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Abstract: The upper Huaihe River is the water-producing area of the Huaihe River Basin and the
major grain and oil-producing area in China. The changing global climate over the recent years has
increased the frequency of extreme weather in the upper reaches of the Huaihe River. Research on the
responses of surface water bodies to extreme climates has become increasingly important. Based on all
utilizable Landsat 4–8 T1–SR data and frequency mapping, the spatio-temporal extraction of surface
water and its response to extreme climate were studied. We generated high-precision frequency
maps of surface water, and a comparison of cartographic accuracy evaluation indices and spatial
consistency was also carried out. The high-precision interpretation of small waterbodies constructs a
surface water distribution with better continuity and integrity. Furthermore, we investigated the effect
of El Niño/La Niña events on precipitation, temperature, and surface water along the upper Huaihe
River, using the Mann–Kendall mutation tests. The results show: in 1987–2018, periods of abrupt
changes in precipitation coincide with EI Niño/La Niña events, indicating that the precipitation was
sensitive to EI Niño/La Niña events, which also strongly correlated with surface water area during
wet and dry years. The effect of extreme events on seasonal water was smaller than permanent water.
Surface water area showed an insignificant declining trend after 1999 and a significant drop in 2012.
The phenomenon of topographic enhancement of precipitation controlled the spatial distribution
of permanent water, with human activities having a substantial effect on the landscape pattern
of seasonal water. Finally, discussions and applications related to the Markov Chain probability
calculation theory in the paper contributed to enriching the theories on frequency mapping. The
relevant results provide a theoretical basis and case support for the formulation of long-term water
resources utilization and allocation policies.

Keywords: surface waterbody; time-series mapping; extreme climate; El Niño/La Niña

1. Introduction

Time-series data have clear advantages for monitoring changes in environmental
characteristics [1]. Remote sensing cloud platform for remote sensing data processing and
analysis on the large scale will be a key direction of development in the field of land cover
mapping [2]. The mapping method considering the time dimension is obviously better
than single-point classification [3]. Multi-seasonal imagery has been shown to improve the
accuracy of forest biomass estimation [4]. Furthermore, the benefits of multi-temporal data
for the estimation of successional processes have been acknowledged [5]. In time-series
monitoring remote sensing mapping, the same sensor spectrum products are superior to
multi-source image products in terms of spatial consistency. Landsat satellite images have
been favored by scholars because of their long acquisition duration, abundant archived
data, and high spatial resolution [6]. However, series satellite images have specific data
missing and poor data quality [7], posing a challenge to the production of time series
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remote sensing products. The pixel classification, using effective observing frequency to
produce images brings opportunities for the time-series products. For a long-sequence
Landsat image set, pixel-level synthetic images are generated by gathering a sufficient
number of Landsat images to form a series of time-series pixels. The ability to synthesize
the values of land cover attributes at one location over multiple time phases facilitates more
accurate predictions, and then produces cloudless, seamless, and continuous synthetic
images. Studies have used “per pixel frequency” to calculate the high variation of surface
water in the recent past [8,9]. This method is very suitable, particularly for the regions
with sparse cloud free data [8]. Due to the complexity of regional hydrodynamics, an
accurate estimation of pixel attributes is critical to time-series mapping. Pixel frequency
calculations need to be discussed theoretically and practically. By exploring the probability
theory of Markov chain, this study discusses the frequency statistical method of “water”
and “non-water” classification on the interannual scale and improves the theory of pixel
frequency calculation.

Surface water is the ecosystem most sensitive to climate change. As its composition,
structure, distribution, and function are all related to climatic factors, significant changes in
the climate will undoubtedly have a substantial impact on wetland ecosystems [10]. The
upper reaches of the Huaihe River are located in the transition zone between the subtropical
humid region and the temperate sub-humid region. Affected by the East Asia monsoon,
the region shows significant interannual variation in precipitation, a large rate of change
of precipitation in the main flood period, and frequent droughts and floods. To control
flood and drought, several hundred large and medium-sized reservoirs, ponds and lakes
have been built, showing significant water environment effects from the artificial seasonal
water bodies. After 1991, frequent cases of “abrupt alteration from drought to flood” have
been observed in the upper reaches of the Huaihe River, especially after 2000 [11]. In such
a region with a significant extreme climate, studies on an individual water body can no
longer meet the needs of basin-wide drought and flood control. Greater attention should be
given to prevalent small river networks and other seasonal water bodies. Image extraction
and mapping for small water bodies, especially automatic time-series mapping, is the key
to researching the spatio-temporal changes of seasonal water bodies.

