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Abstract: The high rate of heat transfer through the residential roof assembly aggravates the condition
of indoor thermal discomfort. Bulk insulation can be installed in the assembly to improve thermal
performance. However, although it can efficiently reduce diurnal heat transfer from the outdoor
environment into the indoor space through the roof assembly, it can also suppress nocturnal heat
transfer in the opposite direction. Alternatively, high-albedo roof tiles employ cool colors to reflect
heat at the roof surface, whereas bulk insulation hinders the conduction of heat through the roof
assembly. In light of the potential of high-albedo roof tiles and bulk insulation in reducing heat
transfer, thermal-energy performance of an urban pitched residential roof assembly, which adopted
varying configurations of high-albedo roof tiles and bulk insulation under a hot, humid climate, was
evaluated. Energy savings were generated, which were 15.13% when the change from a conventional
to a high-albedo roof surface was performed, and 17.00% when the installation of bulk insulation
was performed on the high-albedo roof assembly.

Keywords: air conditioner; cooling load; heat conduction; residential building; roof insulation; roof
tile color; solar reflectance

1. Introduction

Buildings in countries that have hot, humid climates are exposed to intense solar
radiation during the day, owing to the high altitude of the sun path [1,2]. In particular, the
roof receives the highest amount of solar radiation in comparison to other components of
the building envelope by virtue of the horizontal orientation and higher elevation of the
roof [3,4].

Malaysia, which is located in Southeast Asia from 1◦ to 7◦ north of the equator [1],
has a hot, humid climate throughout the year [1,5]. Its climate can be classified as a
tropical rainforest climate, as per the Köppen–Geiger climate classification [6]. According
to the annual moving averages reported in Tang [5] for selected urban areas, namely
Kota Kinabalu, Kuantan, Kuching, Malacca and Subang Jaya, mean daily temperatures of
Malaysia, from 1956 to 2016, ranged between 25.0 ◦C and 28.7 ◦C. Recently, the Malaysian
Meteorological Department revealed that 38.6 ◦C was the highest peak daily temperature
in Malaysia in 2020, which was recorded in Alor Setar [7]. Previously in 1998, a higher
peak daily temperature of 40.1 ◦C was recorded in Chuping [7]. The average duration of
exposure to sunshine throughout Malaysia ranged from six to eight hours per day [8,9].

Typical urban residential buildings in Malaysia are predominantly low-rise with
pitched roof assemblies, where the heat transfer through the roof accounts for between
50% and 70% of the total heat gain in the indoor space beneath the roof [10]. The high
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rate of heat transfer through the residential roof assembly aggravates the condition of
indoor thermal discomfort experienced by the occupants. Accordingly, dependence toward
air conditioners increases, which is a huge concern, as air conditioners heavily consume
energy [8,9].

Bulk insulation restricts the transfer of heat via conduction and convection by trapping
air in millions of pockets within bulky materials that possess low density. Common bulk
insulation materials employed for various applications, include, among others, cellulose,
glass wool, mineral wool, polyester, polyisocyanurate, polystyrene and polyurethane. Bulk
insulation products can be manufactured in various forms, which are, but not limited to,
batts, loose-fills, rigid boards and rolls. Bulk insulation can be installed in the residential
roof assembly to improve thermal performance owing to the presence of miniature air
spaces that hinder heat conduction [11], which can potentially reduce the intensity and
duration of the operation of air conditioners by the occupants [12]. Innovations pertaining
to bulk insulation materials have been proposed by, among others, Husna et al. [13] and
Ismail et al. [14], who adopted nano-materials that possess ultra-low thermal conductivity,
as well as Nuruddin et al. [15], Farhan et al. [16] and Omar et al. [17], who adopted
natural fibers, which are greener than synthetic fibers. Although bulk insulation has
great potential in improving the thermal-energy performance of the roof assembly, its
rate of adoption in Malaysia is still low [18]. Increases in cost related to the purchase,
installation and maintenance of the insulation material, as well as lack of awareness and
understanding of the long-term benefits of employing insulation, influence the decisions
opted by homeowners [18]. Consequently, the omission of bulk insulation from the roof
assembly may result in an increase in the rate of heat transfer through the roof assembly
and into the indoor space. Hence, thermal-energy performance of the building during
hours of high exposure to intense solar radiation will be negatively impacted.

