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Abstract

:

This paper presents a novel optimal coordinated strategy for frequency regulation (FR) through electric vehicles (EVs) under variable power system operation states (PSOSs). The methodology ensures a secure and economical operation of the power system through the coordination of the frequency regulation, the power of the electric vehicles and generators with multiple optimization objectives. In the normal state of operation of the power system, the battery degradation cost is taken into account and accordingly the minimum FR cost is utilized as an objective. On the other hand, for abnormal operation, the optimization objective considers the minimum frequency restoration duration. Different scenarios have been investigated to validate the proposed method. The simulation results confirm the usefulness and superior performance of the proposed optimized coordinated control strategy.






Keywords:


operation state; frequency regulation; coordinated control; vehicle-to-grid; electric vehicles












1. Introduction


The anticipated carbon dioxide (CO2) reduction required by world environmental organizations necessitates the mainstreaming of renewable energy generation [1]. The future renewable energy power addition to power grids will subject the electricity systems to massive challenges further compounded by the intermittent and unpredictable nature of these resources, resulting in stress on the grids currently run by conventional FR techniques [2,3]. In vehicle-to-grid (V2G) technology, electric vehicles (EVs) are analogous to energy storage devices capable of charging and discharging to/from power grids [4]. The vehicle-to-grid power in USA, Italy UK, Germany, and other developed countries has a potential of 6.8 to 10 times the national electricity demand of these countries in the future [5]. The projected increase in EVs will provide a precious opportunity for the implementation of novel FR systems. Recently, the number of EVs in the US has already surpassed 1 million [6,7].



EVs can potentially participate in FR plans in three different orientations: In the first method, localized decision making is implemented where every charger configures the charge/discharge power on local information, for instance load fluctuation, EV arrival time, and local frequency of the area [8,9]. In the second configuration, FR signals are sent based on the operating voltage and power loss to the aggregators, which send them accordingly to the control center in a decentralized manner [10,11]. The third way commonly employed for FR is a centralized decision mechanism, where the control center controls the chargers through a communication system [12,13].



The participation of EVs in FR is motivated by several objectives including the reduction of frequency deviation (FD), the satisfaction of EV owners, and an improvement in FR revenue [14,15,16]. Frequency deviation (FD) reduction involves a coordinated control method for differing FR resources and is reported to have better performance [17,18]. This is owing to the efficient utilization of complementarity of varying FR resources by these strategies, leading to enhanced FR revenues when power system operation is safe enough. The charge/discharge of the EVs to/from grid can be optimized as per the high/low of electricity price [19,20,21]. FR cost reduction has also been found to improve FR revenue through factors such as battery degradation reduction [22,23]. The satisfaction of EV owners should also be ensured through the maintenance of state of charge (SOC) at maximum possible limits [24,25].



Five states of power system operation states (PSOSs) can be found in literature as per the security levels [26,27], and the objectives of optimization usually stem from these PSOS [28,29,30]. Depending on the optimization, the FR resource is changed to accommodate the complementarity of some resource characteristics. For instance, whereas the thermal power plants, or hydroelectric generators can only reach the level of seconds, the EVs can provide a millisecond’s level of control. This greater control usually comes at a higher cost of FR. Previous studies have demonstrated different response priorities in FR for EV participation at different PSOSs [31], however the optimal model was not determined. We propose and address an optimization technique in this research that optimizes the cost of charging and discharging EVs while enabling the frequency regulation of a microgrid. When the power system network is generally safe, the frequency deviation is regulated within a narrow range; nevertheless, only the normal state of power system operation is regarded as relatively safe. As a result, this study only considers the normal condition to be ‘normal,’ while the other four states are considered ‘abnormal.’ The proposed particle swarm optimization (PSO)-based fuzzy logic control (FLC) scheme for determining the required frequency regulation performance of a microgrid integrated with renewable energy sources (RES), nonrenewable energy sources, and prosumers. This method minimizes the frequency variations caused by the stochastic nature of renewable energy sources and critical loads to an acceptable range. The required gain values are multiplied by the inputs and outputs to bring them within a permissible limit for this purpose.



In this article, the current research is focused on a novel coordination method for optimal participation of EVs in frequency regulation under different power system operation states (PSOSs). The novelty of this manuscript can be summarized as follows.



	(1)

	
The proposed coordination of the FR power of generators and EVs under different optimization objectives with the goal of secure and economic operation of power system through optimal coordinated strategy;




	(2)

	
The coordinated control principle is drawn between the EVs and generators based on the optimization method proposed in this manuscript;




	(3)

	
The proposed particle swarm optimization (PSO) and genetic algorithm optimization toolbox (GAOT) algorithms are used to study frequency control based on the optimal values of the fuzzy controller parameters;




	(4)

	
A PSO-based FLC scheme is presented to discover the required frequency regulation performance of the microgrid integrated with renewable energy sources, non-renewable energy sources, and prosumers;




	(5)

	
The proposed optimization objective under normal power system operation is minimum FR cost, to ensure the minimum degradation cost associated with batteries;




	(6)

	
In the abnormal state of power system operation, the optimization objective is shifted to ensure minimum frequency restoration time;




	(7)

	
The proposed simulation involves the addition of a series of step loads and random loads in the abnormal and normal states, respectively.







The complete strategy of coordination charging station and EV aggregator with the microgrid operator is shown in Figure 1. The power generators, microgrid operator, charging station, and EV aggregator all serve as managers, ensuring that electric vehicles are monitored and controlled via communication with the charging station operator. The EVs aggregator sends the charging plan to the charging station operator (CSO) to calculate EV charging power based on the deployment structure. Meanwhile, the CSO monitors EV battery state and provides input to the EV aggregator, which analyses the gathered data and estimates baseload power capability for uploading and sends the obtained frequency regulation signal to the EVs. Figure 1 depicts the interlinkages between these entities.