On top of the above points, this paper intended to harness the power of the GEE remote
sensing cloud platform and all utilizable Landsat 4-8 T1-SR data, to construct a water body
extraction model and a frequency mapping model, realizing time-series mapping of surface
water in the upper reaches of the Huaihe River with a high degree of automation. Based
on this, precipitation, temperature, and other climate data were incorporated to study the
response relationships of surface water to extreme climate. Discussions and applications
related to the Markov Chain probability calculation theory in the paper will contribute to
enriching the existing theories on frequency mapping. The high-precision image extraction
and mapping of surface water in the upper reaches of Huaihe River, as well as the research
on their responses to extreme climates, will also provide theoretical supports to water
resource management in the Huaihe River Basin, especially water resource governance
under extreme weathers.

2. Materials and Methods
2.1. Study Area

The Huaihe River is one of China’s seven major rivers. It is a perennial river that
originated from Tongbai Mountains in Tongbai County, Nanyang City, Henan Province.
The curvature of Huaihe River is 2.35, its main stream runs through Henan, Anhui and
Jiangsu and flows into the sea in Yangzhou and Yancheng of Jiangsu Province. The study
area was located in the upstream area of Huaihe River, Henan Province, China, covering
an area of 36,000 km2, located in 113–116◦ E and 31–33◦ N. In the south, Tongbai Mountain
and Dabie Mountain stand from west to east. The entire region is predominantly occupied
by mountains and hills. Moderately high mountains over 1000 m in elevation cover approx.
2000 km2 and low mountains and hills below 1000 m cover around 30,000 km2. The altitude
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for the area north of the mountains in southern Henan is only 50–100 m (Figure 1b). The
research area shows a gradient reduction in elevation from the west and south to the
east and north, in a gradually widening horseshoe shape [12]. Under the influence of the
monsoon climate, the water system in the upper reaches of the Huaihe River shows clear
changes in runoff volume. Precipitation concentrated in flood season, and great changes in
interannual rainfall.
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Figure 1. Location map of the study area, (a) Location of the study area within China with province
boundaries, (b) Location of the study area within Henan Province.

The study area is an important production base of grain, cotton, and oil plants in
China, and one of the regions in China with the most frequent human activities down the
history. The study area spans across 21 districts, counties, and cities in Henan Province. As
of the end of 2019, the permanent resident population in the covered area registered about
13.9 million, with a GDP of CNY 598.813 billion. Along with the population increase and
economic and social development, under the coupling effect of natural and human factors,
the study area has suffered from frequent floods, droughts and storm surges [13]. Statistics
show that the frequency of flood and drought in these areas is twice every three years
and once every two years, respectively. The number of disaster-stricken years accounts
for over 90% of the entire statistical timeline. Quite a few years were hit by both floods
and droughts, and successive years of floods and droughts were also commonly seen [14].
In light of the frequent droughts and floods, the Huaihe River became the first river to
be improved in a comprehensive and planned manner after the founding of the People’s
Republic of China.

In this paper, refereeing to the commonly used classification of seasonal and perennial
rivers, surface water was divided into seasonal and permanent water by considering the
temporal variation of surface water in the study area. Seasonal water included river and
lake beaches, tributary water systems, irrigation channels, ponds (simple dams, common
in rural fields and villages and constructed by hand for storing rainwater or small amounts
of mountain water, gully water, and similar water bodies, used for agricultural irrigation,
breeding, and domestic uses). Permanent water included areas covered perennially by
water, including reservoirs, perennial rivers, and lakes.

2.2. Collection and Preparation of Data
2.2.1. Landsat Images

We used the following datasets: T1-SR TM, ETM+,Landsat 4\5\7 T1–SR TM, ETM+,
and Landsat 8 Operational Land Imager (OLI). The period of study was January 1987
to 31 December 2018. All data were obtained from data sets on GEE platform, and data
preprocessing and water extraction mapping were carried out using online computing
methods. We conducted a human–computer interactive interpretation by employing six
scenes of Landsat 8 OLI images from 18 October 2015 to 3 December 2015, with 96% overall
mapping accuracy. We considered this map as the surface water base map for validation of
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water classification mapping in 2015. An accurate evaluation dataset was sourced from the
European Commission Joint Research Centre (JRC, Ispra, Italy).

2.2.2. El Niño/La Niña Data

The drought and flood data come from the literature [13] and the Henan Statistical
Yearbook [15]. We obtained El Niño/La Niña data and its Fdiscriminant method according
to A discriminant method for El Niño/La Niña events [16].

