting 470,000 customers without power [9,10].
The investigation report indicated that the fire accident at the Callide Power Station tripped
other power plants, causing a domino effect across the Queensland electricity network [9,10].
Due to the occurrences of cascading events such as those described, it is crucial to study the
impact of possible disturbances (random or intentional) on critical networks for developing
efficient safeguards against blackouts. The growing climate change challenges, including
the severe weather conditions associated with worldwide heatwaves, bushfires, and floods,
are another emerging motivator of the heightened interest in the analysis of network
resilience against disturbance [11,12].

1.2. Australian National Energy Network

This paper focuses on the Australian electricity and gas networks (refer to Figure 1) and
aims to analyse their robustness against cascading failure. Here, we provide a topological
description of each network.

Figure 1. Spatial Australian (east coast) national transmission networks of (a) electricity lines and (b)
natural gas pipelines.

Australian electricity network: The Australian national electricity market, operated
by the Australian energy market operator (AEMO), is the longest electricity network
in the world, spanning over 5000 km from northern Queensland to the states of South
Australia and Tasmania as illustrated in Figure 1a [13]. The network is undergoing a notable
transformation to install renewable technologies such as solar PV, wind, and pumped
hydro [13]. Nevertheless, it is still a highly coal-dependent network with some old brown or
black coal-fired power plants. According to Australia Institute researchers, Australia’s coal-
fired power plants are ageing and the country could observe frequent outages due to ageing
infrastructure, extended summer weather, heatwaves, and bushfires [14]. The network has
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witnessed continuous disturbances over the past decade. For instance, South Australia
experienced a significant blackout in 2016. It has been reported that one distributor had
to compensate 75,000 customers, a payment of more than AUD 20 million due to the
blackout [15]. In 2019, due to an extreme heatwave, around 200,000 people in Victoria
suffered a power supply outage [16]. Ausgrid, a distribution network provider in the state
of NSW, reported a total of 2485 h of outage in the first quarter of 2019, which affected
approximately 545,558 customers along with associated networks [17]. The 2021 fire at the
Callide power station (coal-fired, commissioned in 1965) in Queensland is the latest major
accident, affecting almost half a million customers [9,10].

Australian gas network: The gas network, also operated by the AEMO, is Australia’s
integrated energy system and plays a critical role in the value chain of natural gas, deliver-
ing 40% of Australia’s domestic gas consumption [18]. Although significant gas network
incidents are rare in Australia, the consequence of an incident can significantly affect the
community. For instance, the NSW gas network performance report (2016–2017) stated that
lost hours and unplanned losses were approximately 12.34 h per 1000 customers due to
network disturbance [19]. In 2013, the network was highly disrupted due to a bushfire [19],
and there are growing concerns about global warming impacts.

The whole gas network can collapse if there is damage to the pipeline due to inade-
quate maintenance, accidental damage, ageing infrastructure, weather events, sabotage, or
land movement [20]. Pipelines’ leakage can also cause severe health and environmental
issues affecting the surrounding community, making the robust operation of this network a
critical national security issue.

In summary, both networks have been facing supply-demand challenges rooted in
various reasons, mainly stemming from the continuous population growth and improved
quality of life through technology [21]. The addition of climate change impacts and increas-
ing international cyber-attacks on infrastructure networks has created increasing concern
over the future security of Australian gas and electricity networks.

Furthermore, immense research is needed to analyse the resilience of these networks
concerning the national net-zero-emission targets toward 2050 [22]. The recent COVID-19
pandemic situation has also had short-term and medium-term impacts on these networks,
increasing their operation complexity [23]. All of these necessitate a systematic resilience
analysis of the two networks against any uncertain disturbance that can trigger widespread
service disruption.

1.3. Resilience Analysis with Complex Network Theories

Various studies have proposed to increase the reliability of the energy networks against
cascading failure by focusing on robustness and vulnerability measures of the networks [24].
Some studies suggest malfunction in the form of cascading failure or blackouts within
power networks are caused by inadequate comprehension of the interdependencies present
in the network rather than operational issues such as low investment or maintenance [25].
To grasp a better understanding of such interdependencies, the robustness epigraph of
complex networks have become very popular among the scientific community [26].