Residential roof assemblies in Malaysia are typically lightweight and pitched. They
comprise roof tiles, attic spaces and ceiling boards. For lightweight roofs, Malaysian
Standard: Energy Efficiency and Use of Renewable Energy for Residential Buildings (MS
2680:2017) [19] recommends the installation of insulation within the roof assembly. Further-
more, a minimum thermal resistance (R-value) of 2.50 m2K/W has been set as a mandatory
compliance criterion for lightweight roofs as stated in MS 2680:2017 [19], Green Building
Index Assessment Criteria for Residential New Construction [20], and Selangor Uniform
Building By-Laws [21].

Previous studies on building insulation paid more attention to wall insulation in
cold climates [22], and less emphasis was given to roof insulation in hot climates. In
Malaysia, previous research pertaining to thermal performance evaluation of insulation
materials installed in residential roof assemblies is limited to the studies of Farhan et al. [16],
Halim et al. [23], Irwan et al. [24,25], Ismail et al. [14], Morris et al. [26], Nuruddin et al. [15,27],
Puad et al. [28] and Zakaria et al. [29]. Findings indicated that installing roof insulation
efficiently reduced diurnal heat transfer from the outdoor environment into the indoor
space through the roof assembly. Conversely, findings also revealed that the presence
of insulation suppressed nocturnal heat transfer through the roof assembly, which is in
the opposite direction to that of the diurnal heat transfer. Consequently, the nocturnal
energy consumption owing to the use of air conditioners will increase in view of the fact
that indoor thermal comfort has to be sustained throughout the night in order to facilitate
adequate rest and sleep among the occupants.

Alternatively, Al-Obaidi et al. [4], Al Yacouby et al. [30] and Farhan et al. [31] studied
the effect of high-albedo roofs without insulation under the climate of Malaysia. High-
albedo roof tiles reflect heat at the roof surface, whereas bulk insulation hinders the conduc-
tion of heat through the roof assembly. Adoption of high-albedo roofs has been reported in
Synnefa et al. [32] to be effective at increasing thermal-energy performance for widely dif-
fering climate classes. Prevalently, previous studies have attempted to increase the albedo
of roof tiles by applying high-albedo coatings. The coatings can be classified according to
their binders, such as cementitious or elastomeric coatings. Alternatively, the coatings can
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also be categorized according to their carriers, such as solvent- or water-based coatings [33].
Essentially, for application on high-albedo roofs, the coatings are required to possess super-
ficial thermal-optical properties that are appropriate for maintaining, under exposure to
solar radiation, surface temperatures that are appreciably lower than those of conventional
roofs. In general, high-albedo coatings that possess pre-eminent thermal-optical properties
are those that are white in color. However, as aesthetics of buildings cannot be disregarded,
studies have been conducted to develop innovative coatings, such as those that possess
solar-reflective surfaces with non-white colors, those that are thermochromic, or those that
are doped with phase-change materials [33].

Despite the potential for improving the thermal-energy performance, adoption of high-
albedo roofs in countries that are exposed to the tropical rainforest climate is still low [9,30].
In particular, within the region of Southeast Asia, research on the effect of high-albedo roofs
is currently deficient. Exclusive of the studies that were conducted in Malaysia, which are
Al-Obaidi et al. [4], Al Yacouby et al. [30] and Farhan et al. [31], the research is limited to
the studies of Syuhada and Maulana [34] in Indonesia, Zingre et al. [35] in Singapore and
Thongkanluang et al. [36] in Thailand.

Although Al-Obaidi et al. [4] and Al Yacouby et al. [30] studied the effect of high-
albedo roofs by varying the color of the roof surface, their methodologies employed test
cells that did not comply with the clauses in Uniform Building By-Laws 1984 (UBBL
1984) [37] for habitable rooms of residential buildings in Malaysia. The methodology
adopted in Farhan et al. [31] later addressed the shortcomings of the test cells employed
in Al-Obaidi et al. [4] and Al Yacouby et al. [30] but focused solely on the effect of high-
albedo roofs without considering its coupling with insulation. The scope of Syuhada and
Maulana [34] zoomed in on zinc roofs and excluded the adoption of roof tiles. Zingre et al. [35]
adopted a methodology that concentrated on flat roofs and did not consider pitched roof
assemblies that have attic spaces and ceiling boards. Thongkanluang et al. [36] focused on
synthesizing a coating material for potential application on the surface of high-albedo roofs,
without performing any study on heat transfer through the roof assembly that endures
exposure to solar radiation.

