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Abstract: Soil compaction is a worldwide problem in agricultural areas, and it is important to define
soil properties and reference values that allow knowledge of the compaction level for decision making.
The objective of this study was to define the critical values of physical properties associated with
the compaction of soils. Three Ultisols and two Oxisols, under different management systems, were
collected at different depths for an evaluation of particle size, volumetric moisture, bulk density, and
porosity. In the field, soil resistance to penetration and the root length of the soybean and edible
black bean crop were measured. The soil profiles presented horizontal layers with similar resistance,
but in some cases, there is discontinuity of these layers, which allows the roots to use the zones of
lower resistance to deepen in the profile. The values of bulk density and resistance to penetration
critical to soybean and edible black bean (only in sandy loam soil) root growth, according to soil
textural class, are: sandy loam = 1.66 Mg m−3 and 1.5 to 2 MPa; loam and clay loam = 1.52 Mg m−3

and 1 to 1.5 MPa; silty clay loam and silty clay = 1.32 Mg m−3 and 1.5 to 2 MPa; and clay = 1.33 to
1.36 Mg m−3 and 2 to 3.5 MPa.

Keywords: critical bulk density; critical macroporosity; profile of soil resistance to penetration; soil
compaction; soil management; no-tillage; chiseling

1. Introduction

Soil compaction is a worldwide problem in agricultural areas. With soil compaction,
there are several negative effects on soil functioning, from its direct interference on nutrient
uptake by plants, such as phosphorus and potassium that are absorbed by plants by
diffusion, to reduced crop productivity, increased production costs, and reduction in leaf
area due to the increased production of abscisic acid by plant roots [1]. Reduced root
growth and changes in soil physical properties due to compaction have been observed in
many crops, such as soybean [2–7], corn [8–12], wheat [13–16], edible black beans [17–24],
rice [25,26], cassava [27–31], onions [32], Crambe [33], sugarcane [34,35], tobacco [36], cover
crops [37,38], pastures/grasslands [39–45], and forest plantations [46–51].

In several of these studies, the existing compaction state was increased by additional
wheeling, or compaction alleviation was tested by tillage (inversion and/or chiseling) and
the use of cover crops. Nonetheless, only few of these studies searched for critical limits
for root growth and crop yield. Furthermore, it is important to stress the existence of a
feedback mechanism where, for instance, soil fertility affects the plant’s response to soil
compaction. For example, wheat growth in response to physical impairment in the soil is
dependent on the availability of P [52].
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Given the need to implement sustainable soil management to recover degraded soils
and improve soil health, providing food and clean water, maintaining biodiversity, ensuring
carbon sequestration, and increasing resilience to climate change, it is necessary, among
others actions, to prevent and mitigate soil compaction [53]. For more sustainable soil
management, it is important to define soil properties and reference values that allow
a knowledge of the compaction levels for decision making regarding compacted layer
management strategies. Among the properties used to identify compacted layers and the
effects of soil use and management, bulk density and mechanical resistance to penetration
have been widely used. For example, Silva et al. [54] used these properties to identify the
level of soil compaction in a watershed, while Queiroz et al. [55] used them to evaluate
different agroecosystems in the Brazilian semiarid region.

Soil resistance to penetration indicates the level of compaction and resistance to
root penetration, which is used in the assessment of soil quality in agricultural areas
and in decision making regarding the need or not of mechanical soil tillage to reduce it
and reduce physical restrictions on plant root development [56]. Aiming at better soil
management, Spliethoff et al. [57] evaluated the spatial variability of penetration resistance
in an experimental area of 0.2 ha with different sampling grids in an Oxisol. Further,
Andrade et al. [58] evaluated the spatial variability of soil resistance to penetration in
coffee plantations to obtain information about compaction and support decision making
regarding the performance of the subsoiling operation.

Some studies indicated bulk density values [4,36,59–62] and resistance to penetra-
tion [59,63–66] as being critical or limiting to plant root growth. However, there is still
a need for further studies to validate those values already identified or to present new
values. In addition, crops have different responses to soil limitations; soil bulk density is
dependent on soil texture [19] and penetration resistance varies according to soil moisture,
bulk density, and texture [38,67–69] according to the three-dimensional variability of the
soil and the presence of biopores in compacted soil layers [13,70–72] that enable root growth.
All these variables make it difficult to define critical or limiting values for plants, but they
should be pursued.

Therefore, the objective of this work was to define the critical values of some physical
properties associated with the compaction of Ultisols and Oxisols submitted to different
management systems.