Complex network theories analyse real-world networks of any type (e.g., the World
Wide Web, social networks, infrastructure networks, and biological networks) by combining
the concept of graph theories [27]. Similarly, the energy grids are networks comprised
of many nodes (e.g., generation and load) and edges (e.g., electricity transmission lines
or gas transport pipelines) as connections [28]. These networks can be characterised as
complex networks by analysing their statistical characteristics, including degree, degree
distribution, path length, and clustering coefficient, using graph theories [25]. Knowing
these features can provide some insight for network operators to assess network robustness.
For instance, Meng et al. (2004) found that the cascading failure impact of the small-world
network has a unique shorter mean distance along with a higher clustering coefficient
which facilitates network failure [29]. Studies such as these have motivated research efforts
to identify topology features of networks before any further detailed investigation.
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For example, western United States, northern Europe, and northern China electric-
ity networks have been identified as small-world networks by comparing their cluster-
ing coefficient and path length [29,30]. Ding and Han (2006) established that China’s
Sichuan-Chongqing and Anhui power grids are close to the characteristics of the random
network [31]. An exponential distribution has been observed in many studies [32,33], while
power-law distribution has been reported for the North American Power grid networks [34].
In an informative study, Cotilla-Sanchez et al. (2012) compared three different power grids
in North American regions by evaluating the statistical characteristics of a same size small-
world graph, scale-free graph, and random graph [35]. The research concluded that these
network distributions are more proximate to exponential distribution than power-law
distribution and do not follow the characteristic of small-world or scale-free networks.

Following the former studies, this paper aims to investigate the robustness of Aus-
tralian electricity and gas networks using network science theories. Our key research aims
include the: (1) identification of a network model which fits best with Australian gas and
electricity networks; (2) identification of robustness models which can efficiently detect
the critical nodes and edges of both networks; (3) measurement of the resilience of the
two networks considering random failure or targeted attacks, including nodes and edge
removal experiment; and (4) comparison of the difference in topology of the two networks
and their behaviour towards failure.

The following section provides a literature review of the network science theories. It
also signifies the implication of the different concepts of percolation theory for checking
system robustness using random graph models and scale-free networks. This will be
followed by depicting the outcome of the experiments of random attacks and tolerance
to cascading failures through attack measures and node and edge removal study. Last, a
summary of the findings and implications has been outlined.

2. Literature Review

The first step in any network analysis is to identify the model that can most accurately
estimate the characteristics of the given network. There are many classifications of complex
network structure, such as the Erdős-Renyi (ER) stochastic network (Erdös 1959), Watts-
Strogatz (WS) small-world network [36], and Barabasi-Albert (BA) scale-free network [37],
which are described in this section.

2.1. Random Graph Models

Erdős-Rényi (ER) Model: Paul Erdős and Alfréd Rényi founded random graph theory
in 1959 and over the following years, Erdős established the logicality of using probabilistic
methods to tackle complex network problems [38]. Erdős’s theorem claims that the existence
of a graph must meet specific properties: it is a perfectly normal proclamation showing no
indication of the randomness used in its substantiation [39]. According to the Erdős-Rényi
(ER) model, a network can be generated by placing a number of nodes (n) and adding up
edges among them in conjunction with independent probability (p) for each of the node
pairs [40].

Gilbert-Elliott (GE) Model: As per the Erdős-Rényi model, Gilbert and Elliot used
probabilistic methods, but different graph definition approaches [41]. The GE model is
widely used to represent the state of a channel (G-Good, B-Bad) by analysing the errors
on the channel. The model has two states: the Good state corresponds to a successful
connection and the Bad state refers to a loss connection [42]. Gilbert claimed that for N
number of nodes, the possibility of each edge joining those pair of nodes has probability
p. A graph with q edges has the probability pq (1-p) N-q where N is the number of possible
edges equalling n(n− 1)/2.

2.2. Scale-Free Network Models

Barabási-Albert (BA) model: The key issue of random graphs is their failure to ade-
quately predict hubs in the network, which are nodes with a very high degree, but with
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low frequency (also known as the tail of a network distribution). Scale-free networks are
generally dominated by a few highly connected hubs [43]. Albert et al. [44] suggested
that highly interconnected nodes somehow control the behaviour of scale-free systems
and their resilience. Such nodes also tend to have a higher probability of acquiring new
edges. According to this model, the network considers the following two steps: (1) Growth
occurs when a new node adds every time with q (≤q0) links connecting q existing nodes in
the network. (2) Preferential attachment occurs when the connection of a new node to an
existing node i depends on its degree. A growth-based preferential attachment model is a
highly used mechanism to explain the frequency of power-law degree distribution.

