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Abstract: The concentration distribution of anthropocentric pollutants is favored by urban densifi-
cation, affecting the micrometeorology in big cities. To examine this condition, chaos theory was
applied to time series of measurements of urban meteorology and pollutants of six communes of the
Metropolitan Region of Santiago de Chile, in two periods: 2010–2013 and 2017–2020. Each commune
contributes, per period, six different time series: three for the meteorological variables (temperature,
relative humidity, and magnitude wind speed) and three for the atmospheric pollutant concentrations
(PM10, PM2.5, and CO). This qualitative study corroborates that each of the time series is chaotic
through the calculation of chaotic parameters: Lyapunov exponent, correlation dimension, Hurst
coefficient, correlation entropy, Lempel–Ziv complexity and fractal dimension. The variation in the
chaotic parameters between the two periods can be interpreted in relation to the roughness change
due to urban densification. More specific parameters, constructed from the Kolmogorov entropies
and the fractal dimensions of the time series, show modifications due to the increase in the built
surface in the most current period. This variation also extends to micrometeorology, as is clear from
the Lempel–Ziv complexity and the Hurst coefficient. The qualitative picture constructed using chaos
theory reveals that human interaction with nature affects diversity and sustainability and generates
irreversible processes.

Keywords: atmospheric boundary layers; dissipative systems; entropy; urban roughness

1. Introduction
1.1. Micrometeorology

Micrometeorology is the area of meteorology that deals with observations and pro-
cesses on smaller scales of space and time [1], in the order of 1 km and measurement periods
of one hour or less. These processes are limited to the lower part of the planetary boundary
layer, known as the atmospheric boundary layer (ABL) [2]. Its foundations are determined
by the exchange of energy, mass, and gasses between the atmosphere and the base surface
(water, soil, plants). The surface of the earth is a boundary that greatly influences the
atmosphere, especially in the air properties of the ABL, where the effect of friction and
the thermal effects of heating and cooling of the surface trigger considerable flux, that
transport momentum, heat, humidity, or matter [3]. The ABL has different atmospheric
regimes that respond to its sublayer structure. This structure experiences an evolution
that is parallel to the diurnal cycle. Separating the free atmosphere from the mixed layer
is a strongly stable entrainment zone of intermittent turbulence. At night, turbulence in
the entrainment zone ceases, leaving a nonturbulent layer called capping inversion that
remains strongly stable [3].
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The study of temperature and wind (turbulence) being affected by external factors,
such as buildings [4], flora, population, and relief, is of paramount relevance. International
networks of flow control sites use micrometeorological techniques to understand the
exchange of energy and mass between the biosphere and the atmosphere [2]. On the
one hand, heat transfer through the boundary layer firstly occurs by molecular diffusion
and then by turbulent diffusion [4]. In such environments, the flow structure in the
roughness sublayer dictates the air flow and pollutant dispersion within and above urban
canopies [3,5]. This sublayer consists of the lowest part of the atmospheric surface layer,
from the ground to 2–5 times the average height of the canopy elements. Moreover,
the roughness sublayer is where the turbulent exchange of momentum, heat, and mass
occur [5,6]. On the other hand, turbulence enables the exchange of CO2 between plants
and the atmosphere, whilst also aiding the distribution of pollen. Finally, buildings play a
crucial role within micrometeorology, as they increase turbulence and thermal sensation
in cities [1,4].

From a historical perspective, stationary and mobile studies of micrometeorological
changes were conducted in the nascent city of Columbia, Maryland, in late 1967. Measure-
ments showed the development, intensification, and expansion of an urban heat island. This
phenomenon is essentially attributed to the disruption of heat flow in and out of the ground
caused by the change in surface characteristics. In this sense, approximately half of the
observed change in relative humidity could be allocated to a decrease in evapotranspiration
when replacing vegetation with concrete and asphalt [7,8].

Saaroni [9] devised a method to estimate the formation of a net urban heat island
(UHI) in the canopy layer in regions with complex configuration grounds and with no
preurban observations. As a test, the UHI procedure was applied to an arid city, Beer Sheba,
Israel, for minimum and maximum air temperatures in the summer and winter seasons.
With these characteristics, the UHI’s estimated net contribution in Beer Sheba ranges from
+0.8 ◦C to +3.1 ◦C, with high positive values during night hours, showing a good fit with
previous studies. This implies a further intensification of heat stress during the summer
beyond the historic base level, which is expected to increase in the region [9].

Ref. [10] Shows the influence of land use against the phenomenon of urban heat island
(UHI) in Jakarta, Indonesia, using different types of urban land use within simulations
carried out with WRF (Weather Research and Forecasting Model). Here, it follows that the
variation between percentages of portions of land used with buildings and vegetation is
important in making decisions about the future planning of the city.

Having urban input data that are as up-to-date and robust as possible allows us to
adjust the simulations, and thus, improve results. Works such as [11] compare the results
obtained previously and new estimates with data generated from different sources that
were not previously available.

More recent studies make estimates of thermal conditions and urban winds in digital
models of buildings [12]. This study confirmed that comparison of microclimate thermal
conditions based on measurements and obtained from modeling using SkyHelios are in
sufficient agreement and can be used in urban planning in the future [12].

In Chile, there is an online public network for monitoring meteorological and pollutant
variables [13] that has extensive periods of data records that form time series. The field
recording of data serves as a starting line for this research. To analyze the data, we
followed the line of chaos theory applied to time series. Many authors have approached the
treatment of time series in this way [14–18]. From the extensive data records, measurements
of meteorological variables (magnitude of wind speed, relative humidity, temperature) and
air pollutants (carbon monoxide, PM2.5, and PM10 particulate matter) constituted in time
series for two periods 2010–2013 and 2017–2020 were selected in the first approximation.
The analysis of these series, through a software that explores their chaoticity, allows us
to determine if their nature is chaotic from the ranges of five parameters characteristic of
chaos theory: Lyapunov’s coefficient (λ > 0), Hurst’s coefficient (0.5 < H < 1), correlation
dimension (Dc < 5), correlation entropy (SK > 0), and Lempel–Ziv complexity (LZ > 0).
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Finally, the comparison between the chaotic parameters of the meteorological variables and
of the pollutants allows us to analyze their variation by commune, between study periods,
and due to the built area (in m2) and the increase in tall buildings [19,20].

