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Abstract: It is becoming increasingly important to implement projects with care on environmental
conditions. Some projects can be carried out only during the allowable season and interrupted during
other seasons. Such a project interruption is expected to affect the quality of the project’s outcome
through the decision-making of the stakeholders. This paper investigates the impact of interruption
on the decision-making of the project owner and the contractor. We consider a project with some
work after the interruption period (two-year project), the owner can select another option (one-year
project) where all work is completed before the interruption period. If the fixed cost is higher relative
to the benefit, our results show that the contractor prefers the one-year project, even when the owner
selects the two-year project. We also represent the two threshold values of the interruption length that
determine the owner’s selection and relative quality of outcomes, respectively. It was found that a
range of interruption length where the selected project does not provide the higher quality outcome.

Keywords: project management; stochastic interruption; dynamic optimization

1. Introduction

It is becoming important to implement infrastructure construction projects thought-
fully with care on environmental conditions in order to promote sustainable develop-
ment. Sustainable Development Report 2021 [1] reported that the quality of infrastruc-
ture related to transportation, such as roads, ports, and railroads, is low in many re-
gions and suggests that there are many challenges in infrastructure construction projects.
There are many studies that imply challenges for high-performing projects by investi-
gating critical factors that lower the project performance and case studies are being con-
ducted worldwide from developed to developing countries, such as the United States
(Shane et al. [2], Wambeke et al. [3]), Denmark(Larsen et al. [4]), Vietnam(Long et al. [5]),
India (Doloi et al. [6]), Jordan (Al-Hazim et al. [7]), Nigeria (Elinwa and Joshua [8]) and
multiple countries (Flyvbjerg et al. [9]). These studies mainly conducted interviews or
questionnaire surveys to identify the factors that affect cost overrun, time delay, or low
quality as the indicators of project performance. Long et al. [5], Doloi et al. [6] and Elinwa
and Joshua [8] suggested the importance of appropriate planning to avoid cost overrun or
time delay. Al-Hazim et al. [7] reported that land and weather conditions have the greatest
impact on cost overrun and time delay in Jordan. Larsen et al. [4] stated the insufficiency
of empirical data on quality due to the difficulty of defining the quality precisely in the
construction project. Larsen et al. [4] is one of the studies that investigated critical factors
which lower the quality. They found that unsettled or lack of project planning has great
impacts on the project quality, and they also show that errors or omissions in construction
work which is caused by the changes in conditions or circumstances would be a critical
factor in determining the quality of the projects.

In some of the regions that need a lot of infrastructure construction, it can be difficult
to keep working all the time because the weather varies so much throughout the year. A
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distinct rainy season can be found in the savannah climate regions, and it significantly
affects the progress of projects such as infrastructure construction, especially long-term
projects lasting over a year. There are some examples of thoughtful climate-adaptive
projects, such as suspending the project during unsuitable periods and implementing it
during more suitable periods. For example, in order to avoid an increase in the number
of accidents caused by the loss of sustain function of the ground during the rainy season,
road repair work is concentrated during the dry season when it is relatively easy to carry
out the project [10]. If the project were to proceed in unsuitable periods, more work
effort would be required, such as reinforcing the sustain function of the ground, and the
environmental impact would be greater. A thoughtful climate-adaptive project has the
potential to be a project to carry out with a smaller environmental impact. In order to
promote such a project, it is required to develop appropriate project planning by taking
into account the interruption periods associated with climatic conditions. Since climatic
conditions vary from year to year, project management under uncertainty is relevant to
this study. Recently, Hazir and Ulsoy [11] reviewed studies about project management
under uncertainty and classified the various sources of uncertainty. They found that few
studies had addressed environmental uncertainty caused by weather and seasonal factors.
For example, Acebes et al. [12], as one of such few trials, examined the impact of frost
risks, caused by low temperatures in the winter season, on the project duration, under
the assumption that the project would be delayed by 25% when the temperature drops
below 0 ◦C. Although Acebes et al. [12] applied a critical path model which considers
such a seasonal risk, Acebes et al. [12] did not assume the situations where the project is
completely interrupted. We consider a project with some work after the interruption period
(two-year project), the owner can select another option(one-year project) where all work is
completed before the interruption period.

The critical-path model was also applied in other studies, such as Icmeli-Tukel and
Rom [13], Kim et al. [14] and Bordley et al. [15]. Icmeli-Tukel and Rom [13] represented
the advantage of the project schedule that maximizes the project quality compared to the
schedule which minimizes [maximizes] project length [net present value] by applying a
critical path model. Kim et al. [14] evaluated the quality loss by shortening the project
length. Bordley et al. [15] examined the impact of ignoring deadline uncertainty on project
performance, using a probabilistic critical-path model. These studies indicated critical path
models are useful for analyzing the decision-making of an individual with considering the
detail of processes. On the other hand, the quality of project outcome is also considered
to be affected by the decisions of the stakeholders involved in the projects. Gutierrez and
Kouvelis [16] pointed out that it is difficult for the critical-path model to account for the
behavior of the stakeholders. Some studies analyzed the decision-making in projects by
applying other models. Bellman [17] developed a dynamic programming model and ana-
lyzed project interruption, but did not consider the situation where projects are completely
interrupted. Schwartz and Zozaya-Gorostiza [18] considered the decision-making in IT
development projects and applied real options theory to examine the impact of cost uncer-
tainty and abandoning decisions. Although these studies analyzed the decision-making
under a multi–period setting, they only focused on the decision-making of one individual.

Mok et al. [19] reviewed the studies about mega construction projects, that involve
multiple stakeholders. Mok et al. [19] pointed out that examining the impact of national
culture on projects is one of the future research directions. This study considered the impact
of region-specific climates, such as the rainy season in savanna climates. It is considered
that this feature is consistent with the research direction shown in Mok et al. [19]. Ceric [20]
reviewed papers related to principal–agent theory in construction project management and
pointed out that few studies focused on the behavior of project owners. Zhu et al. [21]
considered the decision-making of the project owner, contractor, and insurance company
and assumed stochastic disturbances only affect the outputs of the contractor. Zhu et al. [21]
did not explicitly specify the causes of disturbances, especially project interruption. Because
Zhu et al. [21] considered a static framework, not a multi–period setting. Therefore, an
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analytical framework is needed for examining the impact of complete interruptions on the
decision-making of multiple stakeholders in a multi–period setting. Our study is another
trial to add an example of studies considering the stochastic disturbances that have a
significant impact to interrupt a project completely, and it affects all of the stakeholders,
such as the owner, and the contractor.