This manuscript is arranged as follows. Section 2 establishes the optimized model. A resolution of the optimal model based on particle swarm optimization and fuzzy set theory are presented in Section 3. Section 4 proposes a coordination control methodology between the generators and EVs and finally, Section 5 presents the conclusions of the research.




2. Problem Formulation


As a mismatch between generation and load might result in significant frequency deviation (FD), a power system operation should maintain a stringent generation–load balance. When the system operation is relatively safe, the frequency deviation is controlled within a small range, however only the normal state out of the five states of a power system operation is considered a relatively safe state [31,32]. Consequently, this paper only considers the normal state as ‘normal’, while the other four states are regarded as ‘abnormal’.



2.1. Objective Function


From the equation of the FD can be written as [6,30]:


  Δ  f ˙  =  1 M   (  Δ  P  V 2 G   + Δ  P  F R R   − Δ  P L  − D Δ f  )   



(1)






  Δ  P  V 2 G   =   ∑   i = 1  N  Δ  P  E V , i      



(2)




where:




	
Δ I ndicates the deviation;



	
f denotes frequency;



	
M represents the angular momentum factors;



	
PV2G indicates the vehicle-to-grid (V2G) power of aggregated EVs



	
PFRR represents the output power of the system’s other FR resources;



	
PL indicates the frequency of the non-sensitive load;



	
D stands for the coefficient of damping load;



	
PEV,i indicates the power of the V2G network ith EV;



	
N means the number of the EVs.








This article assumes that the EVs are available in the charging station (CS) for the maximum possible time each day. The complete strategy of coordinating the charging station and the EV aggregator with the microgrid operator is shown in Figure 1. The number of EVs that are under consideration in the FR can be incentivized to stay in the charging station through economic measures, similar to demand response (DR). In DR, loads are time shifted through price or policy incentives and is considered a cost-effective technique [21].



The FR cost is computed using the following equations:


  C =  C  E V   +  C m     



(3)






   C  E V   =  C  d e g     +  C  c h a r   +  C  l o s s      



(4)




where C indicates the cost of FR; Cm represents the cost of frequency regulation for generators; CEV denotes the FR cost accrued from EVs, factoring in the power loss cost Closs, charging cost Cchar and battery degradation cost Cdeg; Cchar indicates the cost accrued in buying or selling back the power to/from the microgrid; while Closs being the cost of power transmission loss. The degradation cost for batteries resultant from EV charge/discharge over a period of time is computed using Equations (5) and (12) given below:


   C  d e g   =   ∑   i ∈ I     ∑   t ∈ W   α  P  E V , i t  z  +   ∑   i ∈ I     ∑   t = 2    W    β Δ  P  E V , i t  2   



(5)




where α, β are symbols for model parameters; PEV,it represents the charging power and ΔPEV,it stands for the fluctuation of charging power of the ith EV in interval t; W stands for interval set; I indicates the set of EVs; PEV,it and ΔPEV,it can potentially have an impact on battery temperature and active material of the battery, which may result in increased battery degradation cost. For safe state power system operation, there is a noticeable reduction in FR cost. The objective function for this scenario is shown in Equation (6):


   {      m i n  {  Δ  f  m a x   , Δ  f   aver      , C  }  ,  S   tate      = 0           m i n  {  Δ  f  m a x   , Δ  f   aver      ,  t F   }  ,  S   tate      = 1        



(6)




where Δfmax and Δfaver are representative of the maximum and the average frequency deviation (FD) incurred during the FR process, respectively; tF indicates the time taken in the restoration of the FD to within normal range; State indicates the PSOS, equaling 0 for normal state operation of system and 1 for abnormal state.




2.2. Characteristics of Frequency Regulation


2.2.1. The Dynamic Characteristics of Power System Components


The dynamic characteristics mainly vary with the turbine, governor, and reheater inlet constants for generators, while for EVs, it is dependent on time constant of battery power adjustment and can reach as low as tens of milliseconds [33]. In cases where a sufficient number of EVs are available, the FR accuracy and response speed will entail obvious advantages, whereas in the opposite case, the capacity constraints will affect the EVs’ output power. The generator output power is limited by the ramp rate and response speed in comparison with the EVs. The dynamic model electric vehicle is shown in Figure 2.




2.2.2. Cost Characteristic


Power loss cost, battery degradation cost and charging cost constitutes the bulk of FR costs of EVs. Charging cost, in turn, is limited by electricity costs from the grid, and charging power as shown in (7), and is positive for charging and negative for discharging. The charge and discharge power required for FR in this paper are assumed to be equal. Hence the charging cost is not a factor in this research. The cost of power loss resulting from transmission losses is indicative from the charging/discharging efficiency and expressed in Equations (14) and (15).


   C  E V c h a r g e   =   ∑   i ∈ I     ∑   t ∈ W      P   charge  , i t    z   purchase  , t   −  P  discharge ,  it     z   sell  , t        



(7)




where Pdischarge,it and Pcharge,it stand for the charging/discharging power of the ith EV respectively in interval t; Zpurchase,t and Zsell,t are the prices for the electricity purchase from grid and selling price to grid, respectively, in the interval t.



The life cycle of EV batteries is limited by the degradation of active materials owing to charge/discharge [34], caused by development and evolution of cracks in the dynamic materials in a similar process to the cyclic mechanical loading leading to fatigue in materials [35]. The factors influencing this effect can be categorized as temperature, depth of cycle, charge/discharge power, among others. V2G power is regarded as the variable of battery degradation cost equation. The equations, however, assume ideal or standard conditions of 25 degrees centigrade. Figure 3 illustrates the relationship between the V2G power and battery degradation costs. Models 1, 2, and 3 give an indication of the battery degradation costs, the calculation of which is based on [12,30]. Random V2G power is assumed in model 2, where the piecewise cost function is assumed. In model 3, on the other hand, average values of the factors constitute the correlation parameters. The cost function is simplified by only applying the model 1 cost equation in this research.



