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Abstract: The skid resistance of asphalt pavement is of great importance to the driving safety, but
deterioration of pavement skid resistance is inevitable owing to the coupling effect of traffic loading
and climate conditions. The existing prediction models of skid resistance were mainly established
based on the laboratory accelerated polishing tests (for instance Polished Stone Value, PSV), and
these models can only consider the influence of a single factor; they fail to reflect the coupling effect
of different factors under the real service condition. For the purpose of investigating the influences
of seasonal variation, and aggregate type on the skid resistance of asphalt pavement, the skid
resistance of three test tracks were continuously measured for 48 months through five different test
methods. The results show that different test methods exhibit significant inconsistency. The aggregate
type is the internal factor that determines the long-term skid resistance performance of pavement.
The skid resistances of the selected test tracks were ranked as greywacke pavement > diabase
pavement > rhyolite pavement. This is in well agreement with the ranking of aggregate polishing
resistance obtained from the laboratory Wehner/Schulze (W/S) test. This indicates that the W/S
test is effective in distinguishing the aggregates that used in pavement construction. It is also found
that the skid resistance of asphalt pavement shows significant fluctuation with respect to seasonal
variation. The skid resistance is generally high in autumn and low in summer. Therefore, it is
suggested to use the low measurement value of skid resistance in summer as the lower limit for the
evaluation and prediction of the skid resistance performance of asphalt pavement.

Keywords: traffic safety; asphalt pavement; skid resistance performance; seasonal variation; sensitivity
fact

1. Introduction

Traffic accidents have long been a great challenge all over the world, and they are
affected by numerous factors including driver behavior, vehicle, pavement, and climate
as well as their coupling effect. A large number of studies have validated that about 30%
of the total accidents are caused by the deterioration of pavement skid resistance [1–3].
The pavement surfaces with good skid resistance can provide adhesion to the vehicle tire,
which in turn provides the vehicle with sufficient driving and braking forces [4–8]. The
newly constructed asphalt pavement is always of good skid resistance, which ensures the
safety of the traffic driving on it. However, the skid resistance of asphalt pavement would
be continuously decreased because it was exposed to repeated vehicle loadings and cyclical
climate changes [9–14]. Several previous research works have evidenced the seasonal
variation of the skid resistance of asphalt pavement, and the asphalt pavement shows
the best skid resistance in the winter and the worst in the summer [15,16]. In summer,
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the thermosensitive asphalt binder in pavement surface becomes soft because of the high
temperature, and the exposed aggregates are compacted by the vehicles which leads to a
smoother surface texture. In the winter and spring, the tire–pavement contact is of the best
condition, and therefore, the asphalt pavement shows the best skid resistance. The coupling
effect of cyclical climate and vehicle loading makes the investigation of skid resistance of
asphalt pavement a very complex issue.

From the perspective of pavement life cycle, the deterioration of skid resistance
normally consists of three stages. In the first stage, the skid resistance of asphalt pavement
experiences a short and rapid increase. This increase is a result of the increase of pavement
surface roughness because the attached asphalt binder at the surface was polished by the
vehicle and the aggregates were fully exposed. This stage will last for 6 to 12 months. Then,
the kid resistance of asphalt pavement starts to decrease because the exposed aggregates
were gradually polished by the vehicle tires. The second stage is reported to be of the
duration of two years. At the third stage, the skid resistance of asphalt pavement becomes
nearly constant, and only slight fluctuations were observed [17–20].

Owing to the great importance of skid resistance of asphalt pavement, continuous
research efforts have been devoted to the development of laboratory and field measuring
methods. The existing test methods can generally be categorized into two groups. The first
group refers to the indirect test where the surface texture of asphalt pavement was measured.
The underlying mechanism of this group of test is that the macro and microtextures of
pavement surface directly contribute to the skid resistance of asphalt pavement. An
example of this group of test is the Macroscopic Texture Depth (MTD) test [21,22]. The
second group refers to the tests which directly measure the skid resistance of the test sample
or asphalt pavement. Examples of this category of tests include the British Pendulum Tester
(BPT) test, the W/S test, the sideway force coefficient (SFC), the longitudinal friction
coefficient (LFC) test, and others [23–30]. The BPT test mainly focuses on the low-speed
skid resistance of pavement. Even though the BPT test is greatly affected by the tester, it is
still one of the most commonly used tests all around the world. The W/S test describes
the skid resistance of pavement through the dynamic friction coefficient µW/S, a parameter
that is believed to be more reasonable, and this method is highly recognized in Europe. The
SFC and LFC are field text parameters, and they are obtained by using the one-wheeled
friction measuring device pulled by a vehicle. These test parameters directly describe the
friction performance between tire and pavement, but the test results are often found to be
affected by many factors. Even though numerous developed test methods exist, none of
them has ever been generally accepted by the researchers from around the world. The test
results from different methods are even found to be in conflict with each other in some
cases. Therefore, it is necessary to perform a comprehensive evaluation on the commonly
used tests so as to figure out a reliable method.