This study aims to examine the effect of the interruption on the decision-making of
the owner who selects the project types, and the contractor who decides the quality of the
project. First, we examine the impact of changes in the interruption length on the social
benefit which comes from the decision-making of the owner and the contractor. Second,
we consider that the owner can select one of the one-year and the two-year projects to
maximize the social benefit. And then, we examine the differences in the owner’s and the
contractor’s preferences for the two types of projects and represent the thresholds at which
the preferences change. Furthermore, we also examine the effect of the variance of the
interruption length on the project selection of the owner. Currently, global climate change
is making the prediction of such an interruption more difficult. The timing of the rainy
and dry seasons is changing due to the changes in global water cycle patterns. In some
countries such as Botswana in Africa, the dry season is becoming longer and the rainfall in
the rainy season is increasing [22,23]. Our framework will become increasingly important
to promote sustainable development with the increase in uncertainty of climate conditions
due to global warming.

This paper proceeds as follows. In Section 2, we represent our model framework. The
behavior of the owner and the contractor is formulated. In Section 3, we study the properties
of the project, e.g., the expected benefits, under various settings on the interruption. We
conclude in Section 4.

2. Model

We consider a model in which an owner wishes to maximize the social benefit gained
from a construction project. The social benefit becomes higher as the quality of the project’s
outcome becomes higher, and the owner wishes the project to be completed by a contractor.
This project can be completed with multiple periods of effort by the contractor. The
contractor determines the amount of effort each time to maximize the profit. The owner
pays a reward to the contractor according to the completed amount at the completion
time and determines the amount of reward to maximize the owner’s expected benefit, by
considering the response of the contractor. Thus, the contractor makes their decision as the
reward is given.

If the project duration exceeds one year, then it is assumed that interruption periods
will occur because of environmental conditions, such as the rainy season. Any year and
subsequent year are divided by the interruption period, and the length of the interruption
is stochastically determined. Both the owner and contractor only know the probability
distribution of the length of the interruption. We develop a discrete-continuous multi–
period model to describe the behavior of the contractor and owner under such a condition.

2.1. Behavior of the Contractor under Discrete–Continuous Multi–Period Setting
2.1.1. Profit Function of the Contractor

In this model, the planning period is described by both continuous and discrete-time
periods. We consider multiple years, described by an integer n, each consisting of multiple
weeks, represented by the continuous number t. The integer n ∈ N ≡ {1, 2, · · · , N}
describes multiple years, and the continuous number t is used as an index to describe finer
periods, such as weeks or day. t is defined in each year as t ∈ [tn, · · · , Tn], ∀n ∈ N , where
tn denote the beginning week in year n, stochastically given, and Tn denote the last week
of year n, definitely given.

We consider the interruptions between years as shown in Figure 1. Let ζ̃n denote
the length of interruption periods between year n and n + 1. We assume that the exact
value of ζ̃n is unknown for the owner and contractor before the year n and determined
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stochastically after Tn according to a probability distribution function p(ζ̃n). We assume
p(ζ̃n) is an uniform distribution, i.e., ζ̃n ∼ U(ζ̄n − σ, ζ̄n + σ), and it satisfies:

∫ ζ̄n+σ

ζ̄n−σ
p(ζn)dζn = 1, n = 1, 2, · · · , N (1)

where ζ̄n is the mean value of the probability distribution U(ζ̄n − σ, ζ̄n + σ). Since the
(n + 1)th year begins after the interruption, the beginning period is also determined
stochastically and is given by

t̃n+1 = Tn + ζ̃n, n = 1, 2, · · · , N − 1 (2)

It can be said that t̃n+1 also follows the uniform distribution, because Tn is a determin-
istic parameter. Accordingly, it can be denoted as t̃n ∼ U(t̄n − σ, t̄n + σ), where t̄n is the
mean value of t̃n, and it is given by t̄n = Tn + ζ̄n.

t1 T1 T2

First Year Second YearInterruption

t2

⇣1

��

Figure 1. A discrete–continuous setting (N = 2).

We assume that this project is completely suspended during the interruption periods,
and so the following equation holds:

x(t̃n+1) = x(Tn), n = 1, 2, · · · , N − 1 (3)

It means that the accumulated work does not deteriorate during the interruption
periods.

Suppose that the contractor plans to allocate work effort w(t) to each time period and
that the progress of this project is described by x(t), that is, the accumulation of w(t). This
dynamical system can be formulated as follows:

ẋ(t) = w(t), ∀t ∈ [tn, Tn], n = 1, · · · , N (4)

where, ẋ(t) = dx(t)/dt.
Suppose the contractor receives the reward according to the quality of the outcome

after the project. The quality of the outcome can be evaluated by the accumulated work
effort at the completion time, x(TN). Let θN represent the monetary value of unit x(t) and
θN x(TN) represent the reward evaluated in monetary terms. The contractor assigns work
to each week by considering the reward θN x(TN) as given. Let C(w(t)) represent the cost
of work w(t) at period t in each year. We assume the following specific cost function:

C(w(t)) = f +
c
2

w(t)2, ∀t ∈ [t̃n, Tn], n = 1, · · · , N (5)

where f is a non-negative constant parameter representing the fixed costs and c is a positive
constant parameter. This cost function assumes that the contractor is required to expend
some fixed costs f to retain resources, such as workers, regardless of the amount of the
work effort. Such a quadratic cost function is also assumed in Zhu et al. [21] and it is often
used in economic analysis to describe the increase in the per-unit cost as the volume of
effort increases.

We assume that the contractor determines the optimal allocation of work effort at the
beginning of this project by considering the expected profit. Since the contractor considers
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the reward θN as given, the profit maximization problem of the N-year project can be
formulated as

max E[J(x(t1), t̃1, T1)] = E

[
e−rTN θN x(TN)−

N

∑
n=1

∫ Tn

t̃n
e−rtC(w(t))dt

]
(6)

subject to Equations (3) and (4). Let tn and Tn denote the set of the beginning and the end
of each year from nth to Nth year, i.e., = t̃n ∈ [t̃n, t̃n+1, · · · , t̃N ] and T ∈ [Tn, Tn+1, · · · , TN ],
respectively. And E[·] denotes the expectation operator, defined as

E[z(τ)] =
∫ t̄n+σ

t̄n−σ
p(τ)z(τ)dτ (7)

The work effort w(t) is only defined in {t|∀t ∈ [tn, Tn], n = 1, · · ·N}. We implicitly
assume that w(t) = 0 during the interruption periods by considering Equations (3) and (4).