2.2.3. Rainfall and Temperature Data

Rainfall and temperature data were sourced from the daily meteorological dataset
of the China Meteorological Administration for the period spanning January 1987 to
December 2015. Using the MySQL (MySQL AB, Cupertino, CA, USA) database platform
and ArcGIS10.2 (Esri, Redlands, CA, USA) software, we implemented several tasks such
as determining the annual mean values and conducting ordinary kriging interpolation.
Furthermore, we calculated regional statistics using data from 53 meteorological stations
in the study area and its surroundings to obtain information, such as the annual rainfall,
annual maximum temperature, and annual average temperature of the study area and
each sub-basin.

2.3. Methodology
2.3.1. Waterbody Extraction Model

GEE is a cloud platform for computing satellite images and other Earth data. In the
era of big data, GEE facilitates rapid calculation and analysis of multi-source data. First, to
collect and process images, we set the time nodes in GEE to year, month, and day. Processing
included removing low frequency noise caused by clouds, cloud shadows, and mountain
shadows, and filling in no-data regions. Second, refer to the approach of geographical
zoning, three thematic indexes, which are as follows: the Modified Normalized Difference
Water Index (MNDWI), Soil Adjusted Vegetation Index (SAVI), and Normalized Difference
Building Index (NDBI), were used to construct two sets of water extraction models in
the plain and mountainous areas, namely [(MNDWI > −0.1 or AWEIsh > −0.05) and
(SAVI < 0.6) and (NDBI > −0.6)]. In combination with Otsu’s thresholding method, we
extracted surface water data and generated an interannual water frequency map. We
calculated the dynamic variable of surface water using the method proposed by [17] and
the Mann–Kendall model proposed by the authors of [18]. The advantages of the Mann–
Kendall trend test include less impact by the outliers and no requirements on distribution
patterns. In addition, it is suitable for hydrology, meteorology, and other fields.

2.3.2. Frequency Calculation Model

Frequency Ratio (FR) is a univariate probability analysis method based on determining
whether a pixel is water or non-water. The FR between the number of observations of the
water pixels divided by the effective observation times is used for mapping. The frequency
ratio model was successfully used in the study of the susceptibility of flood and insecurity
in various flood-prone regions worldwide [19]. FR is a suitable method, but few theoretical
models and processes of surface water frequency mapping have been constructed, which is
not conducive to the popularization and comparative application of frequency mapping
technique. In this paper, the probability calculation theory of Markov chain was used for
discussion and application.

In Bayesian networks, directed acyclic graphs are used to represent the relation be-
tween random variables [20]. The node of a directed acyclic graph represents a random
variable, and when any two nodes are connected by a one-way arrow, it indicates a causal
relationship between the two random variables. Figure 2a is a Markov chain. Given the dis-
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tribution of “a” and the conditional probability of the subsequent nodes, its joint probability
calculation diagram is shown in Figure 2b, and its calculation model is as follows:

P(a, b, c) = P(a)P(b|a )P(c|b ) (1)

Figure 2. (a) Chain-structured Bayesian network; (b) Joint probability calculation of the time chain.

In the area where the two types of water meet, using probabilistic methods to distin-
guish them is also consistent with the objective fact that they coexist. Owing to regional
stationarity [21] and time-series autocorrelation characteristics [22], on an interannual time
scale, a time series of discretely distributed surface water pixels is similar to a Markov
process and conforms to the phenomenon that the two types of water mainly depend on
precipitation. In addition, using probability distribution and the transition probability
statistical characteristics of the image source in information theory, [16,18] proved that the
gray image could be used as a regionally stable Markov source. Meanwhile, the surface
water frequency map is exactly a kind of gray image representing the general distribution
of surface water. Therefore, it is theoretically feasible to use the Markov chain theory to
effectively estimate the spatial distribution of surface water.

With the help of the FR mapping model, water is extracted by integrating all the
“good” pixels of the year, and then used the Markov chain joint probability model to divide
the attributes of the pixels. The process is highly automated, and the results are more
accurate. The calculation formula of interannual water FR mapping is:

SWO = ∑ WD.year/∑ AO.year (2)

where surface water occurrence (SWO) represents the surface water frequency, and the
range of values is FR ∈ [0,1]. Water detection (WD) is the number of water observations
and represents the number of images in which the pixel value is “1”, and all observations
(AO) is the number of valid observations and represents the number of effectively utilized
images on pixels within the time node.