As shown in Equation (5), the battery degradation cost is directly related to EV output power fluctuations and the total power during t. The battery life is shortened in the cases of overcharging/discharging and frequent charging/discharging. The battery degradation cost, as schematically presented in Figure 3, where the FR power is shown in time t, by the charging power. Accordingly, a greater participation time for EVs in the frequency regulation will lead to lower degradation costs of batteries. It can also be seen from Figure 2 that the battery capacity is not factored into the charging power of the EV, which is assumed the same, irrespective of the number of EVs in the FR. FR costs in this case for generators is expressed in (8) [32].


   C m  =   ∑   g =  g z     g e      ∑   t =  t s     t e     C  g t   +   ∑   g =  g s     g e      ∑   t =  t s     t e     q  p r , g t    r  p r , g t   =   ∑   g =  g i     g e      ∑   t =  t t     t e    [  U  g t    C  f  t ^  g t    a g   G  g t    1 2   b g    (  G  g t   )  2  ] +   ∑   g =  g z     g e      ∑   t =  t j     t e     q  p r , g t    r  p r , g t    



(8)




where:




	
Cgt is represented as factor for the generation cost associated with the gth diesel generator (DG) during t time period;



	
ts indicates the time when the generator operates for the participation in FR;



	
te indicates time the generator participation in FR ends;



	
ugt is 1 when the gth diesel generator (DG) is turned on during t time period and equal to 0 otherwise;



	
Cfix,gt is the factor for the fixed generation costs of the gth generator during time t;



	
ag and bg are the parameters for the generation cost in the FR;



	
Ggt indicates the planned power generation of the gth diesel generator (DG) in the pre-contingency condition during time t;



	
qpr,gt represents the primary reserve rate of the gth generator during t;



	
rpr,gt denotes the gth generator scheduled primary reserve of the during t.








As indicative from (8), the number of generators, reserve capacity, and output power of generator are the primary factors in FR costs of generators.





2.3. Constrants


2.3.1. EV State of Charge


SOC is an important parameter for EV participation in charge, having direct impact on the charge/discharge capacity, expressed by the Equations (9)–(11) and shown in Figure 4.


  S O  C  m i n   ≤ S O  C   ini    , i   ≤ S O  C  m a x    



(9)






   E  c , i   =  (  S O  C  m a x   − S O  C  i n i , i    )   E  0 , i    



(10)






   E  d , i   =  (  S O  C  i n i , i   − S O  C  m i n    )   E  0 , i      



(11)




where:




	
SOCmax and SOCmin respectively represent the EVs maximum and minimum SOC, and the relation in (9) represents the setting for optimal performance.



	
SOCini,i denotes the ith EV initial SOC;



	
Ec,i is ith EV charging energy;



	
Ed,i represents discharging energy of the ith EV for; and



	
E0,i is the ith EV battery rated capacity.









2.3.2. Generator Power Output


The constraint in (12) for avoiding for under/over power output of generators.


  Δ  P  m i n m , g   ≤ Δ  P  m , g   ≤ Δ  P  m a x m , g      



(12)




where the gth generator minimum output power for participation in FR is represented by ΔPminm,g while ΔPmaxm,g indicates the gth generator maximum power output.




2.3.3. Charging and Discharging Power of the EVs


The EV output power is constrained by the expressions as given below:


  Δ  P  m a x D , i   ≤ Δ  P  V 2 G , i   ≤ Δ  P  m a x C , i    



(13)






     Δ P    V 2 GD , i   = κ ⋅  K  i , k    Down      ⋅    Δ P    V 2 GD , i  ′     



(14)






  Δ  P  V 2 G C , i   = ζ ⋅  K  i , k   U p   ⋅ Δ  P  V 2 G C , i  ′   



(15)






   P  sti ,  down      ≤   ∑   i = 1    N  E V     Δ  P  V 2 G , i   ≤  P  s t i , u p    



(16)







The parameters given in the expressions (13)–(16) are explained as follows:




	
ΔPmaxD,i: the ith EV’s maximum discharging power during t time period;



	
ΔPmaxC,i: the ith EV’s maximum charging power during t time period;



	
ΔPV2GD,i and ΔPV2GC,i: respectively, the ith EV actual discharging and charging power;



	
ζ and κ: loss efficiency coefficients for transmission, both having value less than 1;



	
   K  i , k    Down        and    K  i , k   U p    : respectively, the discharging and charging efficiency coefficients;



	
  Δ  P  V 2 G D , i  ′    and   Δ  P  V 2 G C , i  ′   : the ith EV discharging and charging power;



	
Psti,down and Psti,up: respectively, the upper and lower limit capacity of the stith CS.



NEV is represented as the number of EVs stay at CS.








  Δ  P  V 2 G D , i  ′    and   Δ  P  V 2 G C , i  ′    are parameters dependent on the ith EV’s SOC, and are formulated as (17)—(20) and schematically represented in Figure 5 [14].