1.2. Urban Densification

Many cities in Chile have urban growth that is becoming unsustainable, especially
in densely populated metropolitan areas. Informal settlements grow, covering plains and
mountain ranges, to produce very problematic cities whose exponential growth puts public
services under pressures that they are ill-equipped to deal with. This model city, in addition
to promoting the use of fuels, favors the urbanization of areas that provide environmental
services, inducing exclusion dynamics between the city centers and the peripheries. Densi-
fication is a public policy concept that has been promoted by governments, experts, and
international agencies as a solution to the problem of city dispersion. To densify is to use
urban land more intensively. Some actions that characterize the densification plans are the
construction of vertical houses, including the conversion of so-called underutilized areas,
which are a common issue in many cities [21,22].

This study uses public data [19,20] to analyze urban density and the change in rough-
ness of selected places. From a housing approach, the comparative study is important.
According to official data [19,20], the number of residential properties (N◦) between the
years (t) 2009–2020 grew exponentially: N◦ = 3.32 ∗ 10−14 e0.0226[ 1

Years ]t. By 2015, many of the
buildings were 15 floors, and in 2020 the majority were 30 floors. The supply of apartments
(2020) increased by 77.3%. In the Metropolitan Region, there were 50 homes/hectare in
1990; in 2020 there were around 5000 homes/hectare [19,20]. According to census data
from 1970, the proportion of apartments in Chile was only 7% (116,748). Since then, that
alternative has been widely more accepted by Chileans, so that in 2002 that percentage
reached 12.6% (474,199, according to the 2002 census). In 2018, they represented 17.5% of a
total of 1,138,062 homes (552,678 more than in 2002) [19,23,24].

In the following years, this verticalization process continued intensively through
buildings made of concrete. The monitoring stations used in this study (see Figure 1) are
located in areas that have gone through an intense process of high-rise building.
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For the crop canopy, the average in the metropolitan region in 2017 was 6.4 m2/inhabitant,
in 2021 it was 6.2 m2/inhabitant, while the minimum value recommended by WHO (World
Health Organization) is 9 to 11 m2/inhabitant. The forest cover of the communes studied is
as follows (approximate data, [19]): Las Condes (EMM): 37.3%, Puente Alto (EMS): 20.3%,
La Florida (EML): 17.6%, Santiago-Parque O’Higgins (EMN): 11.4%, Quilicura (EMV): 7.7%,
Pudahuel (EMO): 4.3%.

From the public database [19,20], it was possible to obtain the square-meter areas built
for the two periods under study. In standard roads, constructions and coatings, concrete is
extensively used due to its firmness, low cost, good performance in the face of wind loads
and fire resistance. How does this type of material interact with the environment? Albedo
is a dimensional magnitude that gives the percentage (from 0%, black body, to 100%, white
body) of radiation that any surface reflects relative to the radiation that affects it. Typical
albedos of various surfaces are [25], in % (albedo), e (emissivity, 20–25 ◦C): walls—concrete
(10–30%; 0.94), walls—stone (20–40%; 0.85–0.95), fresh–old asphalt (5–20%, 0.95), stone
(20–30%, 0.67), soil—sandy (20–25%, 0.91), urban medium (15%, 0.98), buildings (9%, 0.95).

From the data presented, it appears that massive urban densification using current
construction materials generates heat gradients that alter the initial conditions of the
boundary layer in which it is located [26]. That is, an alteration of the heat flow in and
out of the ground is caused by the change in surface characteristics [8]. In addition to the
change in surface roughness, this heat disruption affects natural wind regimes, making
them more turbulent. These effects, fueled by a continuous construction process, can
contribute to creating an artificial dissipative system that alters local weather conditions
by inducing irreversible processes, just as contaminants do over the atmosphere [17,24].
Some countries have been concerned about this issue by promoting research into old (wood
revaluation) and new materials for construction [27]. These have the potential to replace
petroleum-based plastics, in line with the concept of a zero-waste policy.

2. Theoretical Perspective
2.1. Dissipation and Complex Systems

According to Prigogine [28], nonequilibrium is the creator of so-called dissipative
structures, since they only exist far from equilibrium, requiring a certain dissipation of
energy for their survival, and therefore, the maintenance of an interaction with the outside.
Analogous to that of a city, which exists only in terms of its operation and maintenance of
exchanges with the outside, a dissipative structure disappears when it ceases to be “fed”. It
is precisely this concept introduced by Prigogine which serves as the basis for one of the
working hypotheses: pollutants would behave analogously to a dissipative structure, being
fed by human beings, when emitting particles and other pollutants into the atmosphere.
This is a situation that would not be reversed if it were not for the interaction generated by
the meteorological parameters present in the Earth–atmosphere system [17].

The existence of effects generated by the interaction between urban areas and the
atmosphere makes urbanization a topic of interest. These effects cause various phenomena,
such as temperature increases and changes in turbulence within cities, which have an
impact both directly and indirectly on people’s quality of life. Characteristics such as
the geometry of the city and the change in land use it generates are aspects that cause
changes in the flows of gases from the atmosphere. The time series that make up the set
of measurements of meteorological variables and pollutants, on which this work is based,
were made within the urban boundary layer at a maximum height of 10 m above the
ground (they are under the maximum range of up to 2–5 times the average heights of the
canopy), which is a layer of great turbulence.

Turbulence is a property of flow and has some characteristic properties such as irregu-
larity, three-dimensionality, diffusivity, dissipation, and high Reynolds numbers. Various
investigations seek to improve the turbulence closure formalism through one-dimensional
multilayer urban canopy models: large eddies are analyzed through numerical simulations
in a variety of idealized geometries and flow regimes. The study reveals a good charac-
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terization in the declared boundary conditions [29]. Other investigations have carried out
wind tunnel experiments [30] in four urban morphologies: two tall canopies with uniform
height and two super tall canopies with a great variation in the height of the elements
(where the maximum height of the element is more than double the average height of the
canopy, hmax = 2.5 havg). The results point towards the existence of a constant tension layer
for all the surfaces considered, despite the severity of the surface roughness. What is the
difference with the previous literature? Lagrangian stochastic models are widely applied
to predict and analyze turbulent dispersion in complex environments: land canopy flows
and marine flows. The lack of empirical data does not allow us to understand how the
particular characteristics of highly heterogeneous canopy flows affect Lagrange statistics.
Researchers [31] use this formalism and Lagrange statistics in small time frames (thou-
sandths of a second) to analyze empirical Lagrange trajectories in subvolumes of space that
are small compared to canopy height. In their study, they use 3D Lagrangian trajectories
measured according to a dense canopy flow model in a wind tunnel, using an extended
version of real-time 3D particle tracking velocimetry. A key result obtained was that the
random turbulent fluctuations, due to the intense dissipation, were shown to be more dom-
inant than the inhomogeneity of the flow, affecting the Lagrange statistics in a short time.
This is equivalent to the quasi-homogeneous regime of small-scale Lagrangian statistics.