2.1.2. Optimal Decision of the Contractor

The contractor is required to complete the project by the end of the Nth year TN . We
apply the backward induction ([24,25]) to obtain the optimal solution of the maximization
problem, defined by Equations (3), (4) and (6). Suppose that the Nth year begins at t̃N , the
profit maximization problem of the Nth year, i.e., t ∈ [t̃N , TN ], is given by

max J(x(TN−1), t̃N , TN) = e−rTN θN x(TN)−
∫ TN

t̃N

e−rtC(w(t))dt (8)

subject to
ẋ(t) = w(t), ∀t ∈ [t̃N , TN ] (9)

x(t̃N) = x(TN−1) (10)

This optimization problem has the Hamiltonian

H(x(t), w(t), λN(t)) = −e−rt
(

f +
c
2

w(t)2
)
+ λN(t)ẋ(t) (11)

and its adjoint equation becomes

λ̇N = −∂H(x(t), w(t), λN(t))
∂x(t)

= 0 (12)

This equation shows that λN(t) is constant with respect to time. Thus, we write λN(t)
as λN and determine its value through the boundary condition defined as

λN =
∂J(TN , TN)

∂x(TN)
= −θNe−rTN (13)

The necessary condition for the optimal amount of work effort in each week is given by

∂H(x(t), w(t), λN(t))
∂w(t)

= −e−rtcw(t) + λN = 0 (14)

and the optimal solution can be obtained as

w∗(t) =
θN
c

er(tN−TN) ∀t ∈ [tN , TN ] (15)

x∗(t) = x(TN−1) +
θNe−rTN

cr
(ert − ert̃N ), ∀t ∈ [t̃N , TN ] (16)
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where the first term is given by the Equation (3) x(TN−1) = x(t̃N). Let J∗(x(TN−1), t̃N , TN)
denote the profit function under the optimal control w∗(t) and x∗(t). We assume that t̃N is
determined stochastically following the probability density function defined in Equation (1).
The profit maximization problem of the N − 1 year can be formulated as,

min J(x(TN−2), t̃N−1, TN−1) = −
∫ TN−1

t̃N−1

e−rtC(w(t)) + E[J∗(x(TN−1), t̃N , TN)] (17)

subject to Equation (4). The Hamiltonian for this problem can be formulated as Equation (11),
and its boundary condition for the (N − 1)th year is given by

∂

∂x(TN−1)
E[J∗(x(TN−1), t̃N , TN)] = θ2e−rT2 (18)

and its adjoint condition also becomes,

λ̇N−1 = 0 (19)

Therefore, the optimal control can be obtained as,

w∗(t) =
θN
c

er(t−TN), ∀t ∈ [t̃N−1, TN−1] and [t̃N , TN ] (20)

and

x∗(t) =

x(TN−2) +
θN e−rTN

cr (ert − ert̃N−1), ∀t ∈ [t̃N−1, TN−1]

x(TN−2) +
θN e−rTN

cr

(
erTN−1 − ert̃N−1 + ert − ert̃N

)
, ∀t ∈ [t̃N , TN ]

(21)

We can obtain the optimal control w∗(t), x∗(t) of all years, and also J∗(x(t1), t, T), by
repeating these procedure to the first year N = 1.

2.2. Behavior of the Owner under Discrete–Continuous Multi–Period Setting
2.2.1. Benefit Function of the Owner

The owner considers v0 as the unit value of this project and pays the reward to the
contractor at the completion time, TN . The owner determines the reward per unit (θN) to
maximize the net benefit by considering the contractor’s response to the changes in θN .
Therefore, the optimal decision of the owner about θN in N-year project can be obtained by
solving the following expected benefit maximization problem with respect to θN :

E[VN(θN)] = max (v0 − θN)E[x∗(TN , θN)]e−rTN +
∫ ∞

TN

e−(r+δ)τv0E[x∗(TN , θN)]dτ (22)

Because the owner considers the contractor’s response to θN , the amount of work
effort at the completion time TN is also considered as a function of θN , i.e., E[x∗(Tn, θn)].
The first term of Equation (22) represents the net benefit at the completion time. The
owner’s net benefit per unit is given by the difference between the unit value v0 and the
unit reward to the contractor θn. The second term represents the long-term benefit of this
project. Although the benefit can be obtained after completion time to infinite time, the
project value will decrease according to time. We assume the reduction of the project value
is given by an exponential function, and the deterioration rate is given by a nonnegative
parameter δ. The optimization problem defined in Equation (22) can be simply rewritten
as follows:

E[VN(θN)] = max (v− θN)E[x∗(TN , θN)]e−rTN (23)
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where,

v =

(
1 +

1
r + δ

)
v0

2.2.2. Optimal Decision of the Owner

The optimal decision of the owner can be obtained from the necessary condition for
optimality of Equation (23). Hence, the condition becomes

(v− θN)
∂E[x∗(TN , θN)]

∂θN
e−rTN − E[x∗(TN , θN)]e−rTN = 0 (24)

The optimal reward can be determined so as to satisfy this condition.

2.2.3. Project Selection Rule of the Owner

Suppose the owner can select the year of the project to maximize the owner’s expected
benefit. Let V∗N denote the optimal benefit function, i.e., VN(θ

∗
N), where θ∗N is the optimal

reward which satisfies the necessary condition, Equation (24). The owner’s selection for
the project year N can be obtained from the problem given by

N∗ = argmaxn{V
∗
1 , E[V∗2 ], · · · , E[V∗n ], · · · , E[V∗N ]} (25)

Since we assume that t1 is deterministically determined, i.e., t1 = 0, V∗1 has a deter-
ministic value.

3. Case Study: One-Year and Two-Year Project (N = 2)

We consider that the owner considers ordering a one-year or two-year project. First,
we examine the optimal decisions of the owner and contractor under the existence of
interruption between the first and the second years in a two-year project. Second, we
consider those of a one-year project and examine the project selection [preference] of the
owner [contractor] by comparing the benefits [profits] of each project. Here, we assume
this project begins at t1 = 0 and x(t1) = 0.