   {       K  i , k    Down      = 1        K  i , k   U p   = 0     , S O  C  i , k   ≤ S O  C i  m i n      



(17)






   {       K  i , k    Down      = 0        K  i , k   U p   = 1     , S O  C  i , k   ≥ S O  C i  m a x      



(18)






   {       K  i , k    Down      =  1 2   (  1 +     S O  C  i , k   − S O  C i m    S O  C i  m i n   − S O  C i m       )         K  i , k   U p   =  1 2   (  1 −     S O  C  i , k   − S O  C i m    S O  C i  m i n     − S O  C i  i n      )      , S O  C i  m i n   ≤ S O  C  i , k   ≤ S O  C i   in         



(19)






   {       K  i , k    Down      =  1 2   (  1 −     S O  C  i , k   − S O  C i   in        S O  C i  m a x   − S O  C i   in           )         K  i , k   U p   =  1 2   (  1 +     S O  C  i , k   − S O  C i   in        S O  C i  m a x   − S O  C i   in           )      , S O  C i   m      ≤ S O  C  i , k   ≤ S O  C i  m a x           .    



(20)




where SOCmax i indicates the ith EV maximum SOC; SOCmin i indicates the ith EV minimum SOC; and SOCin i factors in the initial plug-in SOC of the ith EV.






3. Proposed Optimization Strategy


3.1. Fuzzy Logic Controller (FLC)


The particle swarm optimization (PSO) and genetic algorithm optimization toolbox (GAOT) algorithms are used to study frequency control based on the optimal values of the fuzzy controller parameters. In industry and power systems, FLC, adaptive control, and related controllers are extensively studied for diverse control objectives [34,35]. A PSO-based FLC scheme is presented to discover the required frequency regulation performance of the microgrid integrated with renewable energy sources, non-renewable energy sources, and prosumers. By using this strategy, the frequency changes produced by the stochastic nature of the renewable energy sources and critical loads are reduced to an acceptable range. The necessary gain values are multiplied by the inputs and outputs to bring them within a reasonable range for this objective. The inputs include   Δ  f ˙    and the rate of change of frequency deviation (  d Δ  f ˙   ) and the delivered control signal is associated with a wide range of the operational points of the entities involved in FR.



Figure 6 depicts the FLC diagram of the two-area power system and the integrator of the FLC is represented by 1/S. In addition, e(t) denotes the error signal between the reference and measuring frequencies.



Fuzzification, fuzzy inference, and defuzzification are the three fundamental processes that make up a fuzzy system. The crisp inputs are first converted into fuzzy sets via the fuzzification procedure. The fuzzy inference process entails evaluating fuzzy rules with the AND/OR operator and employing fuzzy rules to analyze fuzzy sets. Finally, for crisp outputs, the defuzzification procedure combines fuzzy recommendations. The fuzzy logic control system with the two-area power system is shown in Figure 6, while Area a’s fuzzy membership function is shown in Figure 7, and Area a’s frequency deviation is shown in Figure 8, (A). The fuzzy membership function of Area (B) is depicted in Figure 9, and the frequency deviation of Area (B) is depicted in Figure 10. Table 1 illustrates the fuzzy control rules. The area control error and frequency deviation membership functions and the controller outputs are chosen to be identical to the triangle function for fuzzy logic control.



In a PSOS, frequency is a real-time dynamic variable that shows the balance of generation and load. In the proposed system, the power system operation states keeps frequency response within acceptable boundaries. These limitations are defined at two different levels: the operational range, which is equivalent to ±0.2 Hz (i.e., 49.8 Hz to 50.2 Hz), as well as the regulation limit, which is equal to 0.5 Hz (i.e., 49.5 Hz and 50.5 Hz). When the frequency drops significantly (below 49.2 Hz), a disconnection by low-frequency relays is provided for frequency regulation of both the generation and load.



The under-frequency control relay and the acceptable maximum frequency variation of  Δ 0.5 Hz from the setpoint are used to define the membership function (typically set at 49.50 Hz). In addition, the frequency deviation membership function for a two area power system, as illustrated in Figure 8 and Figure 10, has characteristics of very negative (VN), medium negative (MN), negative, zero (Z), positive (P), medium positive and very positive (VP).



As a result, the fuzzy inference employs a table of fuzzy rules, including twenty-five distinct rules (see Table 1).




3.2. Particle Swarm Optimization (PSO)


A comparison of the PSO and GA, and evolutionary algorithms indicates that the overall most optimum results are achieved for PSO. Hence this research chose the PSO algorithm for further study. Accordingly, the fuzzy set theory was also applied for figuring out the most optimum compromised solution. The process and formulas involved in the solution are expressed in (21), and (22) [34]. A membership function denoted by μe is employed for representation of the eth objective function of the solution in Fe set. Figure 11 shows a schematic representation of the optimization procedure employed.


   μ e  =  {      1 ,      |   F e   |  ≤    |   F e   |    m i n              |   F e   |    m a x   −  |   F e   |       |   F e   |    m a x   −    |   F e   |    m i n     ,    |   F e   |    m i n   <  |   F e   |  <    |   F e   |    m a x          0 ,      |   F e   |  ≥    |   F e   |    m a x            



(21)






   μ θ  =     ∑   e = 1    N  o b j      ξ e   μ e θ      ∑   h = 1  H    ∑   e = 1    N  o b j      ξ e   μ e h             



(22)




where      |   F e   |    m a x     and      |   F e   |    m i n    , respectively, represent the maximum and minimum values for the eth objective function. The normalized membership function μθ for each solution θ, is computed as per (22). H denotes the number of possible solutions. The solution with the maximum μθ is found to be the most optimum solution. The weight coefficient of eth objective function is indicated by ξe.





4. Simulations and Results


The proposed two area power system is represented in Figure 12. The current research proposed an off-line optimization approach for an optimal coordinated control method for the participation of electric vehicles and generators in frequency regulation (FR). The decision variables in the current study are either FR capacity-allotted generators, and EVs or a multiple of the FR capacity referred to as ace signals for generators and EVs. Some considerations to consider in the implementation of this offline optimization process are: the power system should be subjected to sufficient load disturbances to create enough scenarios in high accuracy simulation conditions; and subjecting the system to several permutations of charge/discharge scenarios in various system operation states for optimum sampling. As a result, sufficient data will be available for optimized control strategy implementation for onsite operation. In addition, based on current system operation conditions, optimal charge/discharge power for individual EVs as per the timeliness requirement can also be obtained.