The current study aims to exploit the sensitivity of the commonly used tests, and to
identify the consistence of results from different tests. For this, five different test methods
were selected, and the skid resistance of three test tracks was continuously measured. Based
on the test results, the influences of test method, aggregate type and seasonal variation on
skid resistance were identified.

2. Materials and Methods
2.1. Aggregates and Test Tracks

In the current study, three different kinds of mineral aggregates were used, which
are diabase, rhyolite, and greywacke, respectively. These three selected aggregates were
the most commonly used raw materials for the construction of asphalt pavement. The
mineralogical properties of the three aggregates were measured through the XRD test,
and the relative contents of the rock-forming minerals were presented in Figure 1. The
microtexture of selected three aggregates were identified through the thin cross-section test,
and the results were shown in Figure 2. It could be found from Figure 2 that the microtexture
of the three selected aggregates is significantly different. The rhyolite aggregate is of the
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greatest average crystal size (234 µm), whereas the greywacke aggregate shows the smallest
average crystal size (45 µm).
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The skid resistance of the asphalt pavement is closely related to the micro and macro-
textures of pavement surface as well as the polishing resistance of aggregates. The polishing
resistance of the three selected aggregates have been extensively investigated in our previ-
ous studies [32]. Figure 3 depicts the evolutions of the dynamic friction coefficients µW/S of
these three aggregates measured by the W/S test. The nonlinear fittings were performed
to quantify the relationship between polishing time and the dynamic friction coefficients
µW/S, and the fitting function and parameter values were given in Table 1. Greater µW/S
indicates better polishing resistance of the aggregate. The polishing resistance of aggregates
is represented by the value of µW/S after the polishing process. Therefore, the greywacke
exhibits the best polishing resistance, followed by the diabase and rhyolite aggregates.

Table 1. The fitting results of the W/S test for the selected aggregates.

Test Track Aggregate Type Fitting Function R2

1 Rhyolite y = 0.631 − 0.024 ln(x − 3.609) 0.999
2 Diabase y = 0.534 − 0.036 ln(x − 1.085) 0.986
3 Greywacke y = 0.544 − 0.032 ln(x − 0.584) 0.981

Three different test tracks were selected in the current study for the skid resistance
measurement. The surface layers of the test tracks were paved by using the asphalt mixture
of SMA-11S, which contains the three selected aggregates, respectively. The SMA-11S is the
most commonly used asphalt mixture for the surface layer of highways in Germany, and
the gradation of SMA-11S is given in Figure 4. The test tracks comprise rhyolite, diabase
and greywacke aggregates were named as test track 1, 2, and 3 hereafter.
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2.2. Skid Resistance Tests

Numerous test methods have been developed in the past for the evaluation of the skid
resistance of asphalt pavement. In this study, five different kinds of tests were adopted
for the measurement of skid resistance of the test tracks exposed to varying time duration
of traffic. The tests include the BPT test, the MTD test, the Outflow Meter (OFM) test, the
W/S test, and the LFC test, as listed in Table 2. The BPT test is a commonly used method
for the measurement of skid resistance of pavement surface. The test was conducted by
measuring the low-speed friction at about 10 km/h according to DIN EN 13036-4, and the
obtained friction coefficient is named as British Pendulum Number (BPN). The OFM test
measures the macrotexture of the surface course, and the outflow time of water between
the two float switches of a vertical cylinder is verified with a stopwatch at the measurement
points used for the measurements. The measurement parameter outflow time (OFT) defines
the macrotexture of the pavement surface. Pavement surfaces with smooth macrotexture
have high measurement results, and vice versa. The MTD is calculated from the three-
dimensional data of the macrotexture which is measured by a high-resolution optical
profilometer following the procedure of DIN EN 13036-1.
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Table 2. The test methods and indexes of the pavement skid resistance.