3.1. Optimal Decisions under Two-Year Project

When the contractor is required to complete the project within two years (N = 2).
Since the optimal solution can be obtained from Equations (20) and (21), the optimal
amount of work effort at the completion time T2 can be obtained as

E[x∗2(T2)] =
θ2e−rT2

cr

{
erT1 − 1 + erT2 − ert̄2 Φ(σ)

}
(26)

where,

Φ(σ) =
erσ − e−rσ

2rσ
(27)

We can see that the amount of work effort is increasing with the increase in the unit
reward θ2 and the decrease in the unit cost c. We can also observe that the increase in the
expected beginning period of the second year decreases E[x∗2(T2)]. In other words, the
increase in the expected length of the interruption decreases the amount of work effort.
Φ(σ) is a function of the variance of t̃2, and satisfies the properties which are shown in the
following lemma

Lemma 1.

(i) Φ(σ) increases with the increase in the variance of the length of interruption periods σ, i.e.,

dΦ(σ)

dσ
> 0 (28)
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(ii) The value of Φ(σ) has the lower and upper bound, such as,

1 ≤ Φ(σ) ≤ erσ + e−rσ

2
≤ er(t̄2−T1) + e−r(t̄2−T1)

2
(29)

Proof of Lemma 1. See Appendix A.

It can be said that the total amount of work effort of the two-year project decreases
with the increase in the variance of the interruption period from the Lemma 1.

Now, we have the optimal response function of the contractor with respect to θ2 by
considering the discussion in the previous section. The optimal reward can be obtained as,

θ∗2 =
v
2

(30)

from the condition, Equation (24). The expected benefit of the owner with the optimal
reward can be obtained as,

E[V∗2 (T2)] =
v2e−2rT2

4cr
(erT2 − 1) +

v2e−2rT2

4cr
(erT1 − ert̄2 Φ(σ)) (31)

The first term in Equation (31) represents the benefit without interruption, which is the
benefit of the two-year project can continue without interruption from period 0 to T2. The
second term is always non-positive, because t̄2 ≥ T1 and Φ(σ) ≥ 1 from Equation (29) of
Lemma 1. It represents that the existence of the interruption periods decreases the owner’s
expected benefit. It can be summarized that the properties of the expected benefit for the
interruption periods, as the following Proposition 1.

Proposition 1.

(i) The expected benefit of the owner is decreased by the existence of interruption periods.
(ii) The increase in the expected interruption length decreases the expected benefit of the two-

year project.
(iii) The increase in the variance of the interruption length decreases the expected benefit of the

two-year project.

Proof of Proposition 1. See Appendix A.

It follows from erT2 > ert̄2 Φ(σ) and erT1 > 1 that Equation (31) has non-negative value,
i.e., E[V∗2 (T2)] ≥ 0. Thus, the owner expects positive benefit by selecting two-year project.

As the result of the optimal decision by the owner, the expected amount of work for
the two-year project can be obtained as

E[x∗2(T2)] =
ve−rT2

2cr

{
erT2 − 1 +

(
erT1 − ert̄2 Φ(σ)

)}
(32)

From this equation, we can observe that the total amount of work is decreased by the
existence of interruption because the second term in parentheses becomes negative under
the conditions of T1 ≤ t̄2 and Φ(σ) > 1. It can also be obtained that the expected profit of
the contractor under the optimal reward as

E[J∗2 (0, t̃1, T1)] =
v2e−2rT2

8cr
(erT2 − 1)− f

r
(1− e−rT2)

−v2e−2rT2

8cr
(ert̄2 Φ(σ)− erT1) +

f
r
(e−rT1 − e−rt̄2 Φ(σ)) (33)

The impact of the interruption on the expected profit can be seen in the third and
fourth terms of Equation (33). The third term represents the decrease in the expected profit
due to the existence of the interruption period. And the fourth term represents the increase
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in the expected profit due to the decrease in the fixed cost by suspending the project during
the interruption. Thus, the increase or decrease in the expected profit depends on the
relative size of the project value v and the fixed cost f . Proposition 2 summarizes the
properties of the expected profit, E[J∗2 (0, t̃1, T1)].

Proposition 2.

(i) The expected profit of the contractor is increased [decreased] by the existence of interruption if
the project value v is sufficiently larger [smaller] than the fixed cost f .

(ii) The expected profit of the contractor is increased [decreased] with the increase in the expected
length of interruption if the project value v is sufficiently larger [smaller] than the fixed cost f .

(iii) The expected profit of the contractor is always decreasing with the increase in the variance of
interruption length.

Proof of Proposition 2. See Appendix A.

In order to implement the two-year project, the expected profit must be greater than or
equal to zero. Proposition 2 suggests that projects that are expected to obtain larger profits
due to their large project value will be less attractive by becoming interruption length
longer or increasing uncertainty.

3.2. Comparison between Projects
Optimal Decision under One-Year Project (N = 1)

Suppose that the contractor is required to complete the project by the end of the
first year, T1. The optimal decision of the contractor is then determined by the following
deterministic optimization problem:

min J(x(t1), t1, T1) ≡ e−rT1 θ1x(T1)−
∫ T1

t1

e−rtC1(w(t))dt (34)

subject to
ẋ(t) = w(t), ∀t ∈ [0, T1] (35)

where we assume that t1 = 0 and x(t1) = 0. The optimal control can be obtained by
following a similar procedure in the two-year project, yielding

w∗(t) = argmax H(x1(t), w1(t), λ1(t)) =
θ1

c
er(t−T1) ∀t ∈ [0, T1] (36)

This function shows that the optimal amount of work in each week will increase with
time t. This is because the cost per unit of work can be discounted by the time discount
rate. However, as the completion time T1 becomes longer, the amount of work in each week
becomes smaller. This is because the manager can allocate work to more weeks.