2. Materials and Methods

To carry out this study, five soils in five municipalities from Rio Grande do Sul State
(Figure 1), Brazil, under different management systems, were studied in the first semester
of 2004. Although the data are from 2004, this scientific topic is still current and relevant,
since there is still little information available on critical values, especially bulk density and
soil resistance to penetration associated to soil compaction in soils with different texture.
The soils under study were: Argissolo Vermelho Distrófico arênico, Argissolo Vermelho
Distrófico latossólico, Argissolo Vermelho–Amarelo Alumínico típico, Latossolo Vermelho
Distrófico típico, and Latossolo Vermelho Aluminoférrico típico, according to the “Brazilian
System of Soil Classification” [73] or, respectively, Ultisols and Oxisols [74].

In some soils, the sampling was carried out at the headboard/turning point of the
planting area, searching for samples with higher levels of soil bulk density, resulting in
samples with a range of bulk density values, including values that may be critical for root
growth and/or represent soil physical degradation. During the conduction of this study,
with the exception of the chisel management of Argissolo Vermelho Distrófico arênico
(Ultisol), which had edible black bean crop in the area, the other managements were with
soybean crop. The managements/tillage in each soil and the weather conditions [75] were
as follows:

(1) Argissolo Vermelho Distrófico arênico (Ultisol): Soil sampling in an experimental
plot and production area of the Department of Soils of the Federal University of Santa
Maria (UFSM), municipality of Santa Maria, Rio Grande do Sul State, at 151 m altitude,
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with the following managements: experimental plot in which it received chiseling in the
year 2002 and no-tillage in the following years, and prior to chiseling it had been under
no-tillage for approximately 8 years (Chisel); production area for 12 years under no-tillage
(NT); and headboard/turning point of the area for 12 years under no-tillage (NTC). The
annual climatic characteristics of the municipality are: minimum, average, and maximum
temperature of, respectively, 6.3 ◦C, 19.2 ◦C, and 25.2 ◦C; average relative humidity of 77%;
and accumulated rainfall of 1624.9 mm;

(2) Argissolo Vermelho Distrófico latossólico (Ultisol): Soil sampling from two farms in
the municipality of São Sepé, Rio Grande do Sul State, at 85 m altitude, with managements:
Farm 1—four years under no-tillage, with pasture cultivated prior to the beginning of the no-
tillage system (NT); headboard/turning point of farm 1 (NTC 1); Farm 2—potato cultivation
in 2002 and no-tillage in the following years (potato); and Farm 2—headboard/turning
point of the area for four years under no-tillage (NTC 2). The climatic characteristics of the
municipality are not available, but the municipality borders Santa Maria (Figure 1);

(3) Argissolo Vermelho-Amarelo Alumínico típico (Ultisol): Soil sampling from two
farms in the municipality of Itaara, Rio Grande do Sul State, at 425 m altitude, with
the managements: Farm 1—conventional tillage from 1980 to 1995, and no-tillage in the
following years (NT 1); Farm 1 headboard/turning point (NTC); Farm 2—no-tillage since
1986 and in winter there is animal grazing for 90 days in ryegrass sown in the area and
harvested (NT 2); and Farm 2—potato planting with conventional tillage in 1998, chiseling
in 2000, and no-tillage in the following years (potato). The climatic characteristics of the
municipality are not available, but the municipality borders Santa Maria (Figure 1).

(4) Latossolo Vermelho Distrófico típico (Oxisol): Soil sampling in two farms in the
municipality of Ibirubá, Rio Grande do Sul State, at 416 m altitude, with the managements:
Farm 1—chiseling in the winter of 2002 and no-tillage in the following years (NT 1);
headboard/turning point of farm 1 (NTC 1); Farm 2—chiseling in the winter of 2000 and no-
tillage in the following years (NT 2); and headboard/turning point of farm 2 (NTC 2). The
annual climatic characteristics of the municipality are: minimum, average, and maximum
temperature of, respectively, 12.8 ◦C, 17.8 ◦C, and 24.9 ◦C; average relative humidity of
77%; and accumulated rainfall of 1205.9 mm;

(5) Latossolo Vermelho Aluminoférrico típico (Oxisol): Soil sampling from three farms
in the municipality of Campinas do Sul, Rio Grande do Sul State, at 583 m altitude, with
managements: Farm 1—no-tillage for 10–12 years (NT 1); Farm 1—no-tillage for 10–12 years
and received chiseling in the winter of 2003 and subsequent sowing of oats (Chisel); Farm
2—pasture cultivated in winter (Pasture); Farm 2—no-tillage for 10 years (NT 2); and Farm
3—no-tillage for 10–12 years (NT 3); and headboard/turning point of farm 3 (NTC). The
climatic characteristics of the municipality are not available, but the municipality is near
Erechim, with annual minimum, average, and maximum temperature of, respectively,
5.9 ◦C, 18.2 ◦C, and 23.3 ◦C; average relative humidity of 79%; and accumulated rainfall
of 1737.5 mm.