The simulation model is schematically represented in Figure 13 and was obtained through MATLAB/Simulink. Both the generators and EVs are the FR resources for area A and B. The parameters in a two-area interconnected system for the model are shown in Table 2, Table 3 and Table 4. Area control error (ACE) subjected to TBC control method was used for FR signal as indicated in (23).


  A C E = Δ  P  t i e   + B Δ f  



(23)







The load fluctuations associated with normal systems of the system are captured through a series of random loads which fluctuate within a given range are connected in both areas A and B. The time period of the random fluctuating loads is set to 1 h to conform to the units of parameters. In addition, for simulation of the disturbed load in the abnormal power system state, two step loads, −0.8 MW and Pabnormal are added in areas A and B, respectively.



4.1. Optimization and Analysis of Control Strategy


In the current research the decision variables are either FR capacity-allocated generators and EVs or a multiple of the FR capacity termed as area control error (ace) signals for generators and EVs. Table 5 contains the relevant parameters [12]. For different states of the system, the optimization objectives are expressed as indicated in (6).



4.1.1. Normal State


There are considerable fluctuations in the normal states of the sum of power output of EVs and generators due to random loads. The total output power from EVs and generators are shown to increase as the Pnormal increases. The total output power from the EVs at each moment is miniscule, and hence can be considered negligible.




4.1.2. Abnormal State


In this state the power system operation is not safe, and the EVs and generator power complementarity can be utilized to restore the FD to normal state at the earliest instance. The generator output power in the abnormal state is found to increase with Pabnormal, while the EVs output power is at a maximum level at all times. The output power is characterized by a stable final value. The optimized influence of all the three objective expressions is equal to the minimum FD and remains the same throughout. Hence there is no relation between the output power and the ξabnormal-t. The EV power during the abnormal state is always found to be at maximum level, while in normal state the EVs output power is sometimes negligible. The EVs response speed and its FR accuracy along with the generator FR capacity in this case are utilized effectively. In addition, the FR cost is factored in during this state.





4.2. Simulation and Discussion


Figure 14, the upper area presents a schematic of an FR strategy termed STRATEGY 1. The FR control strategy taken from [13] is called as STRATEGY 2, where the control strategies and response preferences vary according to the varying operating states for FRRs. The FR control strategy obtained through the proposed optimization model presented in this paper, is called STRATEGY 3 here. The FR optimization strategy for the case when the number of EVs is increased to twice the original is termed as STRATEGY 3+.



4.2.1. Normal State


Distinct indicators at different system states were computed, as listed in Table 5, for evaluation of the effectiveness of the different FR control strategies. The random load formulated as in (24) and simulated as shown in Figure 14 was assumed to simulate normal distribution.


   P   random       ( t )  = μ +  P   normal      ⋅ σ ⋅    rand    n    



(24)




where the term Prandom represents the load fluctuation in normal state of the system; μ and σ are the normal distribution function parameters and respectively equal to 0 and 0.388. Pnormal indicates the maximum value that the load fluctuation attains in most of time and is equal to 0.06 MW in Figure 14; randn is a random number in [0,1] standard normal distribution.



Figure 15, Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20 present the output power obtained from different control strategies listed below. Both EVs and generators participated in FR in STRATEGY 1 and STRATEGY 2, while in STRATEGY 3 EVs did not participate in the FR activity, and hence the power output from the generators was the minimum in this case.



Figure 21, Figure 22 and Figure 23 represent the tie-line power output in the cases of the different strategies listed above. The tie-line power in the cases of STRATEGY 1 and STRATEGY 2 was evidently stable as compared to STRATEGY 3. This stems primarily from the fact that the FR power was least for STRATEGY 3.



Figure 24, Figure 25 and Figure 26 express the FD of the control strategies under consideration, and it is evident that the FR power was least for STRATEGY 3 here as well. The FD of this strategy, however, was less than the other strategies. From Table 6, it can be stated that STRATEGY 3 performed the most optimally in the FR effect, leading to a lower FR cost as compared with other configurations. This could be due to the constant random fluctuation of the loads. It is also evident that the FR cost of STRATEGY 3 was less as compared with STRATEGY 1, which could be due to the lower power output from the generators in STRATEGY 3. The FR results for STRATEGY 3 and STRATEGY 3+ were the same due to the lack of participation of EVs in FR.




4.2.2. Abnormal State


In this state two loads of −0.8 MW, and 1.6 MW were added, respectively, at the 10th and 15th second in areas A and B, respectively. Figure 27 and Figure 28 present the power output for the different strategies for this state. It can be seen that EVs participated in FR where the ACE value reached response thresholds in STRATEGY 2. The output power of EVs in STRATEGY 3 responded much faster as compared with STRATEGY 1 and STRATEGY 2. The tie-line power for the different strategies along with the respective FD for the different strategies under consideration are given in Figure 29 and Figure 30, respectively. As is evident from Table 6, STRATEGY 3 performed the most optimally of all the strategies except STRATEGY 3+. This is due to the participation of more EVs in the FR and the concomitant quicker response power. The better performance of STRATEGY 3+ stems partially from the constraints on EV capacity.



The power system operation was comparatively safer and the FD fluctuation within a set range in the normal state. Hence, the FR cost reduction could accrue less FR resources. On the other hand, the only goal in the abnormal state of operation is system security improvement. Hence, the advantages accrued informing of FR accuracy and response speed should be utilized.