As the result of allocating work in each week according to Equation (36), the project
quality achieved at T1 becomes

x∗(T1) =
θ1

cr
(1− e−rT1) (37)

The project quality x∗1(T1) increases as the value of θ1 increases. In contrast, increases
in the cost of work c1 and the time discount rate reduce the project quality. This is because
the benefit of this project is only generated at the completion time T1, and any increase in
the time discount rate lowers the present value of the project. Therefore, an increase in the
time discount rate decreases the project quality.
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We can derive the optimal amount of work under the optimal reward, by considering
the optimal reward which can be derived from Equation (24) and the optimal amount of
work Equation (37).

x∗1 =
v

2cr
(1− e−rT1) (38)

And we can also derive the profit of the contractor under the optimal decisions
as follows:

J∗1 (0, t1, T1) =
v2e−2rT1

8cr
(erT1 − 1)− f

r
(1− e−rT1) (39)

The owner’s benefit in the one-year project can be obtained by considering x∗1 into the
net benefit function defined by Equation (23).

V∗1 (T1) =
v2e−rT1

4cr
(1− e−rT1) (40)

Equation (40) represents that the V∗1 (T1) has non-negative value, i.e., V∗1 (T1) ≥ 0,
because T1 > 0 and v ≥ 0. Thus, the owner can obtain positive benefit by selecting one-year
project. This paper only considers exogenously determined completion time, T1 and T2.
The relationship between the completion time and the net benefit function can be obtained
as shown in the following lemma,

Lemma 2. There exists an optimal completion time that maximizes V∗1 (T1),

dV∗1 (T1)

dT1
=

{
≥ 0, if T1 ≤ ln(2)

r

< 0, if T1 > ln(2)
r

(41)

and there also exists an optimal completion time that maximizes E[V∗2 (T2)],

dE[V∗2 (T2)]

dT2
=

≥ 0, if T2 ≤ 1
r

{
ln(2) + ln(ert̄2 Φ(σ)− erT1 + 1

}
< 0, if T2 > 1

r

{
ln(2) + ln(ert̄2 Φ(σ)− erT1 + 1

} (42)

Lemma 2 implies that if the project duration is sufficiently long, it decreases the net
benefit by setting the duration longer.

3.3. Project Selection by the Owner

We now discuss the owner’s selection between the one-year and two-year projects.
The owner selects one of the projects by following the rule given by Equation (25). In this
case, it can be rewritten as follows,

N∗ =

{
1, ∆E[V∗] ≤ 0
2, ∆E[V∗] > 0

(43)

where,

∆E[V∗] = E[V∗2 (T2)]−V∗1 (T1)

=
v

4cr

{
e−2rT2

(
erT1 − 1 + erT2 − ert̄2 Φ(σ)

)
−e−2rT1

(
erT1 − 1

)}
(44)

The following proposition represents the differences in the projects selected by the
owner, according to the expected length of the interruption.
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Proposition 3.

(i) The owner selects the two-year project, if the interruption length is sufficiently shorter, i.e.,
ζ̄1 < ζ[E[V∗2 ]=V∗1 ]

.
(ii) The owner selects ones-year project, if the interruption length is sufficiently longer, i.e.,

ζ̄1 > ζ[E[V∗2 ]=V∗1 ]
.

where,

ζ[E[V∗2 ]=V∗1 ]
=

1
r

{
ln{erT2 − (e2r(T2−T1) − 1)(erT1 − 1)} − ln Φ(σ)

}
− T1 (45)

Proof of Proposition 3. See Appendix A.

The amount of work effort is also affected by the interruption. Let E[∆x∗] denote the
difference between those of projects and it is defined as

∆E[x∗] = E[x∗2(T2)]− x∗1(T1)

=
v

2cr

{
e−rT2

(
erT1 − 1 + erT2 − ert̄2 Φ(σ)

)
− e−rT1

(
erT1 − 1

)}
(46)

The following proposition represents the properties of the amount of work effort,
according to the selected project.

Proposition 4.

(i) When the owner selects the two-year project, the amount of work effort of the two-year project
is always larger than that of the one-year project.

(ii) When the owner selects the one-year project,

(a) the amount of work effort of the one-year project is larger than that of the two-year
project, if the interruption period is longer than ζ[E[x∗2 ]=x∗1 ]

, i.e., ζ̄1 > ζ[E[x∗2 ]=x∗1 ]
.

(b) the amount of work effort of the one-year project is smaller than that of the two-year
project, if the interruption period is shorter than ζ[E[x∗2 ]=x∗1 ]

, i.e., ζ̄1 < ζ[E[x∗2 ]=x∗1 ]
.

where,

ζ[E[x∗2 ]=x∗1 ]
=

1
r

{
ln (er(T2−T1) + erT1 − 1)− ln Φ(σ)

}
− T1 (47)

and ζ[E[x∗2 ]=x∗1 ]
≥ ζ[E[V∗2 ]=V∗1 ]

.

Proof of Proposition 4. See Appendix A.

Figure 2 summarizes the Propositions 3 and 4 in the deterministic case (σ = 0). T2
must be larger than T1 + ζ̄1 for consistency, only upper-left side of the Figure 2 can be
considered. Since ζ[E[x∗2 ]=x∗1 ]

≥ ζ[E[V∗2 ]=V∗1 ]
, the threshold value ζ[E[V∗2 ]=V∗1 ]

is always located
on the left-hand side of ζ[E[x∗2 ]=x∗1 ]

. Thus, when the interruption length ζ̄1 is shorter than
ζ[E[V∗2 ]=V∗1 ]

, the owner selects the two-year project and the resulted amount of work effort is
larger than that of the one-year project. On the other hand, if ζ[E[V∗2 ]=V∗1 ]

< ζ̄1 < ζ[E[x∗2 ]=x∗1 ]
holds, even though the amount of work effort is larger for the one-year project, the two-year
project is ordered. Furthermore, the longer the interruption length, the less duration is
available for the two-year project, so the one-year project is selected, and the resulted
amount of work effort is larger than that of the two-year project.
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Figure 2. Owner’s decision in the deterministic case (σ = 0 (weeks)).

The threshold values defined in Equations (45) and (47) are affected by the variance
of interruption length σ. The following proposition can be derived and it implies that
the conditions under which the two-year project is selected vary with uncertainty in the
interruption.

Proposition 5. As the variance of the interruption length increases, the threshold value of selecting

the two-year project becomes smaller, i.e.,
dζ[E[V∗2 ]=V∗1 ]

dσ < 0. And the threshold value of characterizing

the relative size of the projects also decreases with the increase in the variance, i.e.,
dζ[E[x∗2 ]=x∗1 ]

dσ < 0.

Proof of Proposition 5. See Appendix A.