The BA model aimed to understand how a network originated in the first place and to
capture how a real network grows from its origin. The limitation of the BA model is that it
can provide the still status of the network in image form but fails to match the growth of
the real network.

Extension of Barabási-Albert (BA) model: BA and Watts-Strogatz (WS) models have
been established as pioneer models in network science considering real-life network com-
plexity. Holme and Kim (2002) extended the BA model by including a triad formation
step [26]. Klemm and Eguıluz [45] used the finite memory of nodes to construct a grow-
ing network model. Saramaki and Kaski [46] worked on an undirected scale-free model
produced by random walkers. Li and Chen (LC) [47] developed a model-evolving local
world network model which is applicable to the Internet and society, but the LC model fails
to have a high clustering coefficient. Fan and Chen [47] developed a Multi Local World
(MLW) model to describe the Internet structure with better statistical performance. The
Bianconi-Barabási model is another extension of the BA model, with it being assumed that
nodes with higher fitness have a greater probability of acquiring new links [48].

2.3. Small World Network Models

Watts-Strogatz (WS) Model: In 1998, Duncan J. Watts and Steven Strogatz introduced
the small-world network model, which is based on the random graph but has a short
characteristic path length with a high network cluster [49]. The model assumes that each
vertex of the nodes is connected to the nearest fixed number of vertices (periodic boundary
condition). A shortcut bond is created between randomly selected vertices [50]. The WS
small-world network is a special model that lies just between the homogenous degree
distribution and heterogeneous degree distribution models and the BA model [51]. The
following are some characteristics of the WS model:

1. The model has existing cliques without hubs, a higher level of clustering coefficient;
2. The degrees of nodes follow a fat-tailed distribution;
3. The model has a smaller average path length than Erdos-Renyi networks:

Average Path Length (APL) = ln n/ ln d

Small-world network properties: Two statistics used for detecting small-world proper-
ties are: (1) the clustering coefficient and (2) the average shortest path length. The average
shortest path length (L) is defined as

L =
1

N(N − 1) ∑N
i=1 ∑N

j=i+1 Lmin(i, j) (1)

Clustering has been found to be a common feature for many complex networks [52].
Within any network, the extent of clustering can be quantified by the clustering coefficient
(C). For any node Ni with ki neighbours, if Ei indicates the total links between ki neighbours,
then the clustering coefficient is defined as:

C =
1
N ∑N

i=1
2Ei

ki(ki − 1)
(2)
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To determine a network to have small-world properties in comparison to the Erdős-
Rényi random graph, the conditions require a low average path length (L ≈ Lrandom graph)
and high clustering coefficient (C � Crandom graph) [53].

The probability distribution of the three network models: The random networks follow
a Poisson distribution. The degree distribution of small-world networks (Watts-Strogatz
model) follows the exponential function. It tends to decrease at a relatively higher degree
with the reduction in the number of nodes. The scale-free network follows a power-law
function which is quite different to the exponential function. The rate of decrease in the
distribution is slower in power-law relative to the exponential function. Thereby, the degree
distribution of nodes tends to decrease at slower rates in scale-free networks than the
small-world networks.

3. Robustness Analysis of Energy Networks

Micro and macro network characteristics: In the past few decades, different fault
models have been introduced to understand the mechanism of cascading failures in energy
networks. The models mainly differ on their microscopic component characteristics and
macroscopic topological features [27]. For instance, for the electricity network, there are
three classes: static model, component cascading failure, and power network dynamics [54].
The typical examples of static models are the betweenness centrality model [26], the effective
efficiency model [55], and the Motter-Lai model [56], which are used to describe the
macroscopic topologies for analysing the security of energy networks. The component
cascading failure model considers the component failures of a network as a reason for
cascading failure rather than the specific macroscopic topologies of a network [57]. The
CASCADE model and branching process model [57] are examples of component-based
class. The power network dynamics category includes models such as the ORNL-PSerc-
Alaska (OPA) model, hidden fault model, or Manchester model [27]. To indicate robustness,
these models are described by featuring average clustering, path length, transmission
efficiency, or maximum component size. Another widely studied theory for robustness
analysis is percolation theory which will be discussed further in this section.