The output power from the generator was optimally less, and that of EVs was the minimum possible in normal state of operation for optimized results. Moreover, the output power from the EVs approached maximum values and therefore the remainder of FR power was all that was available from the generators output power in the abnormal state.






5. Conclusions


This paper presented an optimal control method for EV participation in frequency regulation under varying PSOSs. The complementary nature of the EVs and generators in different PSOSs configurations was employed. The power in normal state was found to be comparatively safer, whereas there was a need for timely restoration of FD to be within the normal range in the abnormal state of operations. In a normal state of operation, the optimization objective was based on the minimization of FR costs factoring in the cost of battery degradation, while in the abnormal state the optimization objective was based on the minimization of frequency restoration time. The FR costs associated with EVs came out to be higher in the current research, however the response speed was comparatively faster. Disturbed loads in the form of a series of random loads with a 1 h time period, and a step load were added for simulation of the power system. Accordingly, an optimal coordinated control principle was drawn between the EVs and generators. In a normal state the EVs and generator output power came out to be lower, while in an abnormal state the EVs’ output power was found to be more than that of the generators. The simulation in this research proved the existence of a cost reduction in FR for a normal state of operation. Moreover, the recovery time for frequency, and the FD improved significantly in an abnormal state by the employment of the proposed model.




6. Future Recommendations


	
It would be fascinating to add EVs into the security-constrained unit commitment (SCUC) framework, which will describe the dynamic behavior of EVs during both primary and secondary frequency control.



	
A procedure might be designed to better assure the requisite performance for the primary frequency control by simulation analysis.



	
A suitable pricing mechanism might be established in spot marketplaces to characterize both power and associated services.
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Abbreviations




	PSOSs
	Power system operation states



	EV
	Electric vehicle



	MG
	Microgrid



	FR
	Frequency regulation



	V2G
	Vehicle-to-grid



	FD
	Frequency deviation



	SOC
	State of charge



	PSO
	Particle swarm optimization



	FLC
	Fuzzy logic control



	RES
	Renewable energy sources



	GAOT
	Genetic algorithm optimization toolbox



	CSO
	Charging station operator



	DR
	Demand response



	DG
	Diesel generator



	ECP
	Expected charging power



	VN
	Very negative



	MN
	Medium negative



	MP
	Medium positive



	VP
	Very positive



	ACE
	Area control error
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Figure 1. Contribution in FR of a schematic framework for an integrated microgrid for electric vehicle coordination with charging stations and the EV Aggregator. 
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Figure 2. The dynamic model of electric vehicle. 
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Figure 3. Electric vehicle battery degradation cost. 
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Figure 4. The relationship between expected charging power (ECP), expected SOC, and plug-in duration. 
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Figure 5. The state of charge of EVs output power. 






Figure 5. The state of charge of EVs output power.



[image: Sustainability 14 03108 g005]







[image: Sustainability 14 03108 g006 550] 





Figure 6. Fuzzy logic controller. 
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Figure 7. Membership functions of area control error (A). 
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Figure 8. Frequency deviation in ACEa. 
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Figure 9. Membership function of area control (B). 
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Figure 10. Frequency deviation in ACEb. 
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Figure 11. Hierarchical optimization operation. 
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Figure 12. A two-area interconnected power system for regulation with EVs. 
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Figure 13. Control strategy of two area power systems. 
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Figure 14. Hourly load fluctuation with different Areas. 
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Figure 15. The EVs with STRATEGY 1 (EVs-A), output power in normal conditions. 
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Figure 16. The EVs with STRATEGY 2 (EVs-B), output power in normal conditions. 
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Figure 17. The EVs with STRATEGY 3 (EVs-C), output power in normal conditions. 
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Figure 18. The generators with STRATEGY 1 (Gen-1), output power in normal conditions. 
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Figure 19. The generators with STRATEGY 2 (Gen-2) output power in normal conditions. 
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Figure 20. The generators with STRATEGY 3 (Gen-3),) output power in normal conditions. 
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Figure 21. The tie-line power in the normal state with STRATEGY 1 (A). 
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Figure 22. The tie-line power in the normal state with STRATEGY 2 (B). 
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Figure 23. The tie-line power in the normal state with STRATEGY 3 (C). 
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Figure 24. Frequency deviation in the normal condition with STRATEGY 1 (A). 
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Figure 25. Frequency deviation in the normal condition with STRATEGY 2 (B). 
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Figure 26. Frequency deviation in the normal condition with STRATEGY 3 (C). 
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Figure 27. In the abnormal state, the output power of electric vehicles with various tactics (Strategies 1–3). 
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Figure 28. In the abnormal state, the output power of generators with various tactics (Strategies 1–3). 
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Figure 29. In an abnormal operating state, the tie-line power with strategies. 
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Figure 30. In the abnormal operation state, frequency deviation with various strategies. 
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Table 1. Fuzzy Rules.
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Table 2. Simulink Parameters.
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	Parametric Values
	Value
	Parametric Values
	Value





	Prosed network (MW)
	10
	frequency (Hz)
	50



	TG-a, and TG-b (s)
	0.5
	Da and Db (MW/Hz)
	1/6



	TCH-a, and TCH-b
	0.8
	Ra and Rb (Hz/MW)
	0.3



	TRH-a, and TRH-b (s)
	10
	kr-a and kr-b (MW/Hz/s)
	2/15



	Ma, and Mb (MW/Hz/s)
	2.0
	FHP-a, and FHP-b
	30%
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Table 3. Electric vehicle charging station (CS) parameters.
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	Parametric Values
	Value





	Coefficient of EVs frequency kEV-a, kEV-b (MW/Hz)
	1.12



	Battery gain of electric vehicle
	1



	Times constant of EV battery filter
	1 s



	Area-A EV fleet
	800



	Area-B EV fleet
	800



	Area-A generators
	1



	Area-B generators
	1
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Table 4. Electric vehicle (EVs) parameters.
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	Parametric Symbols
	Value
	Electric Vehicle State of Charge
	Quantity