Test Method Index Reference

BPT BPN DIN EN 13036-4
MTD MTD DIN EN 13036-1
OFM AM ASTM E 2380-12
W/S µW/S EN12697-49
LFC LFC CEN/TS 15901-15

The W/S test was conducted using the Wehner/Schulze machine, as shown in Figure 5.
The Wehner/Schulze machine is comprised of two units, one for polishing the test sample
under certain speed and contact pressure, and the other for the measurement of friction.
The friction measurement unit contains three rubbers attached to the circle plate which is of
the diameter of 18 cm. Each of the rubbers is of 14.5 mm width and of 30 mm length. During
the friction measurement, the circle plate was firstly accelerated to the speed of 100 km/h.
Then, the plate was lowered to be in contact with the test sample until it reached the
stationary state. The coefficient of friction was continuously recorded during this process.
Normally, the value corresponds to the speed of 60 km/h is employed as the standard
measurement result, i.e., the dynamic friction coefficient µW/S. More details regarding the
W/S test refer to the EN12697-49 as well as the previous studies [14,23].
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The LFC test was conducted by virtue of the ViaFriction test system as seen in Figure 6.
The ViaFriction is a one-wheeled friction measuring device pulled by a vehicle, and it is
designated a CFME (Continuous Friction Measuring Equipment). During the test, the
friction between the measuring wheel and the pavement surface is continuously measured
under variable slip rate. This is achieved by conducting wheel braking from free rolling
to almost fully-locked and measuring the breaking friction force which the road surface
exerts against the breaking wheel. As a result, the so-called µ-slip-curve is obtained, and
the maximum value of the friction coefficient µmax is adopted as a realistic assessment
of skid resistance due to the large presence of ABS braking systems for cars and trucks
today [24,25].

In this study, the skid resistance measurement of the three test tracks were conducted
in April, August and October of the test years to investigate the seasonal influence. The
measurement continued for 48 months. April is selected to represent the climate conditions
of spring, and August and October are for summer and autumn, respectively. The measure-
ment was not implemented in the winter season because the determinant factor that affects
the skid resistance of asphalt pavement is snow, but all the involved tests in the current
study cannot describe this well.
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3. Results and Discussion
3.1. Skid Resistance Development of Test Tracks
3.1.1. Deterioration Behavior of Different Skid Resistance Indexes

Considering that the underlying mechanisms of different skid resistance tests are not
exactly the same, the sensitivities of different methods to the micro and macro-characteristics
of asphalt pavement surface would be very different. To fully describe the skid resistance
deterioration behaviors of the test tracks, five tests were adopted among which the LFC
test is a kind of field test whereas others are laboratory tests. The measurement results of
different methods were shown in Figures 7–11, respectively.
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It could be easily found from the figures that the BPT test, W/S test, and LFC test
results exhibit similar evolution law that no significant increase or decrease was observed
for the measured values. The minor fluctuations observed for these parameters can be
attributed to the disturbances from polishing media (dust and water) and cyclical climate
changes, e.g., temperature. The MTD results of the test tracks obviously decrease with the
increase in time duration within the beginning 15 months, after which they become nearly
constant. The OFT results of the test tracks generally increase with the increase of time
duration across the whole test duration. The decrease of the MTD index and increase of
the OFT index are the direct results of surface aggregate polishment by the vehicle tire.
It is worth noting that the skid resistance of the test track 3 in Figure 11 exhibits slight
increase after about 10 months of measurement. This is likely to be related to the affinity
property between bitumen aggregate. The test track 3 uses greywacke aggregate which
generally shows poor adhesion performance to bitumen binder comparing to the other
two aggregates. As a result, the bitumen film is more easily polished by the vehicle tire
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and the aggregates are exposed. This would increase the roughness of pavement surface
microtexture, and the skid resistance of test track 3 is therefore improved.
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3.1.2. Empirical Models of Skid Resistance Deterioration

For purpose of quantitatively describing the deterioration law of the skid resistance
based on different parameters, the empirical models were established by fitting the test
results through two function types which include logarithmic and quadratic polynomial
functions. The selected fitting functions are also commonly used in the previous stud-
ies [33–36]. The fitting results were presented in Tables 3–7. It is seen from the tables that
the quadratic polynomial function generally best describes the deterioration law of the
BPN, OFT and MTD parameters. The evolutions of the µW/S and LFC parameters can be
well characterized by the logarithmic function. It is also worth noting that the significant
divergences in coefficient of correlation were observed for the fitting results of the LFC
parameter. For the test track 1, a high value of coefficient of correlation 0.89 indicates the
effectiveness of the logarithmic fitting, but the value of coefficient of correlation 0.3 for the
test track 2 implies the unavailability of the established empirical model. This is likely to
be related to the fact that the LFC test can be affected by many factors when conducting the
field test. The fitting results again demonstrate that the measurement of skid resistance is
very complex, and the deterioration model must be established for different test methods.