Proposition 5 represents that the allowable interruption length to select the two-year
project becomes smaller with the increase in the variance of interruption length. It suggests
that long-term projects might be more difficult to be ordered under conditions where global
warming increases uncertainty in the interruption.

Figure 3 is a graphical representation of Proposition 5, which represents the impact
of interruption on ζ[E[V∗2 ]=V∗1 ]

and ζ[E[x∗2 ]=x∗1 ]
. (See Appendix A for the numerical setting.)

The dotted lines in Figure 3 show the ζ[E[V∗2 ]=V∗1 ]
and ζ[E[x∗2 ]=x∗1 ]

under the deterministic
case, which are shown in Figure 2. We can see that these threshold values are shifted to the
left-hand side. This suggests that as the uncertainty of the interruption period increases,
the owner will order a two-year project when the interruption period is shorter.

Figure 3. Owner’s decision in the stochastic case (σ = 24 (weeks)).
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As the uncertainty in interruption periods changes, the owner’s benefit also changes.
The variance of the owner’s benefit can be defined as

Var[V∗2 (T2)] =
∫ t̄2+σ

t̄2−σ

{V∗2 (T2)− E[V∗2 (T2)]})2

2σ
dt̃2

=
v4e−4rT2

16c2r2σ

∫ t̄2+σ

t̄2−σ
{ert̃2 − ert̄2 Φ(σ)}2dt̃2 (48)

Figure 4 shows the relationship between σ and the benefits. This figure shows the
case that the two-year project is selected by the owner because the expected benefit of the
two-year project is larger than that of the one-year project, i.e., E[V∗2 (T2)] > V∗1 (T1). We
can see that the changes in E[V∗2 (T2)] is smaller than changes in V∗2 (ζ̄1− σ) and V∗2 (ζ̄1 + σ),
which show the resulting benefits after the interruption. V∗2 (ζ̄1 − σ) represents the possible
shortest interruption periods in the uniform distribution ζ̃1 ∼ U(ζ̄1 − σ, ζ̄1 + σ). Under
the shortest interruption case, the owner can obtain the largest benefit and it increases
with the variance σ. On the other hand, (ζ̄1 + σ) gives the longest interruption periods, it
results the smallest benefit after T2. V∗2 (ζ̄1 + σ) decreases with the increase in σ. And it is
found that V∗2 (ζ̄1 + σ) becomes lower than V∗1 (T1) in the case of large σ. In the symmetric
uniform distribution considered here, the increase in uncertainty causes a small change in
the expected benefit, but a large change in the resulting benefit might be smaller than that
of the one-year project, even though the two-year project was selected because of its larger
expected benefit.

Figure 4. Changes in the owner’s benefits with the changes in the variance of interruption length.

3.4. Project Preference of the Contractor

In this section, we compare the expected profits of the contractor obtained from each
of the projects, to analyze the impact of the interruption on the contractor. We assume that
the contractor prefers the project that can achieve a larger expected profit. The contractor’s
preference under the owner’s order can be summarized as the following proposition.

Proposition 6.

(i) When the owner orders the one-year project and the project is implemented, the contractor
preferred the one-year project than the two-year project, i.e., E[J∗2 (0, t̃1, T1)] ≤ J∗1 (0, t1, T1)).

(ii) When the owner orders the two-year project and the project is implemented, the contractor
preferred the two-year [one-year] project, if the project value v is sufficiently larger [smaller]
than the fixed cost f .
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Proof of Proposition 6. See Appendix A.

Proposition 6 (i) can be graphically represented as Figure 5. It represents the stochastic
interruption with σ = 36(weeks). First, the condition of implementing the one-year project
is given by the area on the upper side of v[J∗1=0]. The contractor prefers the one-year project,
regardless of its project value v, under the condition of E[V∗2 (T2)] < V∗1 (T1). Therefore, if
the one-year project is implemented, the contractor prefers the one-year project.

Figure 5. Contractor’s preference when the owner orders the one-year project (E[V∗2 (T2)] < V∗1 (T1)).

Proposition 6 (ii) can be graphically represented in Figure 6. First, the condition of
implementing the two-year project is given by the area on the upper-left side of v[E[J∗2 ]=0]
(blue line). The contractor prefers the two-year project, if its project value v is larger than
v[E[J∗2 ]=J∗1 ]

. If the project value v lies between v[E[J∗2 ]=0] and v[E[J∗2 ]=J∗1 ]
, the two-year project

will be ordered by the owner, even though the one-year project would be more preferable
by the contractor. The grey dotted line shows the value of v[E[J∗2 ]=J∗1 ]

in the deterministic
case (σ = 0(weeks)), we can see that v[E[J∗2 ]=J∗1 ]

is increased by considering the variation of
interruption length. It suggests that a larger project value is needed for the two-year project
to be preferred by the contractor in the presence of uncertainty.

Figure 6. Contractor’s preference when the owner orders the two-year project (E[V∗2 (T2)] > V∗1 (T1)).

As the interruption length changes, the contractor’s profit also changes. The variance
of the contractor’s profit can be given by
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Var[J∗2 (0, t1, T2)] =
∫ t̄2+σ

t̄2−σ

{J∗2 (0, t1, T2)− E[J∗2 (0, t1, T2)]}2

2σ
dt̃2

=
1
4

Var[V∗2 (T2)] +
f 2

r2σ

∫ t̄2+σ

t̄2−σ
{e−rt̃2 − e−rt̄2 Φ(σ)}2dt̃2

+
f v2e−2rT2

4cr2σ

∫ t̄2+σ

t̄2−σ
{ert̃2 − ert̄2 Φ(σ)}{e−rt̃2 − e−rt̄2 Φ(σ)}dt̃2 (49)

Figure 7 shows the changes in the contractor’s expected profit E[J∗2 (0, t̃1, T1)] and
resulting profits J∗2 (ζ̄1 − σ)(= J∗2 (0, ζ̄1 − σ, T1)), J∗2 (ζ̄1 + σ)(= J∗2 (0, ζ̄1 + σ, T1)), J∗1 (0, 0, T1)
under the various value of σ. Figure 7 is the case that the contractor prefers the two-year
project, because E[J∗2 (0, t̃1, T1)] > J∗1 (0, 0, T1). As the increase in σ, the smallest profit which
is obtained in the longest interruption, i.e., in the case of ζ̄1 + σ, becomes smaller than
J∗1 (0, 0, T1). Therefore, as we have discussed the owner’s benefit, it is suggested that the
resulting profit of the two-year project may be lower than that of the one-year project, even
though the two-year project was preferred by the contractor in terms of the expected profit.
However, the preferred project by the contractor can be consistent with the selected project
by decreasing the fixed costs f relative to the benefit v. As shown in Figure 7, decreasing
the fixed costs decreases the difference of the contractor’s profits between one-year and
two-year projects and it can finally achieve a situation where the contractor prefers a
two-year project(E[J∗2 ] > J∗1 > 0).