Percolation theory: Percolation is the analysis of how a network of discrete elements
relates to each other. Classic percolation theory is a division of probability theory that
deals with properties using random channels [58]. Here, properties include the analysis of
clusters and statistics of their elements. This theory was first introduced by Broadbent and
Hammersley [59], while Sahimi later evaluated the practical application of this theory in
engineering problems [60]. Over the years, researchers established two models based on
percolation theory, being the bond percolation model and site percolation model that will
be discussed later in this section.

Percolation theory for random graph: The key drawback of random graphs in dealing
with real-world networks is the unrealistic assumption that each node can attract edges
with the same probability following a Poisson distribution [61]. In the real world, networks
such as the World Wide Web, social networks, citation networks, and language networks
show a trend of exponential degree or power-law distribution which is a non-Poisson
distribution. The Watts-Strogatz model has made the percolation study more logical as it
allows producing random graphs using a non-Poisson degree distribution [62]. This means
with the known constant mean rate (pc), the probability of each node connecting with edges
has no fixed pattern in terms of degree distribution within a network.

Percolation theory for scale-free networks: Schwartz et al. (2002) showed that there are
direct links between many complex networks in nature and these links emulate a property
that affects such networks’ large-scale topology and navigability [63]. Naturally occurring
networks such as the Internet, scientific collaboration, and social networks exhibit power-
law or scale-free degree distributions. For instance, degree distribution p(k) is referred
to the probability of random nodes linked to exactly k other nodes. Hence, p(k) = Ck−λ

where k ≥ m. Here, m refers to minimal connectivity and C refers to the normalisation
factor [64]. If a large network is weakened by the arbitrary removal of a fraction (p) of its
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nodes, then if p is small, it is expected that the network will not be affected at all unless
the large component of connected nodes constituting the finite fraction of the entire size
of the original network is disrupted. To understand the problem of percolation, Cohen,
Ben-Avraham, and Havlin (2002) claimed that when exceeding a particular threshold of
dilution, the large component breaks down and the network effectively collapses [64]. For
example, a scale-free network such as the Internet can still operate as a connected network
after removing 95% of the nodes but the strategic removal of a small fraction (e.g., 2.5%) of
the important nodes can collapse the whole network [65]. Cohen and Callaway [66,67] used
percolation theory to demonstrate that if interconnected nodes are purposively removed,
the whole network collapses to remote sub-networks, implying there is a strong robustness
to random failure but fragility against deliberate attack.

Bond and site percolation: Addressing percolation in a network study, bond perco-
lation refers to the probability p of the existence of an edge transferring from one node
to another, while site percolation describes the situation focusing on nodes rather than
the edge. As such, for percolation analysis of network structure, we can assume a ran-
domly connected network with probability p for the existence of nodes (site percolation) or
edge between two given nodes (bond percolation) [68]. For site percolation, probability
p = 0 implies the existence of no cluster in the system. For bond percolation, probability
p = 0 implies all clusters have a size of one, hence no nodes are connected in the system.
Probability p = 1 means a single cluster representing the whole network in both models.

The function of probability p is used to observe the structural change of percolation
transition between these extreme configurations, which is monitored through percolation
strength and the size of the largest cluster considering the percolation transition order
parameter [68]. The order parameter describing the power-law growth as an exponent
function is the same in both processes for analysing the distance from the critical point [69].
Critical exponents refer to the average size of finite clusters and the distribution of the
cluster size, which is the singular behaviour of the observables and plays an important role
to group networks in different classes through characterisation of the percolation transition
properties [70]. Theoretically, there is a perfect equivalence between these two models [71]
and no difference has been reported between the critical exponents of both, although their
percolation thresholds could be different [67,72]. Nevertheless, more recent studies have
reported inconsistencies in such site-bond universality in terms of macroscopic observable’s
behaviour considering anomalies in critical exponent values [68].

The percolation threshold is a fundamental concept of percolation theory which can be
referred to as pc [58]. It is the value of probability p in which topological transition occurs
and network structure shapes to a connected one from a disconnected one, and hence is an
effective feature in the analyse of network robustness. The critical value of pc identifies the
network path for connected nodes. For example, the pc for bond percolation and square 2D
lattice is 0.5 [69].