	Battery capacity (mAH)
	50
	90
	40



	State of charge minimum (%)
	0.1
	80
	65



	State of charge of maximum (%)
	0.9
	70
	92



	SO io
	0.6
	60
	275



	   Δ  P  m a x D , i     
	25
	50
	105



	  Δ  P  m a x C , i    

K

ζ’
	25

0.8

0.8
	40

30

20

10
	75

55

25

30
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Table 5. Parametric values of frequency regulation cost.
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	Parametric Symbols
	Value
	Electric Vehicle State of Charge
	Quantity





	Cit ($/h)
	10
	C1, C2
	0.8



	ait ($/MWh)
	9
	r1, r2
	[0,1]



	bit ($/MWh2)
	0
	vx, mj, vx, EVj
	[−1,1]



	Qpr,it ($/MWh)
	10
	Particles
	100



	α ($/MWh2)
	3.8 × 10−4
	Iterations
	100



	β ($/MWh2)
	7.6 × 10−4
	ωM, ωEV
	1



	ζnormal,−fmaximum
	1
	ζabnormal,−faverage
	1



	ζnormal,−faverage
	1
	ζabnormal,−faverage
	1



	ζnormal,−cost
	1
	ζabnormal,−t
	1
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Table 6. Output Results of different strategies.
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	Parametric Values
	Value
	Parametric Values
	Value





	
	Frequency deviation max (FD) (Hz)
	0.0553
	0.0543
	0.0549



	
	Frequency deviation avg (FD) (Hz)
	0.0121
	0.0123
	0.0105



	Normal state
	Frequency regulation cost of gen
	275.18
	210.35
	230.01



	
	Frequency regulation cost of electric vehicles ($)
	540.38
	480.62
	0



	
	Total Cost ($)
	815.50
	695.97
	230.00



	
	Frequency deviation max (FD) (Hz)
	0.9568
	0.9543
	0.9346



	Abnormal state
	Frequency deviation avg (FD) (Hz)
	0.0133
	0.0133
	0.0095



	
	Restore time (s)
	84.25
	84.24
	42.99
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
suopoung digssaquisgy

ACE, (p.u)

-0.65





media/file4.png
K/1+sTe 1/3600s
E

Vi
R/1+SRC,





media/file52.png
0.05

)

(zg) uoneiad( LAduanbaa g

-0.05

1200

600
Time (sec)





media/file39.jpg
Gen3

s

(I 49804 nding

1200

Time (sec)





media/file18.png
ACE (B)

ACEj, (p.u)

| 1

suonjoun,J digsraquudyy





media/file21.jpg





media/file44.png
g

Tie line Power (MW)
=

2

—

600

1200

1800
Time (sec)

2400

3000

3600





media/file26.png
ACE (A)

] ] —
APn-q
R | 14 sFp_olri-q — 14
- ol e -
ACE AR (1 + STCH—a)(l + STRH—a) —I - MaS + Dq
\ a Generator Capacity Limit APyoc_q
> !
|T| kch—a + fz 1 . _II_ -
:H 1—sTen_q 1+ 51a-q — — -
EV Capacity Limit |E ab ( Z)
Control Strategy EV Capacity Limit [s | hy
—
1 ke ()T, Af,
S| 1—5sT_p 74 1+ sTq_p Prg-p 1
-3 M, S + D,
+ o 1 + SFHP-IITRH—D _ |_ _
S+ 5Tg-p (14 5Tep—p) (1 4 5Tpy_p) =

Generator Capacity Limit






media/file57.jpg
Tie line Power (MW)

— Strategy-1
— Strategy-2
— Strategy-3

Time (sec)

100





media/file55.jpg
Output Power (MW)

100

Time (sec)





media/file7.jpg





media/file28.png
Random load (MW)

0.06

-0.06

0.06

-0.06

1800
Time (sec)

3600





media/file10.png
oo rdPeooosrssosseoe s

SOC™™";

.mol
[ B N N N N N N N N N N C
0’ Q
----r----- - e e e & - S
- 8 - .S - J
5 ¢ 0
8 6 "
’ 8
0 m i up 0
'V = | o
0 = | = "
3 6 =S
‘ m b = 0
. © - a -
[ M W = 0
] = ] WH_ &
8 WD L] <) "
" v/ " R ] -
il R ] " mC
0 8
? 8
¥ o 0 F2
9 i 0
3 § o
' ’ :
- %
- g Wi,
o % =





media/file49.jpg
0.05]

B

(z5) woywaa(y Sononbasg

-0.05

1200

600
Time (sec)





media/file11.jpg
T Ltsfialiss
EX | Iy (TS

Gerertor Capacy Lind

T
EXP
&

pacty Lini

- l

ACE,

e [ T2
Ty
14370 1 # T, =

CapaciyLini

[TaAce® | [k}






media/file6.png
EVs Battery Cost ($)

— EVs Battery Model-1
—— EVs Battery Model-2
—— EVs Battery Model-3

0 15
V2G Power (kW)





media/file36.png
=
= -

Output Power (MW)

|
>
-

Gen-1

1200

Time (sec)

2400

3600






media/file15.jpg
suopoun digsiaquiajy

Frequeucy deviation fn ACEy





nav.xhtml


  sustainability-14-03108


  
    		
      sustainability-14-03108
    


  




  





media/file54.png
Output Power (MW)