Table 3. The fitting results of the BPN index.

Test Track Logarithmic Fitting Quadratic Polynomial Fitting

1
y = −2.05 ln(x) + 65.23 y = 0.016x2 − 0.737x + 65.89

R2 = 0.43 R2 = 0.68

2
y = −2.10 ln(x) + 63.96 y = 0.014x2 − 0.684x + 64.105

R2 = 0.25 R2 = 0.33

3
y = −3.01 ln(x) + 51.24 y = 0.004x2 − 0.064x + 55.925

R2 = 0.50 R2 = 0.66

Table 4. The fitting results of the OFT index.

Test Track Logarithmic Fitting Quadratic Polynomial Fitting

1
y = −0.76 ln(x) + 0.91 y = −0.001x2 − 0.096x + 1.61

R2 = 0.69 R2 = 0.73

2
y = 0.97 ln(x) + 0.62 y = −0.003x2 − 0.170x + 1.22

R2 = 0.83 R2 = 0.91

3
y = 0.654 ln(x) + 2.90 y = −0.001x2 − 0.085x + 3.47

R2 = 0.50 R2 = 0.71



Sustainability 2022, 14, 2864 9 of 18

Table 5. The fitting results of the MTD index.

Test Track Logarithmic Fitting Quadratic Polynomial Fitting

1
y = −0.217 ln(x) + 1.83 y = 0.001x2 − 0.059x + 1.80

R2 = 0.76 R2 = 0.93

2
y = −0.207 ln(x) + 1.77 y = 0.001x2 − 0.047x + 1.70

R2 = 0.68 R2 = 0.77

3
y = 0.050 ln(x) + 0.34 y = −0.0002x2 + 0.011x + 0.34

R2 = 0.84 R2 = 0.83

Table 6. The fitting results of the µW/S index.

Test Track Logarithmic Fitting Quadratic Polynomial Fitting

1
y = −0.027 ln(x) + 0.53 y = 0.0001x2 − 0.007x + 0.52

R2 = 0.55 R2 = 0.49

2
y = −0.015 ln(x) + 0.46 y = 0.00003x2 − 0.002x + 0.45

R2 = 0.50 R2 = 0.32

3
y = 0.050 ln(x) + 0.34 y = −0.0002x2 − 0.012x + 0.34

R2 = 0.84 R2 = 0.83

Table 7. The fitting results of the LFC index.

Test Track Logarithmic Fitting Quadratic Polynomial Fitting

1
y = −0.042 ln(x) + 0.753 y = 0.0001x2 − 0.009x + 0.74

R2 = 0.89 R2 = 0.86

2
y = −0.022 ln(x) + 0.685 y = 0.00003x2 − 0.003x + 0.67

R2 = 0.30 R2 = 0.18

3
y = 0.021 ln(x) + 0.608 y = −0.0001x2 − 0.007x + 0.60

R2 = 0.43 R2 = 0.63

3.1.3. Seasonal Variation of Skid Resistance

To further analyze the potential influence of periodic climate changes in different
seasons on the skid resistance performance of pavement, the differences between the
measured and predicted values of the W/S test and the LFC test for test track 3 were plotted
as shown in Figures 12 and 13, respectively. The regular fluctuations of the calculated
difference indicate the cyclical changes of the pavement skid resistance with seasonal
climate variation.
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Furthermore, the measurement results of different test tracks were grouped as spring,
summer, and autumn categories. Then the group values were averaged, and the seasonable
averaged skid resistance measured by different methods were shown in Figures 14–18.
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The results from Figures 14–18 indicate that the measured results of the five selected
indexes show significant seasonal dependency. However, it should be mentioned that no
uniform rule can be identified regarding the detailed influence of season for the five tests.
The highest values of the BPN and MTD parameters always occur in autumn, and lowest
values of the MTD parameter always occur in summer. This is in good agreement with the
conclusions from previous studies [15,16]. The results from Figures 14–18 again validate
the complexity of skid resistance measurement. Further calibration works are still in need
to figure out an effective test method.
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3.1.4. Sensitivity Analysis of Influencing Factors