When fluids are in a turbulent state it is dissipative, since viscosity, at the smaller scales,
dissipates the kinetic energy they receive in a cascade from the larger scales, as indicated
by Kolmogorov’s theory [32]. Namely, an energy cascade results from the fragmentation
of swirling structures that decompose successively into smaller eddies when the fluid
is in a turbulent state. The idea that energy is cascaded from the large scales to the
smaller ones, where it dissipates, was proposed by Richardson [33], and the theoretical
formulation was Kolmogorov’s [32]. The concept of scale was unclear and was interpreted
as the wave number by Onsager [34], Weizsacker [35] and Heisenberg [36]. However,
numerical simulations do not show Kolmogorov’s cascade when using the wave number
as a scale. Through a new definition of scale, based on the low-pass filtering velocity field,
the existence of the cascade was confirmed [37].

Kolmogorov entropy is related, through the cascade of turbulence, to heat as a form
of dissipation. This is what drives the dispersion of pollutants away from a determin-
istic process [38]. On the small scales, near the surface, the finer eddies disperse their
energy as heat due to viscosity. So, the fully developed turbulent medium is charac-
terized by two quantities, the average energy dissipation rate, εD, and the kinematic
viscosity ν. The dimensionality of εD is energy/time/mass, L2T−3, and the dimen-
sionality of ν is L2T−1. By combining these two quantities, the length scale is found

lk =
(
ν3

εD

)1/4
. The Kolmogorov entropy of the time series in this study is SK

[
bits

h

]
. When

transforming its units by means of the Landauer principle [39] it remains SK

[
J

K h

]
, which is

equivalent to Energy/(Temperature time), dimensionally:
[

M
T

][
L2

t3

]
∼
[

M
T

]
∗ Edissipation,

Edissipation = average rate of energy dissipation.
Apart from the indicated dissipation energies, the atmospheric layer near the surface

also experiences influences due urban densification, the change in surface roughness, heat
islands, etc., which produces a connectivity picture of high complexity.

2.2. Entropy and Entropy Flow

In the study of transporting matter and energy between the Earth’s surface and
the atmosphere, mechanisms are used to understand and control vital processes such as
pollutant emission and dispersion, evapotranspiration, cloud formation, wind modification
or heat transfer. Taking the example of heat transfer, the entropy balance equation [40,41] is
derived from Gibbs’s relationship [42], from the assumption of local equilibrium, such that
entropy per unit of volume, s, is written as [9]:
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∂ s
∂t

= −
→
∇·
→
J s + σ (1)

where σ denotes the production of entropy. Or, by using the First Law of Thermodynamics,
the continuity equation, the component balance equation and rewriting the local derivative
of S = V × s, where V is the volume, the emission of entropy per unit volume ratio, s, forms
the following equation [17,42]:

∂s
∂t

= −∇ ∗
(

s
→
v +

1
T

→
J Heat flux −

r

∑
j=1

µj

T

→
J Diffusive mass flow, j

)
+ σ, Unit S.I. W/Km3 (2)

As the entropy in a system is a determinant in the order according to its extension, the
evolution of a reduced atmospheric system should be related to entropy flow [42]. The idea
of a reduced system suggests that, when applying a layer model, contaminants are assumed
to be an external layer (of ∆SE entropy) that embraces the inner layer of the near-ground
atmosphere (of ∆SI entropy) [17].

Linear methods can be the starting point in the study of the behavior of air pollution
and meteorology data in order to carry out the analysis and prediction of temporal series.
However, there are more relevant results using nonlinear tools [43,44]. Sensitive depen-
dence on initial conditions is based on the idea that small variations in a predetermined
system can produce large changes in its future [45]. This is the essence of nonlinearity,
known as the butterfly effect, and even more so, chaos in its evolution [16,46,47].

A 2010–2013 study [17] of chaotic parameters showed that they can be interpreted
according to thermodynamic principles of entropy, negentropy and entropic flow, ∂S/∂t [9].
A similar review of the 2017–2020 data allowed for comparison of the chaotic parameters
of the meteorology-polluting interaction across both periods.

2.3. Kolmogorov’s Entropy and Its Relationship to the Loss of Information

While chaos is well-quantified by the Lyapunov exponent, there is no universal
measure of complexity [14]. Entropy can be used as an indicator of the complexity of a
system (system described by the time series of this study). Connectivity is an important
property of complex systems [14]; it is what stimulates the study of the Kolmogorov entropy
of meteorological variables and pollutants in urbanization processes. Using the entropies,
the magnitude of this connectivity is approximately quantified.

According to Farmer [48], one of the essential differences between chaotic and pre-
dictable behavior has to do with the fact that chaotic trajectories continuously generate new
information while predictable trajectories do not [48,49]. In addition to providing a good
definition of chaos, metric entropy provides a quantitative way to describe how chaotic a dy-
namic system is. In Kolmogorov’s entropy [50], SK is the average loss of information [51,52]
when “l” (cell side in units of information) and τ (time) become infinitesimal:

SK=-− lim
τ→0

lim
l→0

lim
n→∞

l
n τ ∑0....n Po....nlogP0....n (3)

It is expressed in bits of information per time and bits per iteration for a discrete
system [53–55]. The order of priority in the calculation of the limits is as shown in
Equation (3). First n→∞, then l→ 0, to remove the dependency on the chosen partition. In
the preceding equation, n is the number of cells or partitions. Finally, τ→ 0, which is only
necessary in continuous systems. Kolmogorov’s entropy difference, ∆SK = SKn+1 − SKn
between cells, represents the additional information needed to know which cell (i n + 1)
the system will be in the future. Therefore, this difference measures the loss of system
information over time. To sum up, to calculate Kolmogorov’s entropy, it is first verified that
entropy is between zero and infinite (0 < SK < ∞), which allows us to verify the presence of
chaotic behavior. Second, the amount of information required to predict the future behavior
of two interactive systems, in this case, the atmosphere and pollutants, is determined. Then,
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the rate at which the system loses (or outdates) information over time is calculated. Finally,
the maximum predictability horizon of the system is established, the border from which no
prediction can be made, nor the elaboration of new scenarios [55]. Information loss can be
calculated according to:

< ∆I > = < INEW − IOLD > =
−λ(i0(t))

log 2
. (4)

λ is the Lyapunov exponent, <∆I> in [bits/h], is the loss of information. Two types
of <∆I> were calculated: one for the sum of the contribution of each P (pollutants: PM10,
PM2.5 and CO) and another for the sum of the contribution of each MV (meteorological
variables: T, WV, RH).