<

|
sk

-2

= Strategy-1

Strategy-2
Strategy-3

11

12 13 14 15 16

50
Time (sec)

100






media/file2.png
:;I Microgrid Operator (MGO) [#=======msmmmmmsmomsmsommmnsooonmmononnny
|_| i
icsel |
Generator :
) ¥
4 Communication . EVs
\ 'stem agoregator
— A
Wind Turhine
VG
charging/ ‘*Cummunica
discharging -ion system
EV
‘Charging Stations (CSS)‘ v

Llectric Vehicles

EVs Charging Station |

EVs Charging
Station 2






media/file53.jpg
Output Power (MW)

El

2

Strategy-3

100






media/file23.jpg





media/file59.jpg
— Strategy-1
— Strategy-2
—— Strategy-3

100
Time (sec)





media/file24.png
TBC

(Charging

ACE
(B)






media/file29.jpg
Output Power (MW)

10t

EVs-A

200
Time (sec)

2300





media/file1.jpg





media/file12.png
-
ey CAreaa
APn-q
1 | 14 sfypoTRe-g — e
- - —— > .
+3  ACE Stslocal | (14 5Ty 14 5Tayee)] |- MaS + Da
Z,‘\ a Generator Capacity Limit APyoc_q
- - ¥
kch—a. + _/n\ _ 1 . JI_ >
- 1—sT @ "1+ sTy_, —] i -
ch=a
EV Capacity Limit |k = "'_CZD
EV Capacity Limit s hy
+ ACEb Ken—b +_® - 1 1 —]I_ i Afb
Z > 1—sT.,_p =/ L+ STy =L Prag-n o 1
~) ~ M,S + D,
hy 1 of 11 SFapplpy-y ~ JI_ "
S+ STG_D (l + STCH-b)(l + STRH_-IJ] —I

kev..

sencerator Capacity Limit

| ACE®)  [AP,






media/file9.jpg
soc;





media/file42.png
E

Tie line Power (MW) o
=

=

=

600

1200

1800
Time (sec)

2400

3000

3600





media/file56.png
-
U

-

Output Power (MW)
et
tn

O — E——
—— Strategy-1
—— Strategy-2
— Strategy-3
0 S0 100

Time (sec)






media/file47.jpg
1200

500

z ° %
s H
(2p) uopsraq Kousmboug





media/file38.png
Output Power (MW)

=
-

=

|
=
-

Gen-2

1200

Time (sec)

2400

3600






media/file17.jpg
ACE (B)

suoyuny dgssaquiapy





media/file60.png
Frequency Deviation (Hz)

0.05

—
— Strategy-1
— Strategy-2
— Strategy-3
50 100

Time (sec)






media/file30.png
Output Power (MW)
=

I
(&)

x 107

=]

EVs-A

1200
Time (sec)

2400





media/file51.jpg
1200

<

600
Time (sec)

9 £
3

(@) uoyraq A>uanbosg





media/file35.jpg
Gen-1

S (M) 19m0g inding.

3

3600

2400

1200

Time (sec)





media/file48.png
1200

600
Time (sec)

\f;
= =

S
(ZRy) uoneIAd(q Aduanbaa g

-0.05





media/file27.jpg
Random load (MW)

0.06

0.06

0.06

0.06

1800
Thne (sec)

3600





media/file3.jpg
Af
Ki1osTe






media/file22.png





media/file19.jpg
Membership Functions

Afy

0.5 o 0.33
Frequency deviation in ACEy

D65

ACE, (pu)





media/file58.png
Tie line Power (MW)

0.5

o

|
=
N

—— Strategy-1
— Strategy-2
— Strategy-3

50
Time (sec)

100






media/file40.png
0.1

Output Power (MW)
=

|
&
-

Gen-3

e

1200

Time (sec)

2400

3600






media/file33.jpg
EVsC

x10*

7400

200

(I om0 nding

Time (sec)





media/file32.png
Output Power (MW)

-2

EVs-B

1200
Time (sec)

2400





media/file14.png
ACE (A)

VP

MP

MN

-
ACE;, (p.u)

suonoun,] digstaquiagy

0.65

0.33

-0.33

-0.65





media/file41.jpg
A

2

S (AAN) 19m0g dup ),

=

2
H

3600

1800 2400
Time (sec)

1200





media/file37.jpg
3600

Gen2

2400

1200

e 3

(M) 2amog ndingy

3





media/file46.png
E

Tie line Power (MW) o
=

=

=

600

1200

1800
Time (sec)

2400

3000

3600





media/file45.jpg
2

S (AAN) 1Mo dur ALY,

°

2
H

3600

1800 2400 3000
Time (sec)

1200

600





media/file16.png
suonpoun,J diysiaquiagy

ACE, (p.u)

-0.33

-0.65

Frequency deviation in ACE,





media/file20.png
Afp

2

0.65

0.33

-0.33
Frequency deviation in ACE,

-0.65

-TEeEsseSssEeSeeSeSSeSeeSeSeSee 1

suorpoun J digsraquuiafy

i

ACEy, (p-u)





media/file50.png
—

0.05

(zH) uonjerad( Aduanbaa g

-0.05

1200

600
Time (sec)





media/file5.jpg
EVs Battery Cost (S)

— EVs Battery Model-1
—— EVs Battery Model-2
—— EVs Battery Model-3

i3 30
V2G Power (KW)





media/file31.jpg
Output Power (MW)

x10*

EVsB

200
Time (sec)






media/file25.jpg
&
e
" Pev o
Ol 8 — T s
T e O s
B i |






media/file0.png





media/file8.png
ECP (kWh)

/

Plug Out Time
Expected SOC

SOC(pu)

Plug in Time Time





media/file43.jpg
I =
S (W) somog augary,

2
=

3600

1800 2400
Time (sec)

1200

600





media/file34.png
Output Power (MW)

x 107

EVs-C

1200
Time (sec)

2400