To exploit the potential influence of the factors like aggregate type, traffic loading time
and season type, a sensitivity analysis was further conducted by using the SPSS to conduct
the variance analysis, and the detailed results were presented in Table 8. The calculated
values in the table represent the degree of influence of the sensitivity factor on the test
results, and a value greater than 0.05 validates that the influence is statistically significant.
Conclusions can be drawn that the BPN parameter is highly sensitive to the aggregate type.
This is because the BPT test is a special kind of low-speed and is a microtexture-based
test, while the aggregate type is a major factor that affects the microtexture deterioration
of pavement surface. It can also be found that the MTD and OFT parameters show high
sensitivity to aggregate type and traffic load time. This is reasonable considering that
aggregate type and polishing time are the crucial factors that determine the final value of
texture deterioration.

Table 8. Analysis of sensitivity factor.

Sensitivity Factor BPN OFT MTD µW/S LFC

Aggregate type 0.686 0.003 0.063 0.186 0.543
Load time 0.051 0.176 0.020 0.905 0.312

Season Type 0.431 0.849 0.448 * 0.714 0.236
Note: At the 0.05 level * (double-tailed), the correlation is credible.

3.2. Correlation Analysis of the Skid Resistance Tests
3.2.1. Correlation of the Laboratory Tests

Previous research works have demonstrated that the skid resistance measurement
results obtained through different tests generally show very poor correlations [37,38]. A
correlation analysis was also conducted to validate the correlations between different
laboratory tests which were used in this study. The correlation analysis results were given
in Table 9. Table 9 clearly shows that the OF test result is highly related to that of the MTD
test with a correlation coefficient of −0.848. The negative value is reasonable considering
the physical meaning of the parameters. The correlation coefficient between the W/S test
and OFT test is −0.59, which is slightly higher than the value (0.418) between MTD test
and W/S test. In comparison, the BPT test shows no significant correlation with all other
three laboratory tests.
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Table 9. Correlation of the between laboratory tests.

Sensitivity Factor BPN OFT MTD µW/S

BPN 1.000 −0.006 0.312 0.367
OFT 1.000 −0.848 −0.590
MTD 1.000 0.418
µW/S 1.000

Note: At the 0.05 level (double-tailed), the correlation is credible.

3.2.2. Correlation between Field and Laboratory Tests

Among the five adopted tests in the current study, the LFC test is the only field test
that has been extensively used in different countries. Correlation study was also performed
to exploit the correlation between the field and laboratory tests, and results were seen in
Figures 19–22. It is found that the correlation coefficient between the LFC test and W/S
test is 0.4519, which is obviously higher than that of the other three pairs. This indicates
that the W/S test is a more realistic guide than the other methods in evaluating the field
skid resistance of asphalt pavement. Therefore, special concern must be given to these
laboratory tests when investigating the skid resistance of asphalt pavement using them.
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3.3. Synthetical Index Analysis of Skid Resistance
3.3.1. Synthetical Index Method

The synthetical index method was used to compare and analyze the differences in skid
resistance of the test tracks as well as their deterioration behavior. A comprehensive index
was used to describe the performance in this method. Considering that each test method
has its own advantages and disadvantages, it is necessary to integrate the advantages of all
the tests to accurately characterize the skid resistance of asphalt pavement. The synthetical
index method has the high reliability and uniform index to characterize the skid resistance.

The synthetical index method is a basic method of data analysis which assigns coef-
ficients to each subindex according to the attributes or inherent laws. Then the average
values are calculated for all the subindexes, and they are finally converted to obtain the
synthetical index as described through Equations (1) and (2).

Xq =
1
n

n

∑
q=1

aq × Xq (1)
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1
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∑
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Xq (2)
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where Xq is the synthetical index, Xq is the average value of the subindex, aq is the
weight coefficient.