3. Materials and Methods
3.1. Area of Study

The city of Santiago is located at 33.5◦ S and 70.8◦ W. It contains a population of
7,508,334 inhabitants, which represents 40% of the total population of the country, on a
surface of approximately 641 km2. It is located in the middle of the country, at a height
of about 520 m.a.s.l. The altitude above sea level increases from west to east. It is sur-
rounded by two mountain chains: The Andes and the Coastal Mountain range. Its climate
is Mediterranean. The driest and warmest months are from December to February, reaching
maximum temperatures of about 35 ◦C in the shade (air temperature in the sun). Given its
topography and the dominant meteorological conditions, there is in general a strong hori-
zontal and vertical dispersion of pollutants generated by an important number of sources
in the city (heating, vehicles, industries, etc.), especially during fall (20 March–21 June) and
winter (21 June–23 September) [56]. The emissions have a tendency to increase given the
also increasing population density, which implies an increase in fixed and mobile sources.
In addition, the number of vehicles has increased rapidly in recent years.

3.2. The Data

The measures, made in the same way as in the 2010–2013 period [17], were collected
from the MACAM III Network from the National Air Quality Information System [13],
under Chile’s Ministry of the Environment. They correspond to 3.25 years or 39 months
of measurements of PM10, PM2.5, CO, temperature (T), relative humidity (RH) and wind
speed magnitude (WV), totaling 28,463 datapoints for each variable, giving a total of
1,024,668 measurements for all communes from 2017–2020. The temporal resolution of
the time series is one hour. Table 1 indicates the location, characteristics of the equipment
used and the acronym of the owning institution (SINCA, in English: National Air Quality
Information System).

Table 1. The continuous recording of the variables of this study is carried out at 2 [m] above the
ground in all sensors, with the exception of the one measuring the magnitude of wind speed, which
is at 10 [m].

Station Name Location PM10 PM2.5 CO T RH WV OWNER

1.La Florida,
EML,

m.a.s.l.:784 [m]

33◦30′59.7′ ′ S
70◦35′17.4′ ′ W

Attenuation
Beta-Met
One 1020

Attenuation
Beta-Met
One 1020

Gas Correlation
Filter IR

Photometry-
Thermo 48i

VAISALA
HMP35A

VAISALA
HMP35A

Sensor-Met
One 010C SINCA

2.Las Condes,
EMM,

m.a.s.l.:709 [m]

33◦22′35.8′ ′ S
70◦31′23.6′ ′ W

Attenuation
Beta-Met
One 1020

Attenuation
Beta-Met
One 1020

Gas Correlation
Filter IR

Photometry-
Thermo 48i

VAISALA
HMP35A

VAISALA
HMP35A

Sensor-Met
One 010C SINCA

3.Santiago-
Parque O’Higgins,

EMN,
m.a.s.l.: 570 [m]

33◦27′50.5′ ′ S
70◦39′38.5′ ′ W

Attenuation
Beta-Met
One 1020

Attenuation
Beta-Met
One 1020

Gas Correlation
Filter IR

Photometry-
Thermo 48i

VAISALA
HMP35A

VAISALA
HMP35A

Sensor-Met
One 010C SINCA
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Table 1. Cont.

Station Name Location PM10 PM2.5 CO T RH WV OWNER

4.Pudahuel,
EMO,

m.a.s.l.:469 [m]

33◦27′06.2′ ′ S
70◦40′07.8′ ′ W

Attenuation
Beta-Met
One 1020

Attenuation
Beta-Met
One 1020

Gas Correlation
Filter IR

Photometry-
Thermo 48i

VAISALA
HMP35A

VAISALA
HMP35A

Sensor-Met
One 010C SINCA

5.Puente Alto,
EMS,

m.a.s.l.:698 [m]

33◦33′01.3′ ′ S
70◦34′51.4′ ′ W

Attenuation
Beta-Met
One 1020

Attenuation
Beta-Met
One 1020

Gas Correlation
Filter IR

Photometry-
Thermo 48i

VAISALA
HMP35A

VAISALA
HMP35A

Sensor-Met
One 010C SINCA

6.Quilicura,
EMV,

m.a.s.l.:485 [m]

33◦21′51.6′ ′ S
70◦44′53.9′ ′ W

Oscillating
Element

Microbalance
TEOM-Thermo

1400AB

Attenuation
Beta-Met
One 1020

Gas Correlation
Filter IR

Photometry-
Thermo 48i

VAISALA
HMP35A

VAISALA
HMP35A

Sensor-Met
One 010C SINCA

The six monitoring stations used in this study were Florida (EML), Las Condes (EMM),
Santiago-Parque O’Higgins (EMN), Pudahuel (EMO), Puente Alto, (EMS) and Quilicura
(EMV), as shown in Figure 1 for their geographical distribution.

It is common that in the ordered pairs that form the sequence of data of the time
series, areas of missing measurements can appear. This might be due to different factors,
for example, the monitoring instrument stopped measuring due to a momentary power
supply interruption [13,39,57]. These missing data were filled in through a Kriging tech-
nique [58,59]. This is a temporal and spatial geostatistical method that offers a probabilistic
framework for the data analysis and its predictions based on the temporal and spatial
dependency of the observations [60]. The analysis focuses on the spatial interpolation in
specific time slots. The information is compared with predictive models for the different
times. In addition, it is modelled according to a series of multiple times in which each
spatial location is associated with a different time series [61,62]. The theory focused on
the geostatistical prediction also shows the time dimension [63–65]. Hence, this technique
allows for interpolation of the missing variable to be measured (polluting concentration)
in a data station (defined spatial coordinates), according to similar information that is
present in monitoring stations spatially close or neighboring during an analogue time
interval. It is worth noticing that there is clearly no transgression of any basic statistical
principles. In order to confirm this result, PM10 time series were chosen for all communes
of the 2010–2013 period with missing data problems. For each time series, 17,149 data were
randomly eliminated. Using the Kriging technique, they were completed. The following
statistics were obtained, see Table 2:

Table 2. Statistical parameters of the PM10 time series for the periods 2010–2013 and 2017–2020
of the six communes. Measurements are shown in µg/m3. Original series and in parentheses
(modified series).