2.3.3. Water Classification Mapping

The acyclic digraph Markov model facilitates expressing the joint frequency of the
whole time series directly, such that a cartographer can set the segmentation values of
two ground features directly on an interannual scale to conduct time-series classification.
Specific to the FR maps of interannual water, each pixel in an image is assigned a detailed
FR value; however, the slight differences in FR values cannot be distinguished in this
classification. We adopted the reclassification of the raster data technique to classify the
FR value according to the order of magnitude; that is, the FR value within an order of
magnitude was given the same grade, and finally, the classified product was used for
classification evaluation. The reclassification process was realized by means of a histogram
tool. Histogram gray-scale image segmentation is a simple and effective segmentation
method, which can achieve superior segmentation for images with simple image content,
and large grayscale differences between the target and background [23]. The histogram
analysis method based on time-frequency information has a greater ability to suppress
noise interference compared with other methods [24].
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The higher the FR value in the FR maps, the greater the possibility of permanent
water. This is reflected in the histogram as the phenomenon of high FR value and highly
concentrated pixels. The classification breakpoint could be set to obtain an indication
of permanent water. The FR value of seasonal water is low, but the number of pixels is
large; therefore, the breakpoint could be set according to this phenomenon to obtain an
indication of seasonal water. In order to avoid the fluctuations of the FR histogram in
the 32 FR maps, we determined the approximate segmentation threshold by comparing
the manual interpretation images in 2015, and then manually fine-tuned images in
32 FR maps to obtain more accurate surface water classification maps. For instance,
when the breakpoint is 0.92 ≤ FR ≤ 1, waterbodies such as large reservoir pits, main
river streams, and large tributaries are extracted accurately; when 0.75 ≤ FR < 0.92, river
and lake tidal flats are obtained; and when the breakpoint is divided by a threshold of
0.68 ≤ FR < 0.75, dotted ponds can be obtained. Figure 3 shows the technical details of
this procedure.

Figure 3. Technical route of water classification.

3. Results
3.1. Accuracy Evaluation

We obtained 32 FR maps of surface water, and sequentially calculated the overall
accuracy, mapping accuracy, and Kappa coefficient [25]. The overall accuracy and Kappa
coefficient were above 92% and 84% (Figure 4). Subsequently, we conducted the man–
machine interactive water classification operation. We calculated the surface water areas
for the period 1987–2018. In the past 32 years (Figure 5), the permanent water area
ranged between 181.42 and 441.36 km2, the standard deviation of the 32-year data was
67.68, and the coefficient of variation was 0.22. The tidal flat area varied between 180.86
and 550.90 km2, the standard deviation was 106.37, and the variation coefficient was 0.30.
The small pit area varied between 363.1 and 1357.22 km2, the standard deviation was
277.64, and the variation coefficient was 0.39. According to the area variation coefficient
of the three types of water, on the interannual time scale, the stability of the waterbody
ranked in the following order: permanent water > tidal flat > ponds.
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Figure 4. Accuracy evaluation of the water frequency chart from 1987 to 2018.

Figure 5. Area statistics of permanent and seasonal waterbodies in the study area.

We employed the JRC yearly historical dataset, which provides 32 periods of water
detection from April 1984 to October 2015. Each detection was divided into four categories,
namely permanent water, seasonal water, no data, and non-water. We divided the yearly
historical data set into 32 periods of data instances, namely statistically permanent water,
seasonal water, and non-water areas. In this area, a significant part of the JRC dataset
is incomplete for the period between 1987 and 2015, with data lacking specifically for
the years spanning 1984 to 1993, 1995 to 1998, and for 2006 (Figure 5). Upon analyzing
the years with complete data, we found no significant difference between the two sets of
data on permanent water, as indicated by the mean and standard deviations of the two
datasets. The permanent water area range of the JRC is 257.78 ± 29.45 (array average ±
standard deviation), and the permanent water area range of this study was 275.87 ± 44.53.
In other words, the permanent water area of the JRC is slightly smaller than that indicated
by this study.

Subsequently, we evaluated the space consistency of our FR maps. Figure 6a shows the
2015 surface water classification map obtained in this study, and Figure 6b shows the JRC
2015 surface water classification map. Figure 6a clearly shows most of the reservoir pits,
main streams, and main tributaries within the FR > 0.92 range. The enlarged figure of the
Xiaohong River system indicates that small rivers in the northeast plain of the study area in
Figure 6a are absent in Figure 6b. Spatial continuity and location consistency are important
evaluation indices to land cover products [26]. For the river network, both erroneous and
missing extraction would cause a change in the river morphology. So, Figure 6a shows a
surface river system that is more complete and in which the distribution is closer to the
actual situation.
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Figure 6. (a) Surface water classification maps from this study for 2015, and (b) surface water
classification map of the European Commission Joint Research Centre (JRC) for 2015.