Figure 7. Changes in the contractor’s profits with the changes in the variance of interruption length

4. Conclusions

In this study, we investigate the impact of interruption on the decision-making of the
project owner and contractor theoretically. We find that as the interruption period becomes
longer, the owner’s profit always decreases, whereas the contractor’s profit increases when
the fixed cost is high relative to the fixed cost. In such a higher fixed cost case, it is also
found that the contractor prefers the one-year project, even when the owner selects the
two-year project. These results imply that the desirable project is different for owner and
contractor and the conflict between the stakeholders is expected to occur under such a
higher fixed cost condition. Our results suggest that such conflicts can be mitigated by
introducing policies (e.g., subsidies and promotion of new technology adoption) that would
lower the fixed costs of contractors and increase the profit of the two-year project.

We also represent the threshold values of the interruption length that determine
the project selection by the owner and the relative quality of outcomes. It was found
that there exists a range of expected interruption lengths that leads the owner to select
the project with relatively lower quality. This study also shows that the increase in the
variance of the interruption length decreases the thresholds and it makes it difficult for
the owner to select the two-year project. This finding is consistent with Schwartz and
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Zozaya-Gorostiza [18], which showed the large uncertainty makes the project abandonment
attractive by applying real options theory. Our study also finds a range of interruption
lengths where the selected project does not provide the higher quality outcome, which
is not mentioned in the previous study. Further empirical studies are recommended to
promote a quantitative understanding of the likelihood of such differences with respect to
the length and variability of the interruption period. Furthermore, we can often observe
uncertain project interruption due to the spread of infectious diseases. We hope that this
study helps to promote the understanding of such project interruption.

Author Contributions: Conceptualization, K.O. and M.O.; methodology, K.O.; software, K.O.; vali-
dation, K.O. and M.O.; formal analysis, K.O.and M.O.; investigation, K.O. and M.O.; resources, K.O.
and M.O.; writing—original draft preparation, K.O.; writing—review and editing, K.O. and M.O.;
visualization, K.O. and M.O.; supervision, M.O.; project administration, M.O.; funding acquisition,
M.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received a Grant for CNEAS regular project from the Center for Northeast
Asian Studies, Tohoku University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the support of a Grant for CNEAS
regular project from the Center for Northeast Asian Studies, Tohoku University.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Proofs

Proof of Lemma 1. Differentiating Φ(σ) with respect to the variance σ, we have

dΦ
dσ

= − rσ(erσ + e−rσ)− (erσ − e−rσ)

2rσ2 > 0 (A1)

As the inequalities shown in Plaza [26], the numerator of this equation becomes larger
than zero. The first inequality in Equation (29) can be shown by using the inequality [26]
such as,

Φ(σ) =
erσ − e−rσ

2
> eerσ−eer()−e−rσ

2 = 1 (A2)

The second inequality in Equation (29) can be derived directly from Plaza [26]. And the
assumption that T1 + σ ≤ t̄2 implies t̄2 − T1 ≥ σ. By considering the qualitative property
of cosh(x) in x > 0, the following inequality can be obtained as

erσ + e−rσ

2
= cosh(rσ) ≤ cosh(r(t̄2 − T1)) =

er(t̄2−T1) + e−r(t̄2−T1)

2
(A3)

Proof of Proposition 1. When the interruption exists, t̄2 is larger than T1, i.e., t̄2 > T1.
Thus, we can obtain Proposition 1 (i), because the second term of Equation (31) is negative
from the conditions t̄2 > T1 and Φ(σ) ≥ 1 (Lemma 1). The increase in the expected
interruption length is equivalent to the increase in the expected beginning period of the
second year by considering Equation (2). We can obtain Proposition 1 (ii) by examining the
response of E[V∗2 (T2)] with respect to t̄2 and it is given by,

∂E[V∗2 (T2)]

∂t̄2
= −v2e−2rT2

4c
ert̄2 Φ(σ) < 0 (A4)
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Since Φ(σ) > 1, E[V∗2 (T2)] always decreases with the increase in t̄2. And the response
of E[V∗2 (T2)] to the variance of the interruption length σ is given by

∂E[V∗2 (T2)]

∂σ
= −v2e−2rT2

4cr
ert̄2

dΦ(σ)

dσ
< 0 (A5)

The sign of this equation is negative from Lemma 1 (i). Thus, we can obtain Proposition 1
(iii).

Proof of Proposition 2. We can obtain Proposition 2 (i) by comparing the size of the third
and fourth terms of Equation (33). The expected profit of the contractor is increased, if the
project value satisfies the following condition:

v ≥ 2erT2

√
2c f

e−rT1 − e−rt̄2 Φ(σ)

ert̄2 Φ(σ)− erT1
(A6)

And otherwise, the expected profit of the contractor is decreased by the existence of
interruption, i.e., t̄2 > T1. Since the increase in the expected interruption length is described
by the increase in t̄2, the differentiation of E[V∗2 (T2)] with respect to t̄2 becomes

∂E[J∗2 (0, t̃1, T1)]

∂t̄2
=

(
f − v2e−2r(T2−t̄2)

8c

)
e−rt̄2 Φ(σ) (A7)

and thus, we can have Proposition (ii) as
∂E[J∗2 (0,t̃1,T1)]

∂t̄2
≥ 0, if v ≥ 2er(T2−t̄2)

√
2c f

∂E[J∗2 (0,t̃1,T1)]
∂t̄2

< 0, if v < 2er(T2−t̄2)
√

2c f
(A8)

We also have the response function of the expected profit to the variance σ as

∂E[J∗2 (0, t̃1, T1)]

∂σ
= − e−rt̄2

r

(
v2e−2r(T2−t̄2)

8c
+ f

)
dΦ(σ)

dσ
< 0 (A9)

We can see that it has a nonpositive value and obtain Proposition 2 (iii).