Statistical
Parameters Periods EMS EML EMN EMO EMV EMM

Average 2010–2013
2017–2020

62 (62)
65 (65)

70 (70)
65 (65)

69 (69)
69 (69)

64 (65)
54 (54)

79 (78)
66 (66)

52 (52)
63 (63)

Min 2010–2013
2017–2020

1 (1)
0 (0)

1 (1)
0 (0)

1 (1)
0 (0)

1(1)
0 (0)

0 (0)
0 (0)

1 (1)
0 (0)

Max 2010–2013
2017–2020

763 (763)
566 (566)

686 (686)
609 (609)

533 (533)
536 (536)

592 (592)
807 (807)

659 (659)
511 (511)

770 (770)
460 (460)

Deviation 2010–2013
2017–2020

42 (42)
40 (40)

51 (50)
48 (47)

47 (47)
46 (45)

52 (52)
33 (33)

57 (56)
44 (43)

33 (33)
36 (36)

Median 2010–2013
2017–2020

53 (53)
56 (56)

59 (59)
53 (53)

60 (59)
59 (59)

51 (52)
47 (47)

67 (66)
55 (55)

46 (46)
57 (57)

Mode 2010–2013
2017–2020

44 (42)
48 (48)

55 (43)
42 (42)

49 (37)
46 (46)

40 (44)
34 (34)

54 (49)
50 (50)

33 (33)
48 (48)
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To validate the filling of missing data, using the Kriging technique, 17,149 data were
randomly extracted from the original series of PM10 (2010–2013). With Kriging, the ex-
tracted data were filled in. In contrast, using a cross-data validation technique, Akaike, the
results are shown in Figure 2a, r2 = 0.80. Figure 2b shows the totality of the data of the
series (which includes missing data that have been filled in by Kriging) versus the total
series of the data constructed with the formalities of the Kriging technique (a matrix of
data). Since r2 = 0.98, the Kriging interpolation method recreates the data matrix (Table 3).
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Figure 2. (a). Akaike Cross Validation; (b). Kriging Cross Validation.

Table 3. Amount of data points lost for the total measurements of each variable (28,463) and its
percentage (in parentheses in the table) by commune and periods. WV: wind velocity, T: temper-
ature, RH: relative humidity, PM2.5: fine particulate matter, PM10: coarse particulate matter, CO:
Carbon monoxide.

Stations

Variable Periods EML (1) EMM (2) EMN (3) EMO (4) EMS (5) EMV (6)

WV
2010–2013 363 (1.3%) 304 (1.1%) 3065 (10.8%) 441 (1.5%) 2464 (8.7%) 4799 (16.9%)
2017–2020 1689 (5.8%) 2001 (7%) 503 (1.8%) 1392 (4.9%) 2569 (9%) 463 (1.6%)

T
2010–2013 586 (2.1%) 7123 (25%) 648 (2.3%) 902 (3.2%) 736 (2.6%) 1950 (6.9%)
2017–2020 6879 (24.2%) 2076 (7.3%) 478 (1.7%) 1561(5.5%) 131(0.5%) 2463 (8.7%)

RH
2010–2013 544 (1.9%) 4245 (14.9%) 597 (2.1%) 3634 (12.8%) 742 (2.6%) 718 (2.5%)
2017–2020 1736 (6.1%) 2061 (7.2%) 736 (2.6%) 351 (1.2%) 7588 (26.7%) 843 (3%)

CO
2010–2013 369 (1.3%) 118 (0.4%) 525 (1.8%) 842 (3%) 205 (0.7%) 525 (1.8%)
2017–2020 1526 (5.4%) 2249 (7.9%) 2143 (7.5%) 1706 (6%) 0 (0%) 1203 (4.2%)

PM10
2010–2013 340 (1.2%) 288 (1%) 571 (2%) 456 (1.6%) 257 (0.9%) 398 (1.4%)
2017–2020 16 (0.1%) 1439 (5.1%) 664 (2.3%) 505 (1.8%) 600 (2.1%) 598 (2.1%)

PM2.5
2010–2013 2554 (9%) 304 (1.1%) 568 (2%) 558 (2%) 302 (1.1%) 440 (1.5%)
2017–2020 1711(6%) 61 (0.2%) 1040 (3.7%) 1021 (3.6%) 978 (3.4%) 1641 (5.8%)

The same procedure described above was applied to the 2017–2020 period. This is
represented in Figure 3a,b.
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WV 
2010–2013 363 (1.3%) 304 (1.1%) 3065 (10.8%) 441 (1.5%) 2464 (8.7%) 4799 (16.9%) 

2017–2020 1689 (5.8%) 2001 (7%) 503 (1.8%) 1392 (4.9%) 2569 (9%) 463 (1.6%) 

T 
2010–2013 586 (2.1%) 7123 (25%) 648 (2.3%) 902 (3.2%) 736 (2.6%) 1950 (6.9%) 

2017–2020 6879 (24.2%) 2076 (7.3%) 478 (1.7%) 1561(5.5%) 131(0.5%) 2463 (8.7%) 

Figure 3. (a). Akaike Cross Validation, r2 = 0.80; (b). Kriging Cross Validation, r2 = 0.99.
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A total of 4.785% of the data was completed with the technique described above for
the two measurement periods.

3.3. Tools for Analysis in Nonlinear Time Series

The study of a nonlinear time series [16,39,40] starts with the establishment of two im-
portant parameters: time delay, τ, and the embedding dimension, m (or dc). This is carried
out applying the Takens method [66]. For that purpose, the average mutual information
is used [67] in the first case and the false nearest neighbors method in the second [16,68].
Other relevant information in the nonlinear analysis is the Lyapunov exponent, λ [69], the
correlation dimension, DC [14], the Hurst’s Coefficient, H [14,70], the Kolmogorov entropy,
SK and the correlation entropy, K2. Considering that d0 = ‖xi − xj‖ is the initial distance
between two arbitrary samples of the series xi and xj, and if we assume that the distance
dn = ‖xi+n − xj+n‖ between two samples at position n increases exponentially with n, the
Lyapunov exponent is defined as λ from the following Equation (5):

λ =
1
n

ln
dn

d0
(5)

where n is the iteration number (number of points in the time series). This means that if
two points in an orbit are initially close, the exponent is calculated for a big n. If, after n
iterations, the points are separated, there will be an indication of a possible chaos in such a
system. A positive value of the maximum Lyapunov exponent is indicative of chaos [36,37].
For a specific time series, the sum of all the positive Lyapunov exponents defines their SK
entropy and the reciprocal average time of predictability, TP = 1/SK [16]. Effectively, the
Lyapunov exponent is obtained given the equation in the boundary of big N, so that the
saturation begins to be evident. For this same reason, and given the stability conditions
for its measurement, there must ideally be at least 5000 datapoints available [71]. The
correlation entropy, K2 [14,72], is defined as:

K2 = lim
m→∞

lim
r→0

lim
n→∞

log
C(m, r)

C(m + 1, r)
(6)

where n is the number of points or data, m is the embedding dimension, and r is the
radius of the circle or sphere. K2 is zero, positive, or infinite for regular, chaotic, or random
data, respectively. Thus, this entropy, just like Kolmogorov’s, serves to establish whether a
temporal series of experimental data is regular, chaotic, or random, for both pollutants and
meteorological variables.