3.2. Effects of Extreme Climate on Surface Water
3.2.1. Extreme Precipitation, Drought, and El Niño/La Niña

Features of atmospheric circulation in typical flood/drought years indicate that the
El Niño/La Niña are the main impact factors to flood/drought in the Huaihe Basin [13].
The current study sought to determine the response relationship between precipitation
and the El Niño/La Niña phenomena from 1987 to 2015, and how such events cause
changes in surface water. According to the discriminant method for El Niño/La Niña
events [16], the type of events that are moderate or higher, as well as annual precipitation
and annual surface water area, are integrated into map-making. Because of precipitation
and temperature data were collected from 1987 to 2015, only the data of this period was
discussed in the following chapters.

We calculated the high-precipitation level by dividing the total volume of rainfall
in a high-precipitation year by the number of high-precipitation years, and the normal-
precipitation level by dividing the total normal-precipitation year by the number of normal-
precipitation years. Similarly, the total volume of precipitation in a dry year was divided by
the number of dry years to calculate the low-precipitation level. As shown in Figure 7, there
were 10 wet years, 3 abnormally wet years, 13 normal years, and 4 dry years from 1987 to
2015. This result equates to 43% normal years and 57% abnormally wet years, indicating
that extreme weather occurred frequently in the study area. Based on the occurrence period
and intensity peak of El Niño/La Niña, this weather system was extraordinarily intense
in November 1997 and December 2015, and the annual precipitation in 1998 and 2015
reached the peak of that in the preceding three years. El Niño/La Niña events reached
their peak at moderate intensity in December 1994, November 2002, and December 2009,
with precipitation peaking in 1995, 2003, and 2010. In January 2000, during a La Niña
event of moderate intensity, the precipitation peaked accordingly. Wet years are generally
consistent with La Niña events; accordingly, 2007, 2008, and 2010 were indicated as wet
years, whereas 2000 was an abnormally wet year. Clearly, El Niño/La Niña events have
had a significant effect on precipitation in the study area. Concurrent with an El Niño event,
cold air moves southward in early summer. At this time, the western Pacific Ocean current
area is an evident anti-cyclonic anomaly, leading the warm and wet air flow northward.
Consequently, the cold and warm air flow converges over the Huaihe Basin, resulting
in more precipitation during the flood season. Similarly, the warm and wet airflow is
transported to the Jianghuai area during a La Niña development year, which is conducive
to heavy precipitation in this area. These findings are consistent with those of Luo et al. [13]
and with the occurrence of high-precipitation and low-precipitation periods in the study
area. However, not all El Niño/La Niña events cause heavy rainfall. For example, in 1988,
1994, and 1995, the precipitation was neither positively nor negatively correlated with El
Niño/La Niña events [27–29]. By referring to the atmospheric circulation of the upstream
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Huaihe River, it was the transportation of the southwest jet stream, leading to these heavy
precipitation processes [30–33].

Figure 7. Precipitation, surface water area, and El Niño/La Niña events in the study area.

3.2.2. Time-Series Analysis of Climatic Factors and Surface Water

We used the Mann–Kendall method to test the time series of temperature, precipita-
tion, and the two types of surface water. Figure 8b shows eight abrupt changes in rainfall
occurring in 1987, 1989, 1990, 1995, 1997, 1999, 2008, and 2014, consistent with the occur-
rence of El Niño/La Niña events. In particular, during the period of high incidences of El
Niño/La Niña events from 1987 to 1999, the precipitation changed several times, verify-
ing the strong response relationship between precipitation and El Niño/La Niña events.
Annual precipitation has increased since 1999, with a significant increase between 2003
and 2010, showing a downward trend after 2011 and starting to increase again after 2014.
It can be seen from Figure 8c that the permanent waterbody showed periodic oscillatory
changes before 2004 and sudden changes in 2004, 2008, and 2014; it decreased significantly
in 1993 and 2001 and, later, showed a linear upward trend after 2005. Figure 8d shows
that the seasonal water area has been on a downward trend, with a sudden decrease in
2009 and a significant decrease since 2011. The change in surface water area is not only
affected by precipitation but is also indirectly affected by air temperature. Figure 8a shows
that since 1993, the temperature in the study area has shown an upward trend but has
increased significantly since 1999. Given the evident influence of global warming, rising
temperatures, and increased evapotranspiration, the extensive areal distribution of seasonal
waterbodies has been decreasing since 1993.