Soil samples with unpreserved structure were collected in the 0–0.05, 0.05–0.10, 0.10–0.15,
0.15–0.20, 0.20–0.25, and 0.25–0.30 m layers of each soil and passed through a 2.0 mm mesh
sieve to evaluate particle size distribution by the method of pipette [76], with three replicates.
The dispersion of soil samples was carried out by horizontal shaking at 120 rpm for 4 h,
using 100 mL “snap cap” glasses containing 20 g of soil, 10 mL of 6% NaOH (chemical
dispersant), 50 mL of distilled water, and two nylon spheres weighing 3.04 g, diameter
0.0171 m, and density 1.11 Mg m−3 [77]. The clay (particles < 0.002 mm in diameter) was
determined by pipetting, the sand was separated into coarse (diameter between 2 and
0.25 mm) and fine (diameter between 0.25 and 0.053 mm) by sieving, and the silt (diameter
between 0.053 and 0.002 mm) by calculating the difference of the sum of clay and sand.
The results of particle size distribution were used for their textural classification, in the
textural triangle from “National Resource Conservation Service/United States Department
of Agriculture” [78].
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To collect soil samples with preserved structure, three trenches were opened in each
management, close to each other, thus avoiding variability between samples. In each trench,
samples with preserved structure were collected in metal rings of 0.0300 m in height and
0.0555 m in diameter in the 0–0.05, 0.05–0.10, 0.10–0.15, 0.15–0.20, 0.20–0.25, and 0.25–0.30 m
soil layers. After preparing the samples, they were saturated by capillarity, weighed, and
sent to the tension table, where a tension of 6 kPa was applied. After two days on the
tension table, the samples were weighed and dried at a temperature of 105 ◦C, where they
remained for two days and then weighed. After all these procedures, bulk density, total
porosity, macroporosity, and microporosity were calculated [76].

Soil mechanical resistance to penetration was quantified in the field with a digital
penetrometer brand Remik CP 20 Ultrasonic Cone Penetrometer, manufactured by Agridry
Rimik Pty Ltd., Toowoomba City, Australia Country, with electronic data storage and
conical tip with a penetration angle of 30◦. The readings were taken at every 0.015 m depth
and, with the exception of the Latossolo Vermelho Aluminoférrico, where the readings
were taken between the seeding lines, for the other soils the measurements were made at
the seeding line and at 0.10, 0.20, and 0.30 m to the left and to the right of the seedling line,
forming a profile of mechanical resistance to penetration.

Volumetric soil moisture at the time of evaluation of mechanical resistance to pen-
etration was obtained from soil samples with preserved structure, for 0–0.05, 0.05–0.10,
0.10–0.15, 0.15–0.20, 0.20–0.25, and 0.25–0.30 m soil layers.

The evaluation of the root growth of soybean (and edible black bean in the chisel
management of Argissolo Vermelho Distrófico arênico) was carried out in open trenches at
the sampling sites to assess the physical properties of the soil. The trenches were opened
until the depth of growth of the root system, which was exposed, and the depth of growth
was measured with a measuring tape. In the Latossolo Vermelho Distrófico típico (Oxisol),
this evaluation was not performed.

Pearson correlation analysis was performed between the physical properties of the soil.

3. Results and Discussion

The soils presented a wide range of granulometric variations and textural classes, with
the clay contents between 86 and 612 g kg−1 and total sand between 76 and 674 g kg−1

(Table 1).
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Table 1. Distribution of particles by size and textural class for the different layers of Ultisols and
Oxisols under study.