K-Clique percolation theory: In a random graph, k-clique can be a subgraph where
the distance between any of the two vertices is not greater than k [73]. This is a popular
and effective approach to identify overlapping clusters in a large scale-free real network.
In k-clique percolation random graphs, k is the size of total subgraphs of k nodes where
large-scale networks are numerically and analytically explored. Two k-cliques can be
adjacent to each other when they share k1-1 nodes and a k-clique percolation cluster is
equivalent to a community [74]. When there are overlapping cliques in one network, the
robustness becomes very strong and thus the clique method is very efficient and interesting
for studying robustness. Cliques are identified by evaluating the clustering coefficient. A
higher value of the clustering coefficient indicates there is the possibility of the presence
of high cliques within the network. According to the earlier theoretical discussion, a
small-world network is more robust than Erdős-Rényi or BA networks as it has a high
clustering coefficient.
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In this report, we aim to identify how the Australian gas and electricity network is
formed and what size clusters exist within the network. A network needs to have a large
size of communities, as it would be strongly robust to errors. Otherwise, a deliberate attack
in the critical nodes will bring catastrophes, as the network would be broken into small
isolated fractions of the cluster.

4. The Case Study Dataset

The electricity and gas networks are the main research elements of this project. For
research and experimental purposes, the extracted data was collected in XML and then
converted using reptile technology. The Australian electricity network dataset, which was
last revised in March 2017, was collected from the Geoscience Australia Web Service. It
includes 1180 nodes (generators and substations) and 1465 edges (transmission lines).

For the purpose of this study, the main fields of the datasets are the starting and ending
position of each transmission line through the network, the state where the lines belong,
the voltage (kV) capacity of the line, and the longitude/latitude coordinates of the location.
To contemplate a nonredundant outcome, only outsets and endings of the transmission
lines are considered. While there are no transmission lines that can transfer voltage in
both directions, it is evident that in some lines power passes in one direction at one point
in time and transfers reversely at another point in time. As such, we are considering the
undirected network here. The simplified undirected network of our study has 1180 nodes
and 1465 edges, with its topology illustrated in Figure 2. The network map of Figure 2
can be defined in terms of graph G = (n,e), where n indicates sets of nodes in the graph
including substations and generators in the electricity network and e denotes the edges
between the nodes.

Figure 2. The spatial map of Australian electricity transmission lines across six states/territories.
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The dataset of the Australian gas network was obtained from the Geoscience Aus-
tralia Web Service, which offers datasets related to National Oil and Gas Infrastructure
datasets [75]. The datasets include spatial positions of onshore gas and oil pipelines for
the transmission of gas and oil all over the Australia mainland. The dataset also includes
the position of gas and oil platforms across the territorial waters of Australia. The data
from offshore gas platforms are compiled after gathering information from the Office of
Transport Security (OTS). The raw data was uploaded to the ArcSDE environment which
has geographical datasets of various types held in a relational Database system using FME
(Feature Manipulation Engine). Geoscience Australia extracted the themed feature and
then translated it into a new schema. The dataset was last revised on 1 January 2016. It has
372 nodes, including the receiving and connection points of gas pipelines featuring their
diameter, shape length, owner, and construction year where we identified 212 edges within
the gas transmission system.

5. Results and Discussion

This section discusses and compares the application of the previously mentioned
complex network theories on the collected gas and electricity dataset of Australia. The
feature analysis includes node degree distribution, fitting of the dataset, betweenness
centrality, eigenvector centrality, and attributes such as the highest degree node, core,
and connected components accordingly. For the model implementation, we used the
Anaconda Jupyter programming platform and for plotting, we used the Python plotting
package, matplotlib. In the following sections, we have highlighted important graphical
representations and interpretations of the findings based on the supporting theories.

5.1. Topological Features

There are established approaches such as betweenness centrality or the Monte Carlo
method that analyse system reliability by removing the components from the system to
evaluate the consequences under different strategies of removal [28]. The concept is that the
network can be resilient on holding certain components until the most important element
or combination of some elements are removed leading to the whole network collapse [26].
In this report, the robustness to cascading failures will be analysed applying nodes and
edges as removal elements using topological features and component characteristics.

Degree distribution: Figure 3 shows the degree distribution of the Australian gas and
electricity networks, Nk = {n ∈ G: d(n) = k}.

Figure 3. Node degree distribution of (a) electricity and (b) gas network datasets.
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For more accurate judgement on the best predicting model, we have conducted curve
fitting for each dataset against four models including ER, GE, WS, and BA. The results
for the electricity and gas networks are illustrated in Figures 4 and 5, respectively. These
figures clearly show that both the Barabasi-Albert and Erdos-Renyi models are the best to
predict electricity networks, with the Barabasi-Albert model more suitable to represent the
gas network. It can therefore be concluded that both gas and electricity networks can be
considered scale-free.