In Equation (6), C(m, r) is the sum of the correlation of the trajectory reconstructed
in a time series. A method to estimate K2 in experimental data is based on Grassberger
and Procacia [70]. In this case, only Kolmogorov’s entropy has been calculated, SK, for the
pollutant series and the meteorological variables, which can be seen in Table 4.

C(m, r) is the sum of the correlation for a dimension of embedding m given and is
used to estimate the correlation dimension [14]. This is defined as:

C(r) =
2

n(n− 1)

n

∑
j=1

n

∑
i=j+1

H
(
r− rij

)
= lim

n→∞

2
n(n− 1)

n

∑
i 6=j

H
(
r− ‖xi − xj‖

)
→ C(m, r) (7)

where rij =

√
∑m−1

k=0

(
xi−k − xj−k

)2
(the sum depends on m (embedding)), C(r) is the

function of the correlation, and it can be interpreted as the number of points inside all
the circles of radius r normalized to 1, when r is big enough that it includes all the points
without double-counting; n is the number of data, H is the Heaviside function or (step
function), ||...|| shows the norm or distance between two vectors, where Euclidean is the
most used one, since it offers stronger results even during noise, and r is a real number that
must be chosen carefully, since small r values make C(r) senseless, and for bigger r values
C(r) does not provide valuable information.
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Table 4. Parameters for chaos study of three pollution variables and three meteorological variables in
six monitoring stations (Santiago, Chile, 2017–2020 Period).

Parameters
Station PM10 (µg/m3) PM2.5 (µg/m3) CO (ppm) Temperature (◦C) HR (%) WV(m/s)

EML
λ 0.550 0.235 0.026 0.205 0.064 0.935

Dc 3.451 1.364 0.580 2.290 2.029 3.697
H 0.922 0.963 0.933 0.915 0.942 0.975

SK (1/h) 0.295 0.596 0.686 0.355 0.414 0.515
LZ 0.234 0.228 0.018 0.038 0.087 0.551

EMM
λ 0.383 0.614 0.013 0.184 0.067 0.937

Dc 2.530 1.215 1.254 2.102 2.203 3.729
H 0.906 0.983 0.933 0.917 0.941 0.976

SK (1/h) 0.514 0.400 0.492 0.377 0.309 0.519
LZ 0.196 0.255 0.011 0.037 0.089 0.557

EMN
λ 0.621 0.292 0.033 0.223 0.092 0.917

Dc 2.948 1.276 2.277 2.280 2.095 3.735
H 0.929 0.960 0.933 0.916 0.942 0.973

SK (1/h) 0.242 0.825 0.412 0.366 0.308 0.471
LZ 0.265 0.233 0.021 0.042 0.099 0.539

EMO
λ 0.550 0.332 0.046 0.189 0.081 0.928

Dc 2.659 1.284 2.334 1.611 2.010 2.755
H 0.936 0.925 0.933 0.919 0.942 0.974

SK (1/h) 0.819 0.424 0.387 0.184 0.330 0.479
LZ 0.220 0.265 0.022 0.040 0.106 0.537

EMS
λ 0.597 0.279 0.030 0.228 0.063 0.933

Dc 3.535 1.396 3.302 2.300 2.306 3.004
H 0.921 0.975 0.933 0.915 0.942 0.976

SK (1/h) 0.898 0.422 0.382 0.357 0.404 0.489
LZ 0.204 0.264 0.018 0.037 0.071 0.556

EMV
λ 0.516 0.304 0.031 0.170 0.065 0.915

Dc 1.148 1.419 2.149 1.577 1.947 2.355
H 0.931 0.966 0.933 0.919 0.942 0.975

SK (1/h) 0.267 0.463 0.490 0.171 0.428 0.395
LZ 0.231 0.296 0.019 0.029 0.085 0.544

Equation (7) can also be written as follows:

C(r) = lim
n→0

1
n2

[
number of pairs

(
xi, xj

)
such that

∣∣xi − xj
∣∣ < r

]
(8)

C(r) is calculated by varying r from 0 towards the highest possible number of ‖xi−xj‖.
For values of r which are sufficiently small and for a big quantity of data, C(r) behaves
following the power law of the kind:

C(r) ∼ rDC (9)

DC is the correlation dimension (or correlation function). Given Equation (9), and
taking logarithms on each side, DC is obtained through a log C(r) vs. log r graph. If DC is
not saturated in any value while m increases, then the process is random (or stochastic).
On the contrary, if DC is saturated in some value, then the time series is determinist [73].
The correlation dimension, DC > 5 essentially implies random data.
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Lyapunov’s exponent, λ, characterizes the nature of the temporal evolution of close
trajectories in phase space and is considered a key component of chaotic behavior. Thus,
it can be stated [72] that the correlation entropy, K2, is a lower bound of Kolmogorov’s
entropy, SK. That is,

K2 ∼ SK (10)

These relationships are part of the numerical calculation procedure through a software
that is applied to each time series (both pollutants and meteorological variables), each of
28,463 data, once they do not present missing data. The nonlinear analysis of the temporal
series according to chaos theory [14,17,73] also included the Iterated Function Systems
fragmentation test (IFS) as a method of data analysis. The use of symbolic dynamics [74]
allows us to calculate the Lempel–Ziv complexity (LZ) relative to white noise. When the
data are chaotic, these LZ are distributed, forming localized groups on the surface. The
chaotic series conditions are met for the two studied periods, since 0 < LZ < 1, for the data,
as shown in the calculation for all the communes.

Table 4 shows that all the time series of the study variables are chaotic.

4. Results

One of the objectives of the study was to examine the behavior (determinist, chaotic or
random) of the three time series of pollutants (PM10, PM2.5 and CO) and three time series
of meteorological values (magnitude of wind speed, relative humidity, and temperature).
The most important indexes (or metrical quantities) in the analysis of nonlinear time series
are: lagging time, τ; embedding dimension, m; maximum positive Lyapunov exponent,
λ; correlation dimension, DC; Kolmogorov’s entropy SK; and Hurst exponent, H, which
allow to quantitatively demonstrate if a system represented, in this case through time series,
is chaotic. Thus, if the correlation dimension is under 5.0, then the Lyapunov exponent
is positive, Kolmogorov’s entropy has a finite and positive value, and chaos would be
present in the time series of the study. Kolmogorov’s entropy SK is a feature of the degree
of chaos for a nonlinear system. This value is proportional to the rate of loss of information
in the system.