Proof of Proposition 3. The condition for the owner to choose a two-year project is given
by considering the difference of the expected benefits, i.e., ∆E[V∗] ≥ 0. Equation (44) yields{

∆E[V∗] ≥ 0 if t̄2 ≤ 1
r
{

ln
{

erT2 − (e2r(T2−T1) − 1)(erT1 − 1)
}
− ln Φ(σ)

}
∆E[V∗] < 0 if t̄2 > 1

r
{

ln
{

erT2 − (e2r(T2−T1) − 1)(erT1 − 1)
}
− ln Φ(σ)

} (A10)

We can have Proposition 3 from Equations (2) and (A10).

Proof of Proposition 4. The threshold value of t̄2 that characterize the sign of ∆E[V∗] ≥ 0
can be obtained as follows{

∆E[x∗] ≥ 0 if t̄2 ≤ 1
r
{

ln
(
er(T2−T1) + erT1 − 1

)
− ln Φ(σ)

}
∆E[x∗] < 0 if t̄2 > 1

r
{

ln
(
er(T2−T1) + erT1 − 1

)
− ln Φ(σ)

} (A11)

Now, ζ[E[x∗2 ]=x∗1 ]
can be obtained by considering Equation (2) and the threshold value

of t̄2 in Equation (A11). Furthermore, ζ[E[V∗2 ]=V∗1 ]
can be rewritten as follows:

ζ[E[V∗2 ]=V∗1 ]
=

1
r

ln
{

er(T2−T1) + erT1 − 1− (erT2 − er(T2−T1))(er(T2−T1) − 1)
}

−1
r

ln Φ(σ)− T1 (A12)
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Comparing with Equations (47) and (A12), we can see that ζ[E[V∗2 ]=V∗1 ]
is smaller than

ζ[E[x∗2 ]=x∗1 ]
because the fourth term in the natural logarithm of Equation (A12) is negative

under the condition of T2 > T1.

Proof of Proposition 5. The differentiation of ζ[E[V∗2 ]=V∗1 ]
with respect to σ yields

dζ[E[V∗2 ]=V∗1 ]

dσ
=

dζ[E[x∗2 ]=x∗1 ]

dσ
= − 1

rΦ(σ)

dΦ(σ)

dσ
< 0 (A13)

Proof of Proposition 6. First, we define the following function ∆E[J∗] to characterize the
relative size of the expected profits

∆E[J∗] = E[J∗2 (0, t̃1, T1)]− J∗1 (0, t1, T1))

=
v2

8cr

{
e−2rT2(erT1 − 1 + erT2 − ert̄2 Φ(σ))− e−2rT2(erT1 − 1)

}
− f

r
(e−rt̄2 Φ(σ)− e−rT2) (A14)

Proof of Proposition 6 (i): When the owner orders the one-year project, the condition
for the contractor implementing the one-year project is given by

v ≥ v[J∗1=0] ≡ 2
√

2c f erT1 (A15)

If the project values satisfies this condition, then it is profitable for the contractor to
implement this project, i.e., J∗1 (0, t1, T1)) ≥ 0. In Equation (A14), the first term becomes
negative when E[V∗2 (T2)] ≤ V∗1 (T1), so ∆E[J∗] is always negative. It implies that the
contractor obtains a larger expected profit by implementing the one-year project. Thus,
Equation (A15) holds and the contractor implements the one-year project and then prefers
the one-year project to the two-year project.

Proof of Proposition 6 (ii): When the owner orders the two-year project, the condition
for the contractor implementing the two-year project is given by E[J∗2 (0, t̃1, T1)] ≥ 0 and it
is written as {

E[J∗2 (0, t̃1, T1)] ≥ 0, if v ≥ v[E[J∗2 ]=0]

E[J∗2 (0, t̃1, T1)] < 0, if v < v[E[J∗2 ]=0]
(A16)

where,

v[E[J∗2 ]=0] = 2erT2

√
2c f

1− e−rT1 + e−rt̄2 Φ(σ)− e−rT2

erT1 − 1 + erT2 − ert̄2 Φ(σ)
(A17)

And from Equation (A14), the condition for E[J∗2 (0, t̃1, T1)] to be larger than J∗1 (0, t1, T1)
is given by {

E[J∗2 (0, t̃1, T1)] ≥ J∗1 , if v ≥ v[E[J∗2 ]=J∗1 ]

E[J∗2 (0, t̃1, T1)] < J∗1 , if v < vE[[J∗2 ]=J∗1 ]
(A18)

where,

v[E[J∗2 ]=J∗1 ]
= 2

√
2c f (e−rt̄2 Φ(σ)− e−rT2)

e−2rT2(erT1 − 1 + erT2 − ert̄2 Φ(σ))− e−2rT1(erT1 − 1)
(A19)

Here, we consider the following lemma to characterize the relative size of v[E[J∗2 ]=J∗1 ]
,

v[E[J∗2 ]=0], and v[J∗1=0].

Lemma A1. Under the condition of E[V∗2 (T2)] ≥ V∗1 (T1), it holds that

v[E[J∗2 ]=J∗1 ]
> v[E[J∗2 ]=0] > v[J∗1=0] (A20)
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Thus, if v > v[E[J∗2 ]=J∗1 ]
holds, the contractor implements the two-year project and

prefers the two-year project to the one-year project. Furthermore, if v[E[J∗2 ]=J∗1 ]
> v >

v[E[J∗2 ]=0] holds, although the contractor prefers the one-year project, the owner requests
the contractor to implement the two-year project.

Appendix A.2. Numerical Setting for Each Figure

The following Table A1 shows the numerical setting from Figures 2–7. It shows a
situation where a project can proceed for 28 weeks out of 52 weeks in a year, and it must be
suspended for 24 weeks as the standard case.

Table A1. Parameter setting for each figure.

Parameter Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

r 0.003 0.003 0.003 0.003 0.003 0.003
T1 28 28 28 28 28 28

ζ̄1
Equations (45)

and (47)
Equations (45)

and (47) 24 36 24 24

T2 [52, 75] [52, 70] 80 70 80 80
σ 0 24 [0, 24] 2 24 [0, 24]

v - - 1 Equations (A15),
(A17) and (A19)

Equations (A15),
(A17) and (A19) 1

c - - 1 1 1 1
f - - - [0, 1.0] [0, 1.0] 1
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