Figure 4. Fitness test of electricity network degree distribution with four network models: (a) ER, (b)
BA, (c) GE, and (d) WS.

Centrality measures: We have studied two centrality measures including betweenness
and eigenvectors. Betweenness centrality is the fraction of the shortest paths between any
pair of nodes s and t that passes through a node v, given by g(v) = ∑s 6=v 6=t σst (v)/σst, where
σst(v) is the total number of paths from any node s to any node t through v, σst is the total
number of paths from any node s to any node t, and g(v) = betweenness centrality value
of the node v. The betweenness centrality of gas and electricity networks are illustrated
in Figure 6. For the electricity network, the highest betweenness centrality value is 0.427,
with 1117 of the total 1180 nodes (i.e., 94.7%) having values less than 0.042. This is also an
implication of a scale-free network with a tail (hubs). A similar trend is observed for the gas
network, with 364 of the total 372 nodes (i.e., 97.8%) having betweenness centrality values
less than 0.0005. The other 8 nodes have centrality values in the range of 0.0005–0.005.
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Figure 5. Fitness test of gas network degree distribution with four network models: (a) ER, (b) BA,
(c) GE, and (d) WS.

Figure 6. Betweenness centrality distribution experiment on Australian (a) electricity and (b) gas
network datasets.

Eigenvector centrality provides a more in-depth view of the centrality measure where
the value assigned to a node is based on its influence on the whole network. Initially,
all nodes are considered to have the same level of influence on the network but with the
progress in computing, the nodes with higher degree values have a leveraging influence.
The computation iterates continually by assigning scores to all nodes until the final set of
scores for each node is stabilised.
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The results of the eigenvector centrality of gas and electricity networks are illustrated
in Figure 7. For the electricity network, 1147 of the total 1180 nodes (i.e., 97.2%) have
eigenvector centrality values less than 0.056. Another 32 nodes have values in the range of
0.056–0.227, with only 1 node having a value between 0.512 and 0.569. For the gas network,
362 of the total 372 nodes (i.e., 97.3%) have eigenvalues less than 0.068 and 9 nodes are in
the 0.068–0.549 range. The value of the node with the highest eigenvalue is 0.686.

Figure 7. Eigenvector centrality distribution experiment on Australian (a) electricity and (b) gas
network datasets.

The mean value of eigenvalue measures for the electricity network is 0.0070095714,
with the median being 5.44169 × 10−6. For the gas network, the mean value of eigenvalue
measures is 0.0076266264, with a median (eigenvalue measure) of 1.0135194 × 10−23.

Implications of centrality results: The results summary for both electricity and gas
networks is provided in Table 1. The centrality analysis shows that the highest degree node
is node 293, which is a substation at NSW with a degree of 22. This substation also has
the highest betweenness centrality which reaffirms its hub feature. For the gas dataset, the
highest degree node is located in Victoria, with a degree of 7 within a major demand centre.

Table 1. Summary of highest nodes, core, and number of connected components within two networks.

Electricity Network Gas Network
Highest degree node Node 293 Node “Ddg”
Degree of highest degree node 22 7
Number of nodes in core (% of total nodes) 1092 nodes (92.54%) 11 nodes (2.95%)
Number of connected components 42 160

Core measures: The core of a network refers to the set of nodes in the largest connected
component of the network. The largest connected component of the electricity network has
a count of 1092 nodes (92.54% of the total 1180 nodes) which means that all these 1092 nodes
are connected (Figure 8a). A deeper analysis using the Breadth-First Search Algorithm
(BFS) estimated that there were 42 connected components in the network. In the case of the
gas dataset, the core of the connected components has relatively fewer nodes compared
to the electricity dataset. The largest connected component of the gas dataset had a count
of just 11 nodes (2.95% of the total 372 nodes), but the number of connected components
in the network was estimated to be 160 (Figure 8b). Thereby, we can understand that
there are more independently connected components in the gas network compared to the
electricity network.
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Figure 8. The largest connected component of (a) electricity and (b) gas networks.

5.2. Resilience Analysis against Fault or Failure

In the previous section, we studied various network topology measures such as degree
distribution and centrality. Here, the aim is to study the impact of fault or attack following
any of those discussed measures. We achieve this by conducting node and edge removal
experiments on the Australian electricity and gas dataset.