Hence, new studies are required to address the shortcomings of previous research on
the effect of high-albedo roofs, in particular, those that zoom in on pitched roof assemblies
that have roof tiles, attic spaces and ceiling boards, together with the adoption of insulation,
under a hot, humid climate. In light of the potential of high-albedo roof tiles and bulk
insulation in reducing heat transfer, thermal-energy performance of an urban pitched
residential roof assembly, which adopted varying configurations of high-albedo roof tiles
and bulk insulation under a hot, humid climate, was evaluated.

2. Materials and Methods

The thermal-energy performance of an urban pitched residential roof assembly was
evaluated by developing a building information model using Integrated Environmental
Solutions <Virtual Environment> (IESVE), which is a building information modeling (BIM)
tool. Thermal-energy and computational fluid dynamics (CFD) analyses were performed
on the model. Varying configurations of high-albedo roof tiles and bulk insulation within
the roof assembly were adopted. The roof was exposed to the hot, humid climate of Shah
Alam in Malaysia, which is an urban area.

The second law of thermodynamics states that the total entropy, which is a measure of
the disorder of a system and its environment, will never decrease. Therefore, heat transfer
through the residential roof assembly will occur from the hotter to the colder bodies, as the
building and its environment attempt to gain entropy over time and reach its maximum,
which is when thermal equilibrium is achieved [38]. Accordingly, as outdoor and sky
conditions change over time throughout the day, magnitude and direction of heat transfer
through the roof assembly will continually change in conformity with the second law
of thermodynamics.
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In the present study, evaluation of thermal-energy performance considered the conduc-
tion, convection and radiation modes of heat transfer through the roof assembly. Thermal
properties of materials that constitute the assembly were also taken into account. The rate
of heat transfer by conduction (Qconduction), convection (Qconvection) and radiation (Qradiation)
can be expressed by Fourier’s Law as per Equation (1) [39], Newton’s Law of Cooling as
per Equation (2) [40] and Stefan–Boltzmann’s Law as per Equations (3) and (4) [41].

Qconduction = kA
dT
dx

(1)

where k is the thermal conductivity of the material expressed in W/mK, A is the cross-
sectional area perpendicular to heat flow expressed in m2, and dT

dx is the temperature
gradient expressed in K/m.

Qconvection = hc A
(

Ts − Tf

)
(2)

where hc is the surface heat transfer coefficient, A is the surface area, Ts is the surface
temperature, and Tf is the fluid temperature.

Qradiation = σA1ε1

(
T1

4 − T2
4
)

(3)

Qradiation = hr A1(T1 − T2) (4)

where σ is the Stefan–Boltzmann constant, hr is the coefficient of heat transfer, A1 is the area
of the first surface, ε1 is the emissivity of the first surface, T1 is the absolute temperature of
the first surface, and T2 is the absolute temperature of the second surface.

The ability of the roof surface to reject solar heat, as indicated by the solar reflectance
index (SRI), was also taken into consideration. SRI refers to the relative steady-state
temperature of a surface with respect to a standard white, which is given the SRI value
of 100, and a standard black, which is given the SRI value of 0, under standard solar and
ambient conditions. It is calculated as per Equation (5) [42]. As its definition and method
of calculation are based on the steady-state temperatures of a standard black, which has a
reflectance of 0.05 and an emittance of 0.90, and a standard white, which has a reflectance
of 0.80 and an emittance of 0.90, it is possible for SRI values to be slightly negative or
exceed 100.

SRI =

(
Tblack − Tsur f ace

)
(Tblack − Twhite)

× 100 (5)

where Tblack, Twhite and Tsurface are steady-state temperatures of the standard black, standard
white and material surface, respectively, which are derived from measured values of solar
reflectance and infrared emittance of the material surface according to the calculations in
the Standard Practice for Calculating Solar Reflectance Index of Horizontal and Low-Sloped
Opaque Surfaces (ASTM E1980-11) [43].