Sand Textural

Layer, m Total Coarse Fine Silt Clay Class

g kg−1

Argissolo Vermelho Distrófico arênico (Ultisol)

0–0.05 674 203 471 240 86 Sandy
loam

0.05–0.10 660 196 464 237 103 Sandy
loam

0.10–0.15 655 187 468 253 92 Sandy
loam

0.15–0.20 654 189 465 256 90 Sandy
loam

0.20–0.25 653 204 449 253 94 Sandy
loam

0.25–0.30 669 200 469 244 87 Sandy
loam

Argissolo Vermelho Distrófico latossólico (Ultisol)
0–0.05 439 252 187 350 211 Loam

0.05–0.10 408 246 162 326 267 Loam
0.10–0.15 399 245 154 342 259 Loam
0.15–0.20 389 240 149 336 275 Clay loam
0.20–0.25 358 219 139 324 318 Clay loam
0.25–0.30 354 214 140 308 338 Clay loam

Argissolo Vermelho-Amarelo Alumínico típico (Ultisol)

0–0.05 161 55 106 503 336 Silty clay
loam

0.05–0.10 149 54 95 468 383 Silty clay
loam

0.10–0.15 146 57 89 459 395 Silty clay
loam

0.15–0.20 144 59 85 443 413 Silty clay
0.20–0.25 133 55 78 442 425 Silty clay
0.25–0.30 123 51 72 428 449 Silty clay

Latossolo Vermelho Distrófico típico (Oxisol)
0–0.05 345 119 226 227 428 Clay

0.05–0.10 335 116 219 225 440 Clay
0.10–0.15 338 112 226 210 452 Clay
0.15–0.20 338 116 222 202 460 Clay
0.20–0.25 312 111 201 196 492 Clay
0.25–0.30 297 108 189 198 505 Clay

Latossolo Vermelho Aluminoférrico típico (Oxisol)
0–0.05 127 13 114 368 505 Clay

0.05–0.10 120 10 110 352 528 Clay
0.10–0.15 121 11 110 340 539 Clay
0.15–0.20 120 11 109 334 546 Clay
0.20–0.25 118 10 108 339 543 Clay
0.25–0.30 76 7 69 312 612 Clay

With increasing soil bulk density, there was a decrease in macroporosity and microp-
orosity. The increase in total porosity was associated with the increase in macroporosity
and microporosity, and increased macroporosity was associated with lower microporosity
(Table 2). Soil granulometry was associated with the physical properties of the soil (Table 2),
where the increase in the sand content and the decrease in the silt and clay contents were
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related to an increase in bulk density, while a decrease in the sand content and increase in
silt and clay correlated with increase in total porosity and microporosity.

Table 2. Pearson correlation between the physical properties of the soil, considering all data from
Ultisols and Oxisols.

TP Macro Micro TS CS FS Silt Clay

BD −0.86 ** −0.55 ** −0.55 ** 0.51 ** 0.55 ** 0.38 ** −0.17 * −0.52 **
TP 0.38 ** 0.81 ** −0.73 ** −0.80 ** −0.55 ** 0.24 ** 0.75 **

Macro −0.22 * 0.18 * 0.06 ns 0.23 * −0.03 ns −0.20 *
Micro −0.89 ** −0.88 ** −0.73 ** 0.27 ** 0.92 **

Sample size: 126 observations (21 managements/tillage for the five soils x six soil layers). BD: bulk density;
TP: total porosity; Macro: macroporosity; Micro: microporosity; TS: total sand; CS: coarse sand; FS: fine sand.
ns: no significative; ** significative at 1%; * significative at 5%.

A macroporosity value < 0.10 m3 m−3 is considered by several authors to be crit-
ical for plant growth [79,80]. Thus, from the regression analysis between bulk density
and macroporosity, it is possible to define the bulk density corresponding to this macro-
porosity value, which indicates the critical bulk density for soil aeration (BDmacro). For
the Argissolo Vermelho Distrófico arênico (Ultisol), of the textural class sandy loam, the
BDmacro = 1.66 Mg m−3; for the Argissolo Vermelho Distrófico latossólico (Ultisol), of the
textural class loam and clay loam, the BDmacro = 1.52 Mg m−3; and for the Argissolo
Vermelho–Amarelo Alumínico típico (Ultisol), of the textural class silty clay loam and silty
clay, the BDmacro = 1.32 Mg m−3, which was similar to the value for the Latossolo Vermelho
Distrófico típico (Oxisol) (BDmacro = 1.33 Mg m−3) and Latossolo Vermelho Aluminoférrico
típico (Oxisol) (BDmacro = 1.36 Mg m−3), both of the clay textural class (Table 3).

Table 3. Equations obtained by the relationship between macroporosity (macro) and bulk density
(BD) for each soil class, and critical bulk density (BDmacro) corresponding to a macroporosity of
0.10 m3 m−3.