Table 4 provides the first important result: the verification of the chaoticity of all time
series for the two study periods. For the six time series of hourly measurements, DC was
saturated at the values presented in Table 4. The correlation dimension obtained for each
series is DC < 5.

On the other hand, a different approach to the problem of relating the measurement
locations with the changes in soil properties is shown through graphic representations,
specifically densification and changes in roughness by high-rise building. Finally, it is
possible to observe the effect of these changes in the meteorological variables [75] of
temperature, magnitude of wind speed, and relative humidity in the measured locations.

Figure 4 shows the quotient between the sum of the Kolmogorov entropies of the
meteorological variables and that of the pollutants, for the two periods 2010–2013 [17]
(Series 1) and 2017–2020 (Series 2), in the same communes of the metropolitan region. The
CK calculation, using the SK data from Table 4 by commune, is carried out with the formula:

CKCOMMUNE =
∑ Entropies of meteorological variablesCOMMUNE

∑ Entropies of pollutantsCOMMUNE
(11)

As indicated in Table 4 and Figure 4, the entropy of the considered pollutants increased
compared to that of the meteorological variables (T, WV, RH), for the 2017–2020 period.
Because of that, the pollutant system has become more complex [14]. There was a decline
in the CK index according to the communes where the monitoring stations are located, an
antecedent that would appear insubstantial if it were not for Figure 5, below. This figure
establishes a relationship between the CK index and the constructed area, preferably of
height (explained in the Urban Densification Introduction section referring to the communes
of the study):
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Figure 5. CK versus m2 residential data built in the communes of the study [MVU, INE,2020]. Series 1:
2010–2013, Series 2: 2017–2020 (period of urban densification).

The decays in CK are similar to those in Figure 4. This is a sign that the constructed
index (using Kolmogorov entropy) can provide information about the effect of massive and
high-rise construction on pollutants and meteorological variables.

The percentage variation of CK (22%) is high in the EMS pre-Andean commune, since it
contains the largest population of all the communes of Chile and experiences a very strong
urbanization process. Of the 86.74 km2 of the commune, 31.38 km2 (36.18%) correspond
to the territory occupied by the current urban sites. The EMO commune (38%) is highly
complex because apart from experiencing a strong housing construction process, it is a
traffic area for three main roads. This commune contains the largest airport in Chile (great
movement of people and products), with a large industrial park. EMN (7%) is close to
a large metropolitan park (Cerro San Cristobal, 880 masl) and a river circulates on one
part of the periphery of EMN (Rio Mapocho, flow 6.3 m3/s). EMM (7%) is located in a
transition zone between the capital’s valley and the foothills of the Andes and contains the
Aguas de Ramón Park. EML (6%) is divided into four zones, and the largest zone includes
the San Ramon geological fault (31,273 km2). Much of the fault area is mountainous and
uninhabited, with great risk of alluvium. EMV (3%) is a peripheral commune, far from the
center of Santiago. The topography of the land is mostly flat and at times undulating by
certain low hills that go unnoticed. Being surrounded by several hills, such as Cerro Renca,
it gives a feeling of being in an independent basin. The basalt-type terrain favors a good
dispersion of gases and pollutants.

Additionally, using the Hurst coefficient and calculating the fractal dimension, the
greater chaoticity of the period 2017–2020 compared to 2010–2013 is demonstrated. Calcu-
lating the quotient between the averaged fractal dimension of meteorological variables and
the averaged fractal dimension of pollutants, by commune and period, shows an increase
in chaoticity, Figure 6 shows that the most square meters were built in the period 2017–2020
(see Appendix A for Table and CD definition):
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Figure 6. It indicates that series 1 of the period 2010–2013 corresponds to a less chaotic regime than
time series 2 of the period 2017–2020, confirming the CK result.

In other words, the fractal dimension associated with meteorological variables and
pollutants is greater in the period 2017–2020. This attribute is related to the degree of
roughness that the time series presents and allows for mathematically describing objects
that present a high degree of complexity, self-similarity or chaos. The data that make up
the time series are measured at ground level by instruments located at the same points at
different periods (2010–2013, 2017–2020, 7 years). Other factors exist that may contribute
to series roughness. Chile has updated standards of pollutant concentration levels (PM10,
PM2.5, CO, etc.) that allow it to face pre-emergency and emergency situations. Restrictions
on vehicular circulation and the use of chimneys (for example), have been used for more
than 15 years, mainly in winter (which suggests some control over the concentration
levels of pollutant). Additionally, the central zone of Chile is experiencing a drought
that has lasted for more than 20 years (and has been getting worse), affecting localized
micrometeorology. However, there is enough literature, already mentioned, that explains
the effect of intensive urbanization on micrometeorology even in the presence of broader
climate change effects. All this has an impact on the roughness of the series. However, it
does not fully explain the variation in CK or CD. The roughness of the series is also affected
by the change in the roughness of the soils due to urbanization processes that leads to
urban densification (from cases of densification in contexts that favor certain mitigation
to other contexts of little or no influence (cruder)). Urbanization is in closer contact with
localized micrometeorology (later, Figures 7 and 8). This shows that what CK indicates is
confirmed by CD.
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station: (a) EML (*) y EMM (+), (b) EMN (*) y EMO (+), (c) EMS (*) y EMV (+).

Table 5 reports on the loss of information (bits/h), which was faster in the 2017–2020
period, and was bulkier and rougher, corroborating Figures 4 and 5. This is characteristic
of chaotic systems [76].

Table 5. <∆I> [bits/hr] = loss information as the sum of the contribution of each P (pollutants: PM10,
PM2.5, CO) and sum of contribution of each MV (meteorological variables: T, WV, RH).

Stations EML EMM EMN EMO EMS EMV

Periods <∆I>P; <∆I>MV <∆I>P; <∆I>MV <∆I>P; <∆I>MV <∆I>P; <∆I>MV <∆I>P; <∆I>MV <∆I>P; <∆I>MV
2010–2013 −5.341; −6.079 −5.039; −6.859 −4.537; −6.357 −3.271; −6.633 −4.656; −6.955 −3.825; −6.899
2017–2020 −2.694; −4.000 −3.355; −3.957 −3.142; −4.092 −3.083; −3.980 −3.010; −4.066 −2.827; −3.820

According to the data, the 2017–2020 period had greater urban densification, yet the
loss of information was faster than in the 2010–2013 period [17].

When observing the behavior, according to the LZ and H in Figures 7 and 8, we can
see what the graphs indicate for the meteorological variables and pollutants considered for
the two periods and locations of this study:

(i) A delay in temperature and relative humidity for the 2017–2020 period compared to
the 2010–2013 period. Chile is experiencing a prolonged drought period, and that possibly
has high significance in an area built in a geographical basin.