Adoption of high-albedo roof tiles and bulk insulation within the roof assembly were
aimed toward developing an energy-efficient roof assembly. Monitoring of the energy-
efficiency considered the cooling load and energy savings, which signify the level of indoor
thermal comfort. A conceptual framework of the present study is outlined in Figure 1.
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BIM was selected as the methodology, as it is capable of assisting the decision-making
process when it comes to sustainable design of buildings. BIM has been employed in previ-
ous studies to perform sustainable design of residential buildings that are exposed to the
hot, humid climate of Malaysia. Amir et al. [44], Gardezi et al. [45] and Jamaludin et al. [46]
developed building information models of pre-determined types of residential buildings.
Alternatively, building information models developed in Farhan et al. [31], Halim et al. [23],
Irwan et al. [24,25] and Morris et al. [26] were those of test cells that represent the conditions
of a habitable space in typical urban residential buildings in Malaysia. BIM simulation data
that were collected from the building information models can be validated by conducting
field measurements and comparing the measured data with their counterparts from the
BIM simulation based on Equation (6) as in Vangimalla et al. [47].

PDSD−FM =
SD − FM

FM
× 100% (6)

where SD and FM are the simulation and field measurement data, respectively, and
PDSD−FM is the percentage difference between the simulation and field measurement data.

Acceptable PDSD−FM values adopted in Vangimalla et al. [47] and Leng et al. [48] are
15% and 20%, respectively, which were determined based on the 10% to 20% acceptable
range recommended in Maamari et al. [49].

In the present study, two test cells, as shown in Figure 2, were constructed at the
site location of 3.07◦ N, 101.50◦ E in Shah Alam, as shown in Figure 3. The test cells are
identical, barring the roof tile color, where red and white roof tile colors were adopted, as
shown in Figures 4 and 5, to represent conventional and high-albedo roofs, respectively.
Thermocouples and data loggers were installed in the test cells to collect air and surface
temperature data throughout the whole year of 2021.

Inspections were conducted prior to commencement of data collection, as well as once
per week after the commencement, to ascertain the accuracy of data throughout the data
collection. The inspections were conducted by comparing air and surface temperature
data that were recorded using primary data loggers, which were mounted to the test cells,
with those that were recorded using secondary data loggers of the same model that were
minimally used. For the surface temperature data, their accuracy was further ascertained
by performing supplementary comparisons between the temperatures that were measured
using thermocouples, which were then recorded by the data loggers, with those that were
manually measured using a thermal imaging camera.
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The test cells were 4 m long, 4 m wide and 3 m high. The dimensions were selected as
such to fulfil minimum size requirements as specified in UBBL 1984 [37], while minimizing
the size of the test cells for feasibility of the experiment. The minimum base area, height and
width of a habitable room in residential buildings were 11 m2, 2.5 m and 2 m, respectively.

Conventional materials were employed to construct the test cells, as itemized in Table 1,
inclusive of the density, thermal conductivity (k-value), specific heat and thickness of each
material, with the aim of creating the conditions of a habitable space in typical urban
residential buildings in Malaysia.
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Table 1. Materials employed to construct the test cells.

Component Material Density
(kg/m3)

Specific Heat
(J/kgK)

k-Value
(W/mK)

Thickness
(mm)

Roof Cement Tile 1890 1000 0.836 10.0
Ceiling Cement Board 720 1000 0.250 4.5

Window Clear Float Glass 2800 800 0.810 6.0
Door Solid Timber 702 2720 0.138 38.0

Wall
Cement Plaster 1690 840 0.533 18.0

Clay Brick 1800 800 1.154 114.0
Cement Plaster 1690 840 0.533 18.0

Floor Reinforced Concrete 2400 1000 1.442 50.0

The test cell was modeled in IESVE as a building information model. An axonometric
projection of the model is shown in Figure 6. Two-dimensional plan, front and rear, and left
and right views of the model are shown in Figure 7.
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Thermal-energy performance of the roof assembly of the building information model
was evaluated by performing thermal-energy and CFD analyses using Apache and Mi-
croFlo, respectively, in IESVE. SRI values of the roof surfaces were calculated from solar
reflectance and infrared emittance values of roof surfaces of roof tile samples, which were
obtained from laboratory measurements. Thermal-energy analysis was performed for a
whole typical meteorological year (TMY) for the site location of the test cells at 3.07◦ N,
101.50◦ E in Shah Alam, Malaysia. Meteorological data, inclusive of solar irradiance, were
generated by Meteonorm, based on data obtained from weather stations, geostationary
satellites and globally calibrated aerosol climatology, as well as sophisticated interpolation
models [50]. Roof-surface and attic-air temperature data generated from the thermal-energy
analysis throughout the TMY were averaged to obtain annual-averaged 24-h profiles. The
CFD analysis generated indoor temperature contours at peak diurnal outdoor temperature
and the trough of nocturnal outdoor temperature. Configuration of the roof assembly was
varied according to the roof tile color and presence of insulation to create three building in-
formation models as presented in Table 2. Then, 100-mm thick mineral wool was employed
within the roof assembly as bulk insulation, as it is commonly used for building insulation
in Malaysia.