Soil Equation R2 RMSE BDmacro, Mg m−3 Textural class

AVDA Macro = 0.47146 − 0.22396 BD 0.50 ** 0.02509 1.66 Sandy loam
AVDL Macro = 0.59070 − 0.32295 BD 0.63 ** 0.02607 1.52 Loam and clay loam

AVAAT Macro = 0.51598 − 0.31617 BD 0.64 ** 0.02407 1.32 Silty clay loam and
silty clay

LVDT Macro = 0.52469 − 0.31983 BD 0.84 ** 0.01648 1.33 Clay
LVAT Macro = 0.57691 − 0.35060 BD 0.70 ** 0.03108 1.36 Clay

Sample size: 126 observations (21 managements/tillage for the five soils x six soil layers). AVDA: Argissolo
Vermelho Distrófico arênico (Ultisol); AVDL: Argissolo Vermelho Distrófico latossólico (Ultisol); AVAAT: Ar-
gissolo Vermelho–Amarelo Alumínico típico (Ultisol); LVDT: Latossolo Vermelho Distrófico típico (Oxisol);
LVAT: Latossolo Vermelho Aluminoférrico típico (Oxisol). RMSE: root mean squared error. ** significative at 1%.

From the BDmacro values and the textural class of the soils, the values were inserted
into the textural triangle (Figure 2).

The BDmacro values (Table 3, Figure 2) are similar to those presented by Reichert et al. [61],
who obtained critical bulk density values based on the least-limiting water range, and
lower than those calculated from the equation (BDrest = −0.00071 clay + 1.86180) pro-
vided by Reichert et al. [19], obtained from critical bulk density values based on the
root growth restriction of annual crops. Calculating bulk density from the equation pro-
posed by Reichert et al. [19], the critical bulk density ranges for the soils in this study are:
AVDA = 1.8 Mg m−3, AVDL = 1.6 to 1.7 Mg m−3, AVAAT = 1.5 to 1.6 Mg m−3, LVDT = 1.5
to 1.6 Mg m−3, and LVAT = 1.4 to 1.5 Mg m−3. On the other hand, from the values presented
by Reichert et al. [61], the bulk density ranges for some soils in this study are: AVDA = 1.7
to 1.8 Mg m−3, AVDL = 1.4 to 1.5 Mg m−3, AVAAT = not rated by Reichert et al. [61], and
LVDT and LVAT = 1.3 to 1.4 Mg m−3.
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Figure 2. Textural triangle with values of BDmacro (critical bulk density corresponding to macrop-
orosity of 0.10 m3 m−3).

In an experiment in pots, using Oxisols with different clay contents, a 50% reduction
in soybean root growth occurred for bulk densities of 1.82, 1.75, 1.51, and 1.45 Mg m−3,
respectively, for a soil sandy loam, sandy clay loam, clay, and very clay [4]. In another
study, also in the laboratory, the diameter of the corn stalk was reduced when the surface
layer of the Latossolo Vermelho–Amarelo Distrófico, with texture class sandy clay, reached
a bulk density of 1.7 Mg m−3, while in the subsurface layer the reduction occurs in the bulk
density of 1.5 Mg m−3, a problem that can cause plant lodging [62]. In a field experiment
in an Argissolo Vermelho with 150 g kg−1 clay and 730 g kg−1 sand in horizon A, cover
crop roots grew normally to the bulk density of 1.75 Mg m−3, while in the range of 1.75 to
1.85 Mg m−3 there was restriction with the deformation of the roots [36]. Generally, values
from the literature are higher than that presented in Figure 2.