Random failure versus targeted attack: The robustness analysis was performed to
understand the vulnerability of the electricity network and to estimate which kind of
attack would make the network more prone to collapse. The removal of nodes was
performed by inducing four kinds of attacks: (1) random failure, (2) degree-based attack,
(3) betweenness-based attack, and (4) eigenvector-based attack, which are represented
in Figure 9 (for electricity network) and Figure 10 (for gas network). For the electricity
network, Figure 10 shows that the curve representing degree-based attack drops quicker
than the one representing random failure, indicating that the network is prone to collapse
quicker from a degree-based attack than a random failure. The robustness examined by the
factor of the proportion of nodes in the core indicates that the network offers more resistance
to random-based failure of nodes than intentional or targeted attacks. Furthermore, when
comparing betweenness and eigenvalue centrality attacks, it can be observed that the
network topples relatively quicker in a betweenness centrality attack than an eigenvalue
centrality attack. This can be explained by the fact that the betweenness centrality attack is
based on a targeted single node while the eigenvalue centrality attack focuses on a cluster
of nodes which is relatively more difficult to break. A further comparison of single-node
targeted attacks with both degree-based and betweenness centrality approaches reveals
that the proportion of nodes in the core during the degree-based attack is less compared
to that of the betweenness centrality-based attack. The proportion of nodes in the core is
still approximately 0.3 after the removal of the highest betweenness centrality node but
the proportion of nodes drops to zero after removing another node. Thus, the electricity
network is least resilient if subjected to degree-based attacks.

The robustness analysis involving the same attacks as that of the electricity network
was performed on the gas network. As shown in Figure 10, the robustness examined
by the factor of a proportion of nodes in the core indicates that the network offers more
resistance to randomly based failure of nodes than intentional or targeted attacks. In terms
of betweenness and eigenvalue centrality attacks, it can be observed that the network
topples relatively quicker in a betweenness centrality attack. This is for the same reason as
explained in the electricity network, where the betweenness centrality attack is based on a
single node while the eigenvalue centrality attack is based on high scores computed for a
cluster of nodes.
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Figure 9. The resilience of the Australian electricity network to random failure or targeted attacks on
the nodes (generators or substations) following degree-based, betweenness-based, and eigenvector-
based strategies.

Figure 10. The resilience of the Australian gas network to random failure or targeted attacks on
the nodes (generators or substations) following degree-based, betweenness-based, and eigenvector-
based strategies.

However, on further comparing the single node-based attacks, it can be observed that
the proportion of nodes in the core falls to zero and never increases during a degree-based
attack compared to random failures and betweenness and eigenvalue centrality attacks.
Compared to the electricity network, the gas network is more resistant to degree-based
attack as it requires the removal of at least two of the highest degree nodes to collapse.
Thus, the gas network is also least resilient if subjected to degree-based attacks.

Comparing the analysis on the electricity (Figure 9) and gas (Figure 10) networks, one
interesting observation in the gas network is that the proportion of nodes tends to increase
in both betweenness and eigenvalue centrality attacks. This is because the number of nodes
constituted in the core (largest connected component) is far less compared to the core of
the electricity dataset, plus the gas network has a larger number of individual connected
components than the electricity network. Since the core has only 11 nodes, once the attack
removes all the nodes from the core, then the second-largest component becomes the core
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which has a certain proportion of nodes existing. This kind of observation is not found in
the electricity network as the core itself had most of the nodes (1092) constituted.

Node and edge removal: Every network is comprised of nodes and edges. Threats
could occur to a network in any form and on any part of the network, including node
or edge. In particular, critical infrastructures can be subject to threats on transmission
lines. The criteria of random edge-based removal and node-based removal were taken into
consideration to analyse the robustness of the network.

The comparison was made to estimate whether the network is more resilient to node-
based removal or edge-based removal. The analysis was made with respect to what kind
of effect it is going to have with the proportion of edges or nodes in the core by randomly
removing them. Based on the analysis, it was understood that the electricity network had
more resistance to edge-based removal than node-based removal (Figure 11).

Figure 11. (a) Node and (b) edge removal experiment on an Australian electricity network dataset.