Table 2. Roof assembly configurations of building information models.

Building Information Model Roof Tile Color Bulk Insulation

Conventional Red Nil
High-Albedo White Nil

High-Albedo + Bulk Insulation White Mineral Wool

The evaluation of thermal-energy performance considered the operation of a unit of a
950-W air conditioner for cooling of the indoor space with a set-point temperature of 24 ◦C
as recommended in Malaysian Standard: Energy Efficiency and Use of Renewable Energy
for Non-Residential Buildings (MS 1525:2019) [51] and also adopted in Halim et al. [23] and
Irwan et al. [24,25]. Daily, weekly and monthly indoor cooling profiles were configured
based on the profiles adopted in Halim et al. [23], Irwan et al. [24,25], Tang and Chin [52]
and Zakaria et al. [29], which also focused on residential buildings in Malaysia. Simulation
settings were configured with the assumption that no occupants and furniture are present
in the indoor space, and the door and windows are closed throughout the year.

The methodology of the study is elucidated in Figures 8 and 9.
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Figure 9. Methodology of the present study (continued).

3. Results and Discussion

The site location of the test cells at 3.07◦ N, 101.50◦ E in Shah Alam, Malaysia is
within the tropical rainforest region as per the Köppen–Geiger climate classification [6].
Consequently, the test cells are exposed to a hot, humid climate throughout the year [1,5].
Minimum, mean and maximum annual-averaged profiles of solar irradiance and outdoor
air temperature throughout the TMY of the location are presented in Figure 10. For the
most part, solar irradiance throughout diurnal periods is relatively high, particularly in
the afternoon, owing to the high altitude of the sun path as mentioned in Alam et al. [1]
and Al-Obaidi et al. [2]. Minimum, mean and maximum solar irradiance profiles peaked
at 73.36, 587.52 and 1070.25 W/m2, respectively. The solar irradiance culminated at 13:30,
which is about halfway through the diurnal period. Inversely, there is zero solar irradiance
throughout the nocturnal period from 20:30 to 5:30. Accordingly, as outdoor air temperature
is directly impacted by solar irradiance, the trend of the outdoor air temperature profiles
trailed those of solar irradiance. Minimum, mean and maximum profiles of the outdoor
air temperatures peaked at 26.9, 31.23 and 36.00 ◦C, respectively, with the temperatures
culminating from 15:30 to 16:30.
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Figure 10. Annual-averaged profiles of (a) solar irradiance and (b) outdoor air temperature through-
out the typical meteorological year of the site location.

Solar reflectance and infrared emittance of the roof surfaces are, as measured in the
laboratory, presented in Figure 11. SRI values, as shown in Figure 12, were calculated from
the solar reflectance and infrared emittance values, as per Santamouris et al. [42] and ASTM
E1980-11 [43]. The change from a conventional to a high-albedo roof surface has led to
an increase in the solar reflectance from 0.20 to 0.73, no change in the infrared emittance
at 0.90, and an increase in the SRI from 19 to 90. Application of white paint that brought
about the high-albedo roof surface can significantly reduce heat transfer through the roof
assembly, as, according to Raeissi and Taheri [53], the wavelength of light is reflected by the
white pigment at the roof surface and, as a consequence, less solar radiation is absorbed.
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Figure 11. Solar reflectance and infrared emittance of the conventional and high-albedo roof surfaces.
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Figure 12. Solar reflectance index (SRI) of the conventional and high-albedo roof surfaces.