1 
 

  
(a) (b) 

  
(c) (d) 

 
 

 
(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Cont.
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Figure 8. Abrupt change test of annual sequences of air temperature, precipitation, and surface water.
(a) Annual mean temperature, (b) annual precipitation, (c) permanent water area, and (d) seasonal
water area (dotted line indicates a significance level of 0.05).

To further analyze the influence of precipitation and temperature on surface water-
bodies, we divided the study area into 31 sub-catchments by employing the hydrological
analysis module of the ArcGIS 10.2 platform (Esri, Redlands, CA, USA). We used the Pear-
son’s correlation coefficient to calculate the correlation among annual precipitation, annual
average temperature, seasonal water area, and permanent water area. Figure 9 shows
that on the sub-basin scale, correlation of the two types of surface water to precipitation
is significantly higher than that of the two types of surface water to temperature. The
correlation between the two types of climatic factors and seasonal water is higher than
between climatic factors and permanent water. Among these results, the correlation coef-
ficients between precipitation and seasonal water essentially passed the 0.05 significance
test. We observed correlation coefficient curves of the precipitation and the two types of
surface water, with the two curves showing a consistent change trend and correlation that
is more significant in wet years than in dry years. The correlation coefficient curve between
temperature and the two types of surface water indicated that correlation coefficient be-
tween temperature and permanent water decreased since 2002. We found essentially no
correlation between the permanent water area and temperature in any sub-catchment since
2002. In contrast, the correlation between temperature and seasonal water has increased
significantly since 1999 and particularly during 2007–2009. The correlation values between
the maximum temperature and seasonal water were 0.47, 0.65, and 0.62 (i.e., above the level
of significance), with the continuously high temperature leading to an increase in the loss
of seasonal water. Furthermore, the hydrological effect of extreme precipitation is clearly
evident (e.g., in 1987, 1988, 1993, and 1998), and the correlation between precipitation and
the seasonal water area increased significantly. This result is ascribed to heavy precipitation
in extreme years being accompanied by high temperatures (r = 0.77, α = 0.05). Owing to
the extensive distribution of seasonal water and the need for ecological water on land,
evapotranspiration increased, which led to the most sensitive seasonal water being affected
to a greater extent. In addition, replenishment of stable water caused a time lag between
permanent water and the maximum temperature (e.g., from 2009 to 2010); the correlation
coefficients were 0.42 and 0.61, respectively, reaching significant correlation at the α = 0.01
level. It should be pointed out in particular that the pre-flood season regional drought in
2000, the phenomenon of “abrupt alteration from drought to flood” occurred before the
plum rain season. Compared with other years with the phenomenon, precipitation in this
year was greater and more concentrated. Following the alteration, there was basin-type
flood. On the interannual scale, it showed more precipitation, but a smaller seasonal water
body for extended dry period. There was a negative correlation between the precipitation
and seasonal water area.
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Figure 9. Interannual sequence correlation between rainfall, temperature and surface water.
(a) precipitation and surface water, and (b) temperature and surface water.

3.2.3. Effect of Climate on the Distribution Pattern of Surface Water

Topography and geomorphology are the main factors that influence the formation
and spatial distribution of surface water. This is ascribed to their directly controlling the
distribution of relative negative topography, determining the characteristics of regional
water flow, and redistributing water and heat. When elevation increases, the average
annual precipitation increases, which is a “topographic enhancement” phenomenon de-
rived from a combination of meteorological processes [34]. We selected the surface water
indicated in 1988, 1993, 1998, 2004, 2010, and 2015 to analyze the combined spatial pattern
of meteorological and elevation processes. These years were selected because they were
abrupt transition years for the two types of surface water, as well as for precipitation
and temperature.