All managements of Argissolo Vermelho Distrófico arênico had a bulk density lower
than the critical value (BDmacro = 1.66 Mg m−3) or slightly higher in the 0.20 to 0.25 m layer,
such as the Chisel management, while the macroporosity was lower than the critical value
(0.10 m3 m−3) only for the NTC management and below the 0.10 m layer (Figure 3). With
no physical restrictions on the topsoil, the root system of the soybean (and edible black
bean for Chisel management) reached 0.15 m in depth.
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All management systems for Argissolo Vermelho Distrófico latossólico (Figure 4), Ar-
gissolo Vermelho–Amarelo Alumínico típico (Figure 5), and Latossolo Vermelho Distrófico
típico (Figure 6) presented bulk densities higher than the critical (BDmacro = 1.52 Mg m−3,
BDmacro = 1.32 Mg m−3, and BDmacro = 1.33 Mg m−3, respectively) and a macroporosity
smaller than 0.10 m3 m−3. This occurred especially below the 0.05 m layer, limiting root
growth to the layer and from 0.08 to 0.10 m for the Argissolo Vermelho Distrófico latossólico,
and 0.10 m for the Argissolo Vermelho–Amarelo Alumínico típico, except the NT 2 that,
even with the physical limitations of the soil, reached 0.16 m in depth.
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In the Latossolo Vermelho Aluminoférrico típico (Figure 7), soil bulk density
(BDmacro = 1.36 Mg m−3) and macroporosity (0.10 m3 m−3) critical values limited root
growth, particularly in the NT 2. However, NT 1 and Pasture are noteworthy, in which,
even with physical limitations from the 0.05 m layer onwards, the roots reached, respec-
tively, 0.20 and 0.30 m in depth. To penetrate more resistant soil layers, the root increases
its diameter, as long as this resistance is not so high as to bend or deflect the root, and
thus they find paths of lesser resistance. On the other hand, in regions of the soil where
resistance is higher and oxygen and nutrient availability are deficient, the roots grow less
and the plant compensates this by growing more in the less resistant zones [81].
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Aluminoférrico típico (Oxisol) and their respective managements under study.

Generally, the results indicate that the critical values of bulk density and macroporosity
limit root growth for all soils in our study.

Assessing the spatial variability of penetration resistance in an experimental area of
0.2 ha with different sampling grids in an Oxisol in the south-central region of Paraná, the
soil layer between 0.05 and 0.20 m was the one with the highest resistance values [58]. In a
laboratory study on the influence of soil compaction on maize crops, Carneiro et al. [68]
found that leaf mass was reduced regardless of the depth of the compacted layer; however,
when it occurs in the surface layer, the problem is exacerbated due to the low availability of
water and nutrients for the establishment of the plant, which requires a large amount of
energy to develop its root system.

Using microporosity as a reference, obtained by applying a tension of 6 kPa, it is
noted that the volumetric moisture at the time of assessing the soil mechanical resistance
to penetration, in general, presented values lower or close to those obtained at a tension
of 6 kPa (Figure 8). Knowledge of moisture and other physical properties when assessing
penetration resistance is important, as soil mechanical resistance to penetration is related
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to soil moisture, bulk density, and texture [67–69]. For example, there was an increase
in penetration resistance as the soil reduced moisture, and small differences in soil bulk
density affected the penetration resistance as a function of moisture in different ways in a
Latossolo Vermelho–Amarelo with 0.366 kg kg−1 clay [68].
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Under high bulk density values, the increase in soil water content reduced 
penetration resistance, allowing soybean root growth to occur without restrictions in 
Oxisols with a clay content varying between 195.1 and 730.3 g kg−1 [4]. The authors found 
that, regardless of the soil textural class, the values of 2 and 3 MPa, considered limiting 
for root growth, had a small effect on soybean root growth when soil moisture was 
maintained at field capacity. 

For the soils and managements under study, the soil’s mechanical resistance to 
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Figure 8. Average values of microporosity (dashed line) and volumetric moisture (solid line) at the
time of evaluating the mechanical resistance of the soil to penetration of the (a) Argissolo Vermelho
Distrófico arênico (Ultisol), (b) Argissolo Vermelho Distrófico latossólico (Ultisol), (c) Argissolo
Vermelho–Amarelo Alumínico típico (Ultisol), (d) Latossolo Vermelho Distrófico típico (Oxisol),
(e,f) Latossolo Vermelho Aluminoférrico típico (Oxisol), and respective managements.

Under high bulk density values, the increase in soil water content reduced penetration
resistance, allowing soybean root growth to occur without restrictions in Oxisols with a
clay content varying between 195.1 and 730.3 g kg−1 [4]. The authors found that, regardless
of the soil textural class, the values of 2 and 3 MPa, considered limiting for root growth, had
a small effect on soybean root growth when soil moisture was maintained at field capacity.

For the soils and managements under study, the soil’s mechanical resistance to pen-
etration presents variability in the profile, generally with lower values on the surface and
increasing in depth (Figures 9–12). In an Argissolo Amarelo, the increase in resistance to pene-
tration in depth was associated with the natural accommodation of clays, and the decrease in
organic matter and microbiological activity at deeper layers in the soil profile [82].
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In general, soil layers with a resistance of <2 MPa may have limited root system
growth, with 1.5 to 2 MPa for the Argissolo Vermelho Distrófico arênico and Argis-
solo Vermelho–Amarelo Alumínico, 1 to 1.5 MPa for the Argissolo Vermelho Distrófico
latossólico (Figures 9–11), and between 2 and 3.5 MPa for the Latossolo Vermelho Alu-
minoférrico típico (Figure 13). In the Latossolo Vermelho Aluminoférrico típico, pasture
management demands special attention, because the soybean roots grew up to 0.30 m, even
passing through the most resistant layer, which may be associated with the presence of
biopores, allowing for preferential root penetration.
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Figure 13. Mechanical resistance to penetration of Latossolo Vermelho Aluminoférrico típico (Oxisol)
in the managements (a) NT 1, NT 2, and NT 3; (b) Chisel, Pasture, and NTC. . . . . . . root system depth.