Roof surface temperature (TRS) profiles of the non-insulated conventional and high-
albedo roof assemblies are compared in Figure 13. As TRS is heavily influenced by solar
irradiance, waveform of the TRS profiles in Figure 13 bears resemblances to that of the
solar irradiance profiles in Figure 10. The change from a conventional to a high-albedo
roof surface has led to the reduction in TRS throughout the diurnal segment, where TRS
culminated at 50.50 and 35.84 ◦C for the conventional and high-albedo roof surfaces,
respectively. The strong peak reduction of −14.79 ◦C in TRS, as illustrated in Figure 14,
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which presents the change in TRS (∆TRS), transpired owing to the relatively higher SRI of
the high-albedo roof surface of 90, in comparison to that of the conventional roof surface
of 19. The higher SRI resulted in a higher rate of reflection and accordingly a lower rate
of absorption of solar radiation that is incident on the roof surface. As opposed to that of
the diurnal segment, the increase in SRI did not influence TRS throughout the nocturnal
segment due to the absence of solar radiation throughout the nocturnal period.
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Figure 14. Change in TRS (∆TRS) when SRI was increased from that of the conventional roof assembly
(SRI = 19) to that of the non-insulated high-albedo roof assembly (SRI = 90).
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Plot of TRS versus solar irradiance for the non-insulated conventional and high-albedo
roof assemblies are presented in Figure 15. Correlations between TRS and solar irradiance
are positive, with coefficient of determination (R2) values of 0.9662 and 0.8233, and gradients
of 0.0446 and 0.0197, for the conventional (SRI = 19) and high-albedo (SRI = 90) roof
assemblies, respectively. The lower R2 and gradient for the high-albedo roof assembly
signify that the change from the conventional to the high-albedo roof surface has led to
the reduction in the influence of solar irradiance on TRS by virtue of the higher rate of
reflection and lower rate of absorption of solar radiation on the high-albedo roof surface in
comparison to that on the conventional roof surface.
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Figure 15. Plot of TRS versus solar irradiance for the non-insulated roof assemblies.

TRS profiles of the non-insulated and insulated high-albedo roof assemblies are com-
pared in Figure 16. The installation of bulk insulation within the high-albedo roof assembly
has led to the reduction in TRS throughout the diurnal segment, where the peak TRS further
declined from 35.84 to 32.63 ◦C. The presence of insulation has led to a further peak reduc-
tion in TRS of −4.06 ◦C as illustrated in Figure 17, as the insulation material hinders heat
conduction through the roof assembly [11].
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Figure 16. TRS profiles of high-albedo roof assemblies.
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Figure 17. ∆TRS when bulk insulation was added to the non-insulated high-albedo roof.

Throughout the nocturnal segment, the absence of solar radiation has caused the
heat conduction transfer to invert. The transposition occurred due to the reduction in
the average effective sky temperature, which resulted in the radiation of heat from the
roof surface to the sky during the nocturnal period. Accordingly, heat within the indoor
space and roof assembly flows toward the roof tiles and attempts to escape the building
to achieve thermal equilibrium as mentioned in Farhan et al. [31] and Tang and Chin [52].
Under the circumstances, the presence of insulation within the roof assembly contributed
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toward hampering the heat transfer out of the building. As a consequence, TRS increased
throughout the nocturnal period by up to 2.64 ◦C, as shown in Figure 17.

Indoor temperature (Ti) contours were generated at peak diurnal outdoor temperature
(To) as shown in Figure 18, which was on 17 March at 16:00, and the trough of nocturnal To
as shown in Figure 19, which was on 22 September at 6:00. The contours were generated for
all of the configurations of the roof assembly, which were conventional, high-albedo, and
high-albedo with bulk insulation. Ti contour for the conventional roof assembly discloses
that, during peak diurnal To, the high TRS, which culminated at 45.00 ◦C, caused the attic air
temperature (TAA) to elevate to within the range from 39.55 to 43.18 ◦C. Then, heat transfer
into the indoor space resulted in the increase in room air temperature (TRA) to within the
range from 34.09 to 37.73 ◦C. Ti contour for the high-albedo roof assembly exhibits that,
resulting from the change from a conventional to a high-albedo roof surface, at peak diurnal
To, the range of TRS greatly reduced to within the range from 25.00 to 39.55 ◦C. The decline
in TRS transpired due to the adoption of the high-albedo roof surface, which reduced heat
transfer into the attic space. Accordingly, TAA and TRA reduced to within the range from
32.27 to 34.09 ◦C. Ti contour for the high-albedo roof assembly with bulk insulation reveals
that the presence of bulk insulation caused TAA and TRA to further reduce to within the
range from 30.45 to 32.27 ◦C by hampering the heat transfer from the roof surface to the
attic space.
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At the trough of nocturnal To, increase in the SRI of the roof surface did not influence
TRS, TAA and TRA by virtue of the absence of solar radiation, which induced heat radiation
from the roof surface to the sky during the nocturnal period and is in agreement with
Farhan et al. [31] and Tang and Chin [52]. TRS ranged from 20.00 to 21.36 ◦C while TAA and
TRA ranged from 21.82 to 22.27 ◦C. Ti contour for the high-albedo roof assembly with bulk
insulation shows that, due to the presence of bulk insulation, TRS, TAA and TRA increased
owing to the obstruction of heat from escaping the building from the roof surface toward
the sky during the nocturnal period. Consequently, heat transfer from the indoor space to
the roof surface was hindered.