3.3.2. Skid Resistance Deterioration Analysis Based on Synthetical Index

The synthetical index was calculated for the three test tracks to probe the skid resistance
deterioration behaviors. Considering that the skid resistance of pavement is directly related
to the surface texture, the current study gives first priority to the parameter MTD. Therefore,
the weight of MTD was defined as 1, and the correlation coefficients between MTD and
other four parameters were adopted as their weights, respectively. This implies that the
calculation values of aq for the MTD, BPN, OFT, µW/S and LFC are 1, 0.312, 0.848, 0.418, and
0.757, respectively. The calculated synthetical indexes for the three test tracks were given in
Figure 23.
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It could be found from Figure 23 that the skid resistance of the three test tracks can
be ranked as test track 3 > test track 2 > test track 1. This ranking is believed to be closely
related to the mineralogical characteristics and polishing resistance of the three aggregates
used for different test tracks as shown in Section 2.1. Among the three selected aggregates,
the greywacke aggregate shows the best polishing resistance, and therefore, the test track 3,
which is comprised of greywacke aggregate, exhibits best skid resistance. The test track 1
shows the worst skid resistance, and the rhyolite aggregate used in it also has the worst
polishing resistance. Meanwhile, it is also found that the three test tracks show a similar
trend of the deterioration of skid resistance. The skid resistance of asphalt pavement
continuously decreases at the first 21 months and then turns to be constant with slight
fluctuation. This result is in well agreement with the stage II and stage III behavior of the
classical deterioration law as has been identified in our previous study [14] considering that
the selected three test tracks have serviced for two years before the tests were performed.
This implies that the skid resistance prediction model established based on the laboratory
test is effective in describing the skid resistance evolution behavior of asphalt pavement.

3.3.3. Seasonal Variation Analysis Based on Synthetical Index

The synthetical index was also used to investigate the seasonal variation of pavement
skid resistance because this method has the advantage of eliminating the influence of
discreteness arising from the aggregate type and test method. It is found that the calculated
synthetical indexes for different seasons can be ranked as autumn > spring > summer, as
seen in Figure 24. This phenomenon can be attributed to the influence of temperature on
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the adhesion of tire to pavement surface. In spring and autumn, the mild temperature
leads to a higher value of tire-pavement adhesion, and therefore, better skid resistance
was observed. In comparison, the average temperature in autumn is higher than in spring,
which leads to better skid resistance in autumn. In summer, the high temperature makes
the asphalt pavement soft, and the aggregates at the surface layer are further compacted by
the vehicles. As a result, the pavement surface becomes smoother, which further decreases
the skid resistance of asphalt pavement. Considering the seasonal variation of pavement
skid resistance, the skid resistance measured in the summer should be used as the limit
value in the future.
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4. Conclusions

In this study, five different test methods were adopted to continuously measure the
long-term skid resistance of three test tracks. The selected test tracks are composed of
SMA–11S asphalt mixture. Based on the test results, the influences of test method, aggregate
type and seasonal climate on skid resistance were identified. The major conclusions from
this study include the following:

(1) The selection of well-performed test equipment and reasonable evaluation method
is the prerequisite of skid resistance research. The five adopted tests in the current
study generally show very different test results owing to their difference in evaluation
object and test condition.

(2) The laboratory W/S test-based polishing resistance evaluation for aggregate is found
to show good agreement with that of the W/S and LFC field tests, which provides
important foundation for the future laboratory prediction of skid resistance.

(3) The aggregate type is found to significantly influence the skid resistance of asphalt
pavement. For the three test tracks selected in this study, the test track using greywacke
aggregate shows the best skid resistance, whereas the one composed of rhyolite aggre-
gate exhibits the worst skid resistance. The greywacke aggregate is recommended to
be used in the surface layer for future construction of durable asphalt pavements.

(4) Significant variation was observed for the skid resistance of asphalt pavement at the
early service stage of asphalt pavement because the bitumen film of the pavement
surface was polished by the coupling effect of vehicle and climate factors. The
magnitude of this variation is closely related to the affinity property between bitumen
and aggregate.

(5) In the long term, the skid resistance of asphalt pavement becomes relatively stable, but
the cyclical changing climate still shows obvious influence on it. The measured skid re-
sistances of the test tracks in different seasons were ranked as autumn > spring > sum-
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mer. The skid resistance of asphalt pavement in summer is suggested to be used as
the control index for the pavement management and maintenance design.

The current study is based on the measurement results of three test tracks, and the
relevant conclusions remain to be further validated based on more test data in the future
work. Meanwhile, more than twenty different kinds of test methods for pavement skid
resistance have been reported, but only five were adopted in the current study. The
comprehensive correlation analysis regarding these different tests should be performed.
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