With increasing elevation, the two types of surface water show a trend of extreme
areal decline (Figure 10a,b), with 140 m elevation being the evident boundary. Most of the
waterbodies are distributed at 14–140 m elevation and, particularly, at 60–80 m elevation,
where the two types of water have the most extensive distribution area. Compared with the
seasonal water, the permanent water showed a fluctuating decreasing trend in the elevation
range 100–140 m. This finding is ascribed to nearly 100 large- and medium-sized reservoirs,
such as the Nanwan, Banqiao, Boshan, Meishan, and Shishankou reservoirs, which are all
located at an elevation range between 100 and 134 m. Similarly, there are nearly a thousand
small reservoirs in the upper reaches of the major tributaries of the Huaihe River, such as the
Huashan, Songjiachang, and Zhaozhuang reservoirs at elevations between 140 and 220 m.
Consequently, fluctuations also occur in this elevation range. Seasonal water, potholes, rice
fields, main canals, and the like are related closely with human activities. Therefore, as
the population decreases at higher elevations and attendant human activities decrease, the
seasonal water area also decreases sharply. Furthermore, as seasonal water is distributed
widely in low-elevation areas, it is more susceptible to floods, such as regional floods
caused by heavy precipitation in 1993 and 1998. This difference in area is particularly
evident in plain and hilly areas below 160 m elevation.

In Figure 10c,d, the dynamic variable curve obtained from combining wet and dry
years was higher than other years. The dynamic changes in the extent of permanent water
during the wet and dry years are evidently greater than seasonal water. The region with a
large dynamic change in the permanent water appears in the high-elevation region, whereas
such change in the seasonal water varies with elevation, is not evident. This finding is
attributed to water sources, such as reservoirs, potholes, and ponds in mountainous areas,
with low precipitation and high surface evaporation in dry years. In addition, factors such
as the supply of downstream irrigation, and ecological and domestic water use lead to part
of the permanent waterbody being more vulnerable to the effects of wet or dry years, as well
as being susceptible to change. Furthermore, because of the flood and drought prevention
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measures of upstream reservoirs, the area occupied by seasonal water is controlled, which is
one of the main reasons for the minimal interannual dynamic change in these waterbodies.
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Figure 10. The two types Surface water area and dynamic changes at different elevations.
(a) Permanent water area vs. elevation, (b) seasonal water area vs. elevation, (c) interannual dynamics
of permanent water, and (d) interannual dynamics of seasonal water.

4. Discussion
4.1. Modeling Approaches

The construction of probabilistic statistical learning methods is based on data, and
in view of the immense volume of available geospatial data, it is an effective approach to
solve the perceived problem of being “data rich and knowledge poor” [35]. In addition,
the frequency mapping rules that used all available “good” pixels rather than only high-
quality images are also improving. This is attributed to the ability to make full use of
all the acquired images, and to conduct land cover mapping with strong timelines and
consistent spectral resolution. Although more scholars have considered this aspect, few
theoretical models and processes of frequency mapping have been constructed, which is
not conducive to the popularization and comparative application of frequency mapping
technique. With the help of the Markov chain theory and the frequency ratio calculation
model, we generated time-series remote sensing maps of surface water on an interannual
scale. Compared with the JRC global surface water dataset, we found a clear difference in
the seasonal water area. This finding could be attributed to the use of different data sets
during mapping or could be related closely to the generation strategies. Ref. [9] used the
monthly weighted method to generate the FR maps. Owing to the instability of the regional
shallow-water culture, the difficulty of extracting constructed wetlands increases [36],
which is not conducive to large-scale mapping in wetland systems mapping. Pekel et al.
focus on global water extraction, so, their seasonal waterbodies tend to point to the beaches
of rivers and lakes, neglecting mixed aquaculture areas with regional characteristics. With
regard to the FR mapping in our study, we adopted image filtering to eliminate data with a
total cloud cover of over 50% and pixels with cloud cover of over 50%. This was to obtain
the top-layer reflectivity data of all the available sensors and to construct the cartographic
dataset. However, the two sets of data were sufficiently consistent with regard to permanent
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water areas, indicating the feasibility of frequency mapping of all Landsat 4–8 images by
means of Markov chain theory [37].

4.2. Model Validation and Field Sampling

Generally, gield survey sampling or high-resolution image data indicate the true value
of a water body, and the accuracy of the extraction results is determined based on sev-
eral parameters [38]. This evaluation assesses single-phase extraction results for frequency
mapping. As multiple-phase image sets are used for mapping over a certain period, conven-
tional accuracy evaluation methods are inevitably not applicable. Compared to previously
published land cover products, this product meets the accuracy of multitemporal mapping.
Furthermore, the accuracy of the single-time product was found to mainly depend on the
selection or distribution of samples [39]. In most cases, accuracy shows the validity of the
ground object extraction model rather than the consistency between ground object classifi-
cation and the ground truth. The validation dataset of the JRC data is derived from global
random samples; therefore, its threshold division and accuracy evaluation system for per-
manent and seasonal water consider global water. Even within the same region, differences
in spectral characteristics of surface water are caused by factors, such as the composition of
the bottom material, depth, water quality, and influence of the surrounding environment.
Additionally, the image features on the remote sensing images were unbalanced. Therefore,
using a unified model to accurately extract surface water information is challenging [40]. A
classifier is often used with the workflow of the classification algorithm to identify correct
and representative training samples, calculate, and classify all pixels. However, because
the limited training samples are lack of representativeness, the reoptimized algorithm is
unable to improve classification accuracy [41]. The evaluation results of remote sensing
interpretation products show that a region-specific land cover map is more accurate than
the global land cover map [42–44].