Although horizontal layers with similar resistance occur, in some cases there is discon-
tinuity of these layers with zones of smaller resistance, which allows the roots to use these
zones of lesser resistance to deepen the profile. According to Queiroz-Voltan et al. [83],
as compaction does not present itself as a continuous mass in the field, the roots search
for free spaces in the soil to develop. From isolines maps of penetration resistance, it is
possible to identify the depth of action of agricultural implements and compacted soil
layers [82]. Even with the increase in bulk density and soil resistance to penetration and
the decrease of macroporosity, the area and root length of corn were not affected in the
Latossolo Vermelho Distrófico and a Latossolo Vermelho eutroférrico [84]. According to the
authors, root growth can be inhibited with penetration resistance values below 1 MPa in dry
soils; however, with enough moisture, growth can occur with a resistance to penetration
ranging from 4 to 5 MPa.

Between the rows of the crop, in general, there was greater resistance to penetration,
since the cutting disc or seeder rod ruptures the layer of greater resistance in the row
(Figures 9–12), allowing root growth in the first centimeters of the soil (Figures 9–11). The
furrower mechanisms may mobilize 30% of the soil surface area to a depth of 0.05 cm in
winter crops with 0.17 m spacings [38]. Therefore, when the sowing for soybeans is added
in succession, in a short time the entire surface layer is mobilized. Unger and Kaspar [85]
state that soils are not uniformly compacted by machine traffic. Because the traffic direction
for many field operations is parallel to the planting row, traffic tends to be concentrated in
the rows, and some rows are compacted while others are not. As a result, traffic can cause
significant differences in soil physical conditions between trafficked and non-trafficked
rows, as studied in detail by Reichert et al. [86] for various soil properties.

The depth reached by the root system (soybean and edible black bean in the Argis-
solo Vermelho Distrófico arênico—Chisel) in the soils and managements under study was



Sustainability 2022, 14, 2958 14 of 19

affected by soil properties, such as bulk density and soil resistance to penetration. Re-
ichert et al. [61] comment that the root system perceives and integrates all soil conditions in
space and time, similarly to the aerial part of plants, which is exposed to constant changes
in the environment, clearly indicating that stresses in the aerial part and root system are
equally important.

Crop yield is a function of several factors, such as physical, chemical, and biological
soil properties, management given to the crop, in addition to climatic factors. Some soils
may have unsuitable conditions, but proper climatic and rainfall conditions can minimize
these effects. In the constant climatic adversities, a soil in a good condition allows the farmer
to plan, as variations in yield are less fluctuating. For example, the effects of compaction in
a clayey soil can be mitigated over time as a function of biopores formed by predecessor
crops, especially cover crops, combined with the natural wetting and drying cycles of the
soil [71]. Similarly, in a sandy loam soil, the use of cover crops reduced soil resistance to
penetration by 25% compared to the value of 2 MPa after two crop rotation cycles, and 32%
after three cycles [72]. These authors also verified that plant roots need approximately 4 to
6 years to decompose and produce biopores through the compacted soil layer.

To facilitate decision making on soil management considering the critical bulk density
(BDmacro) corresponding to a macroporosity of 0.10 m3 m−3, the relative soil bulk density
was calculated through the relationship between the current bulk density of the soil and
the BDmacro for each soil class (Table 4).

Table 4. Average values of relative bulk density for the different soils and their respective manage-
ments under study.