A significant number of edges need to be removed from the core for the network to
collapse (blue line) but the removal of just a few nodes can disrupt the whole network
(orange line). During random node removal, as shown in Figure 11a, the network collapses
after the removal of 600 nodes. During random edge removal, as shown in Figure 11b,
almost 500 edges have to be removed for the network to collapse, which is equivalent to
approximately 1000 nodes (one edge comprises two nodes). Thus, this visualisation helps
in illustrating that the network is more influenced by node-based removal than edge-based
removal. Random attacks in removing edges are thereby less effective compared to random
attacks in removing nodes.

A similar phenomenon was observed while analysing the gas dataset, where a signifi-
cant number of edges has to be removed for the network to completely collapse but the
removal of few nodes can make the network collapse at a faster rate (refer to Figure 12).

This indicates that a node-based attack also influences the gas network more than
edge-based removal, because removing a node leads to removing the edges connected to
that node as well. Thus, the robustness of the gas network is also influenced comparatively
by random node-based removal than the random edge-based removal.

Weight-based edge removal versus unweighted-based edge removal: Earlier analysis
included only the topological attributes without including the physical attributes of the
network graph. The physical attributes include measures such as the cable capacity, the
frequency of transmission, or the physical length of the cable. In the case of the electricity
dataset, the parameter of the capacity of transmission, “voltage”, was considered, while for
the gas dataset, the physical length of the cable was considered.
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Figure 12. (a) Node and (b) edge removal experiment on an Australian gas network dataset.

Figure 13 shows the analysis results of the weight-based edge removal experiment
for the electricity network, using the voltage between two substations as the weight. The
edges were sorted by weight in descending order, with the removal of edges completed
considering the weight parameter which, in this case, was voltage. The removal of nodes
without considering weight makes the network collapse quickly when the critical node
is removed.

Figure 13. Weight-based edge removal experiment on an Australian electricity transmission net-
work dataset.

Similarly, Figure 14 shows the analysis results of the weight-based edge removal
experiment for the gas network, using the length between two transmitting pipelines as the
weight. A similar kind of phenomenon was observed in the analysis of the gas network,
where a higher number of significant nodes have to be removed from the core during
weight-based removal for the network to collapse.
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Figure 14. Weight-based edge removal experiment on Australian gas transmission network.

6. Conclusions

This paper focused on Australia’s critical infrastructure energy networks, including
electricity and gas. Any disturbance to these networks can cause multidimensional catas-
trophe. Understanding the characteristics and behaviour of these networks helps the
relevant stakeholders to assess network resilience under various scenarios. This makes
them proactive about certain situations, delivering a resolution to failures, creating mech-
anisms to balance supply with demand following the continuously growing population,
and enhancing quality of life with innovative technology.

In this report, we utilised theories of network science to study the characteristics of the
Australian gas and electricity networks and further explore their features to examine the
robustness of these networks. We tested the two networks against four models: Random
Graph model, which includes the (I) Erdős-Rényi model and the (II) Gilbert-Elliott model;
(III) Scale-Free Network model, which includes the Barabási-Albert (BA) model; and (IV)
Watts-Strogatz model, which includes the Small World Network model.

In summary, this research modelling and its outcome started by collecting datasets
from Geoscience Australia Web Service, cleaning them for better clarity, and analysing
them using the Python NetworkX package. The analysis revealed both the Australian gas
and electricity networks as scale-free networks. Then, different models built to examine the
network robustness demonstrated that both networks are more robust to random errors
and sensitive to intentional attacks. Additionally, the networks exhibit the least resistance
to degree-based attacks, followed by betweenness centrality-based attacks, eigenvalue
centrality-based attacks, and the most resistance to random failures.

This illustration is significant in understanding how robust the Australian electricity
and gas network is and the various insights in preventing these networks’ catastrophic
failures. However, certain assumptions were made in terms of analysis and which on
incorporating, could have brought greater finetuning of the analysis.

Future works: Our present analysis was based on the overall Australian gas and
electricity dataset, but it would be interesting to undertake an in-depth study on highly
clustered network zones using related voltage or gas capacity data. This would help focus
on the most critical zones to identify the vital nature of the cluster and how vulnerable
it could be to cascading failure. For the gas network, we only used the receiving and
delivering points of the pipelines as edges or nodes, with the robustness of weighted and
unweighted networks achieved based on limited parameters. However, further work is
needed to assess whether any correlation of the critical nodes exists with parameters such
as pipeline diameter or age.
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