The change from a conventional to a high-albedo roof surface, followed by the instal-
lation of bulk insulation, has resulted in reduction of indoor annual cooling load of the
building information model as presented in Figure 20. The indoor annual cooling load
reduced from 2.67 MWh for the conventional roof assembly to 2.32 MWh for the high-
albedo roof assembly. Installation of bulk insulation within the high-albedo roof assembly
has led to further reduction of the indoor annual cooling load from 2.32 to 2.28 MWh.
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Energy savings of 15.13% have been generated when the change from a conventional to
a high-albedo roof surface was performed, while 17.00% have been generated when the
installation of bulk insulation was performed on the high-albedo roof assembly.
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Figure 20. Annual cooling load and energy savings of the roof assembly at various configurations.

4. Conclusions

Thermal-energy performance of an urban pitched residential roof assembly, which
adopted varying configurations of high-albedo roof tiles and bulk insulation under the hot,
humid climate, was evaluated. Thermal-energy and CFD analyses were performed on a
building information model.
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Change from the conventional to the high-albedo roof surface has led to the reduction
in the influence of solar irradiance on roof surface temperature due to the higher rate of
reflection of solar radiation on the roof surface. However, the change did not influence the
roof surface temperature throughout the nocturnal segment due to the absence of solar
radiation. Installation of bulk insulation within the high-albedo roof assembly has led to
further reduction in roof surface temperature throughout the diurnal segment. However,
the reduction coincided with the increase in the roof surface temperature throughout the
nocturnal period as heat transfers out of the building, owing to the absence of solar radiation
that has caused the direction of heat conduction transfer to invert, which is hampered by the
insulation material. Despite the negative impact of installing bulk insulation throughout
the nocturnal period, on the whole, energy savings have been achieved, which are 15.13%,
which is from 2.67 to 2.32 MWh when the change from a conventional to a high-albedo roof
surface was performed, and 17.00%, which is from 2.32 to 2.28 MWh when the installation
of bulk insulation was performed on the high-albedo roof assembly.

For future research, studies that consider the variation in height of the building
and surrounding buildings and degree of the placement of high-albedo materials can be
considered. Development of a solar-reflective coating that can further increase the solar
reflectance of the roof surface and potentially eliminate dependence toward insulation is
also recommended. Alternatively, engineering of novel materials that possess extremely
low thermal conductivity, which can potentially be applied within the roof assembly with
minuscule thicknesses, is proposed.
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Abbreviations
BIM Building Information Modeling
CFD Computational Fluid Dynamics
IESVE Integrated Environmental Solutions <Virtual Environment>
k-value Thermal conductivity
R-value Thermal resistance
SRI Solar Reflectance Index
TMY Typical Meteorological Year



Sustainability 2022, 14, 2867 20 of 22

Notations

A
Cross-sectional area perpendicular to heat flow (for calculation of Qconduction), or surface
area (for calculation of Qconvection)

A1 Area of the first surface
dT
dx Temperature gradient
FM Field measurement data
hc Surface heat transfer coefficient
hr Coefficient of heat transfer
k Thermal conductivity
PDSD-FM Percentage difference between the simulation and field measurement data
Qconduction Heat transfer by conduction
Qconvection Heat transfer by convection
Qradiation Heat transfer by radiation
SD Simulation data
TAA Attic air temperature
Tblack Steady-state temperature of the standard black
Tf Fluid temperature
Ti Indoor temperature
To Outdoor temperature
TRS Roof-top surface temperature
Ts Surface temperature
Tsurface Steady-state temperature of the material surface
Twhite Steady-state temperature of the standard white
T1 Absolute temperature of the first surface
T2 Absolute temperature of the second surface
∆TRS Change in roof-top surface temperature
ε1 Emissivity of the first surface
σ Stefan–Boltzmann constant
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