Layer, m Management

Argissolo Vermelho Distrófico arênico (Ultisol) (BDmacro = 1.66 Mg m−3)
Chisel NT NTC

0–0.05 89.2 84.9 74.7
0.05–0.10 94.0 97.0 88.0
0.10–0.15 98.8 98.2 98.8
0.15–0.20 100.0 96.4 98.8
0.20–0.25 100.6 96.4 96.4
0.25–0.30 98.8 91.6 95.8

Argissolo Vermelho Distrófico latossólico (Ultisol) (BDmacro = 1.52 Mg m−3)
NT NTC 1 Potato NTC 2

0–0.05 96.1 105.3 86.8 92.8
0.05–0.10 109.2 112.5 90.1 105.9
0.10–0.15 105.9 107.9 105.9 109.9
0.15–0.20 99.3 105.3 105.9 113.2
0.20–0.25 98.0 100.0 103.9 103.9
0.25–0.30 97.4 96.1 97.4 99.3

Argissolo Vermelho-Amarelo Alumínico típico (Ultisol) (BDmacro = 1.32 Mg m−3)
NT 1 NTC NT 2 Potato

0–0.05 85.6 90.2 97.7 99.2
0.05–0.10 115.2 106.8 114.4 115.9
0.10–0.15 111.4 108.3 109.8 110.6
0.15–0.20 109.1 106.8 112.1 106.8
0.20–0.25 105.3 105.3 103.8 104.5
0.25–0.30 108.3 102.3 93.9 103.0

Latossolo Vermelho Distrófico típico (Oxisol) (BDmacro = 1.33 Mg m−3)
NT 1 NTC 1 NT 2 NTC 2

0–0.05 86.5 95.5 85.7 111.3
0.05–0.10 100.0 104.5 103.0 116.5
0.10–0.15 102.3 110.5 108.3 119.5
0.15–0.20 103.8 108.3 111.3 118.0
0.20–0.25 97.0 99.2 103.0 110.5
0.25–0.30 99.2 100.0 102.3 103.8

Latossolo Vermelho Aluminoférrico típico (Oxisol) (BDmacro = 1.36 Mg m−3)
NT 1 Chisel Pasture NT 2 NT 3 NTC

0–0.05 76.5 75.7 101.5 85.3 84.6 82.4
0.05–0.10 109.6 97.1 114.7 108.1 100.7 100.0
0.10–0.15 105.9 102.2 115.4 107.4 100.0 92.6
0.15–0.20 112.5 103.7 117.6 105.1 99.3 96.3
0.20–0.25 104.4 99.3 116.9 103.7 100.7 89.0
0.25–0.30 101.5 91.9 111.0 96.3 97.1 86.8
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These relative bulk density values represent how close the actual soil bulk density is
in relation to the critical bulk density. For example, relative bulk density values greater
than 100% indicate that the soil bulk density is greater than critical, while values smaller
than 100% mean that the bulk density is smaller than critical. Furthermore, it is possible
to define, according to the percentage of relative bulk density, some action that should be
taken to prevent the bulk density from being close to the critical one, namely mechanical
soil management such as chiseling or vegetative management through cover crops with a
root system that improves the soil physics properties. Bulk density values greater than 85%
could thus be defined as an alert for decision making in relation to soil management.

4. Conclusions

From the evaluation of some physical properties associated with the compaction of
Ultisols and Oxisols subjected to different management systems, it is concluded that with
the increasing of soil bulk density there is a decrease in its macroporosity, and the variation
in the content of sand, silt, and clay of soil is related to bulk density and porosity.

From a regression analysis between bulk density and macroporosity for each soil class,
the bulk density (BDmacro) corresponding to a macroporosity of 0.10 m3 m−3, considered
critical for plant growth, was defined, according to the textural class, as: sandy loam—
BDmacro = 1.66 Mg m−3; loam and clay loam—BDmacro = 1.52 Mg m−3; silty clay loam and
silty clay—BDmacro = 1.32 Mg m−3; and clay—BDmacro = 1.33 to 1.36 Mg m−3.

Soil’s mechanical resistance to penetration presents variability in the profile, generally
with lower values on the surface and increasing in depth, in response to soil management.
Although there are horizontal layers in the soil profile with similar resistance, in some cases
there is discontinuity of these layers with zones of smaller resistance, which allows the
roots to use these zones to deepen into the profile.

Penetration resistance values that limited the root growth of the soybean and edible
black bean (in the Argissolo Vermelho Distrófico arênico—Chisel) were from 1.5 to 2 MPa for
the Argissolo Vermelho Distrófico arênico (Ultisol) (of the textural class “sandy loam”) and
Argissolo Vermelho–Amarelo Alumínico (Ultisol) (of the textural classes “silty clay loam”
and “silty clay”), 1 to 1.5 MPa to the Argissolo Vermelho Distrófico latossólico (Ultisol)
(of the textural class “loam”), and 2 to 3.5 MPa to the Latossolo Vermelho Aluminoférrico
típico (Oxisol) (of the textural class “clay”).
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