4.3. Influence of Extreme Climate

As the interannual variation in air temperature is lower than that in precipitation, the
surface water in the research area strongly correlated with precipitation at the interannual
scale; however, the surface water did not evidently correlate with interannual tempera-
ture variation. The correlation between waterbodies area and precipitation substantially
increased with rising temperature, particularly between seasonal water and precipitation,
which showed a strong correlation over 29 years. Recently, extreme weather events, such as
rainstorms, floods, droughts, and sunspot events [45], have become increasingly common
in the study area. El Niño/La Niña events frequently result in heavy precipitation, espe-
cially during the flood season, which generates a concentration of precipitation in the area,
increasing the contribution and frequency of extreme precipitation. Furthermore, heavy
precipitation is usually followed by large periods of drought in the catchment, owing to
the difference in the El Niño/La Niña occurrence cycle and water vapor transport mech-
anism. This phenomenon can be attributed to the typical airflow transport mechanism
and landform, which also leads to lagging drainage of the surface water circulation sys-
tem [46]. These factors weaken the interannual correlation between surface water area and
precipitation. Therefore, upon analyzing the sequence diagram of climatic factors and the
two types of surface waterbodies, we found that a temporal lag in correlation could exist
between climatic factors and surface water. For example, in 2005 and 2007, regional floods
were induced by heavy precipitation without any considerable increase in the surface
waterbodies over the same period. However, in 2006 and 2008, when precipitation was low,
the surface water area did not decrease with the lack of precipitation.

4.4. Influence of Elevation

The areal distribution and dynamic changes of the two types of water differed in
each period and the water area decreased substantially as elevation increased. In years
of extreme climate, the ratio of areal change in permanent water at different elevation
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points was significantly higher than seasonal water. A dynamic change of permanent water
occurred in areas >220 m elevation, where hundreds of large- and medium-sized reservoirs
are widely distributed. The water supply pattern of these reservoirs has a substantial effect
on the spatial distribution of seasonal water and form a trend effects in the south and north
sub-catchments. This phenomenon is consistent with the results of Shi and Zhang [47],
which indicates that the change in water resources in the runoff area of the plains and basins
below mountain passes is controlled mainly by human water consumption. In contrast, the
change in water resources in alpine runoff areas is affected mainly by climatic change. These
findings imply that precipitation brought by meteorological processes and topographic
enhancement will control the spatial distribution of permanent water. Meanwhile, human
activities has substantially impact on the distribution of seasonal water. Above all has led
to the spatial and temporal redistribution of surface water resources, changes in surface
water structures and patterns, thereby causing changes in surface water cycle.

5. Conclusions

The main findings include:

1. In this study, the pixel frequency calculation was optimized by introducing the Markov
chain probability method in calculating the frequency of inter-annually classification
of “water” and “non-water”. The Markov chain probability method was based on
the analysis of mixed border between stable waterbody and seasonal waterbody and
criteria of Markov chain probability calculation;

2. Over the past 30 years, eight abrupt changes in rainfall occurred in the study area,
all consistent with the occurrence of El Niño/La Niña events. Owing to the influ-
ence of El Niño/La Niña events and climate warming, the spatial and temporal
distribution of precipitation in the study area is uneven. The uneven distribution of
surface water resources will inevitably result in the upward movement of key water
conservancy projects;

3. At an interannual scale, the correlation between surface water and precipitation is
significantly higher than temperature. These two climatic factors show a strong corre-
lation during wet and dry years. The correlation of seasonal water to both precipitation
and temperature were all significantly higher than that of permanent water;

4. Since 1993, a clear increasing trend in temperature has been observed, with a sig-
nificant increase after 1999 because of global warming. Inter-annual variation of
waterbodies and elevation showed that wet and dry years had fewer impact on
seasonal water than permanent water.
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