(ii) A greater presence of wind in the period 2017–2020 in the layers adjacent to the
ground. This effect is compatible with a change in the roughness of the surface for the
2017–2020 period compared to the 2010–2013 period. This is illustrated in Table 6.

Table 6. Comparative table of the amount of wind speed according to persistence, H, and LZ
complexity, where > means increase, and = means the same value.

Stations EML EMM EMV EMN EMS EMO

Periods H; LZ H; LZ H; LZ H; LZ H; LZ H; LZ
2010–2013 0.976; 0.320 0.980; 0.558 0.956; 0.325 0.968; 0.286 0.957; 0.293 0.968; 0.538
2017–2020 0.975 (=); 0.551 (>) 0.976 (=); 0.557 (=) 0.975 (>); 0.544 (>) 0.973 (>);0.539 (>) 0.976 (>); 0.556 (>) 0.974 (>); 0.537 (=)

In four of the six communes, there is an increase in LZ and persistence (H) for the
wind, which indicates an increase in its turbulence (Table 6).

(iii) There is also an advance of PM2.5, fine particulate, which has more serious conse-
quences for people’s health, unlike PM10.

(iv) The chaotic treatment of time series delivers the following parameters: λ; Dc;
H; SK; and LZ, which are unique for each time series of the study period. Considering
that each monitoring station that records the data, see Figure 9, is in the nearest neighbor
condition, some similarity in values of complexity and persistence is to be expected. For
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the 2017–2020 period, they point to the same conclusion, a decline in these parameters
for relative humidity compared to 2010–2013, which is also compatible with a significant
decrease in winter rains.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 23 
 

(ii) A greater presence of wind in the period 2017–2020 in the layers adjacent to the 

ground. This effect is compatible with a change in the roughness of the surface for the 

2017–2020 period compared to the 2010–2013 period. This is illustrated in Table 6. 

Table 6. Comparative table of the amount of wind speed according to persistence, H, and LZ com-

plexity, where > means increase, and = means the same value. 

Stations EML EMM EMV EMN EMS EMO 

Periods H; LZ H; LZ H; LZ H; LZ H; LZ H; LZ 

2010–2013 0.976; 0.320 0.980; 0.558 0.956; 0.325 0.968; 0.286 0.957; 0.293 0.968; 0.538 

2017–2020 0.975 (=); 0.551 (>) 0.976 (=); 0.557 (=) 0.975 (>); 0.544 (>) 0.973 (>);0.539 (>) 0.976 (>); 0.556 (>) 0.974 (>); 0.537 (=)  

In four of the six communes, there is an increase in LZ and persistence (H) for the 

wind, which indicates an increase in its turbulence (Table 6). 

(iii) There is also an advance of PM2.5, fine particulate, which has more serious conse-

quences for people’s health, unlike PM10.  

(iv) The chaotic treatment of time series delivers the following parameters: λ; Dc; H; 

SK; and LZ, which are unique for each time series of the study period. Considering that 

each monitoring station that records the data, see Figure 9, is in the nearest neighbor con-

dition, some similarity in values of complexity and persistence is to be expected. For the 

2017–2020 period, they point to the same conclusion, a decline in these parameters for 

relative humidity compared to 2010–2013, which is also compatible with a significant de-

crease in winter rains.  

 

 

(a) (b) 

Figure 9. Series 1 represents the 2010–2013 period and series 2 represents the 2017–2020 period for 

LZ and H in (a,b) for relative humidity. 

(v) The periods of the year in which the temperature oscillates between more extreme 

values have increased. The central region of Chile was of Mediterranean climate of 

marked seasons: autumn, winter, spring, and summer [77]. At present, those nuances 

have been lost, and we find two seasons: cold and dry winter and very warm in summer; 

this marked loss of seasons influences measurements. The time series for the 2010–2013 

period tell the story of a stage of the rainiest urban climate, marked by quite extreme 

events (landslides due to rains, floods, etc.) that have not been seen for many years. Figure 

9 presents LZ and H of temperature in the measurement periods.  

Referencing Figure 10, the monitoring equipment measured the hourly temperature 

for the period 2010–2013 (Series 1), capturing a temperature dominated by an urbanized 

environment, but which was comparatively lower than the period 2017–2020 (Series 2), in 

which the average temperature, by station, is larger but more volatile. The average tem-

perature by periods, 𝑇̅2010−2013 = 15.64 °C and 𝑇̅2017−2020 = 16.20 °C, shows an increase 

of 0.56 °C. 

Figure 9. Series 1 represents the 2010–2013 period and series 2 represents the 2017–2020 period for
LZ and H in (a,b) for relative humidity.

(v) The periods of the year in which the temperature oscillates between more extreme
values have increased. The central region of Chile was of Mediterranean climate of marked
seasons: autumn, winter, spring, and summer [77]. At present, those nuances have been
lost, and we find two seasons: cold and dry winter and very warm in summer; this marked
loss of seasons influences measurements. The time series for the 2010–2013 period tell the
story of a stage of the rainiest urban climate, marked by quite extreme events (landslides
due to rains, floods, etc.) that have not been seen for many years. Figure 9 presents LZ and
H of temperature in the measurement periods.

Referencing Figure 10, the monitoring equipment measured the hourly temperature
for the period 2010–2013 (Series 1), capturing a temperature dominated by an urbanized
environment, but which was comparatively lower than the period 2017–2020 (Series 2),
in which the average temperature, by station, is larger but more volatile. The average
temperature by periods, T2010–2013 = 15.64 ◦C and T2017–2020 = 16.20 ◦C, shows an increase
of 0.56 ◦C.
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5. Discussion

The total area of this study corresponds, approximately, to 535.4 km2 (assuming,
roughly, a square would have sides of 23.14 km) distributed in six nonperipheral communes
of the metropolitan region of Santiago de Chile. The water shortage has been investigated
in Chile [78–80] as it has worsened. The drought affects central and northern zones of the
country. A geographic basin exists in the central zone, where Santiago sits, and this has
caused historical ventilation problems [56].
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There are two meteorological phenomena that hinder an adequate dispersion of the
pollutants in this city. These are thermal inversion of subsidence and a radiative one [56]. It
has been possible to establish that the region of Santiago has two types of synoptic conditions
directly linked with the episodes of high atmospheric pollution, which are called the A type
(Anticyclonic, A in Spanish) and the BPF type (low prefrontal, BPF in Spanish) [56].

Quantitative studies of urbanization processes and their relationship with urban den-
sification, change in roughness, as well as with pollutant and meteorological measurement
techniques, have been published [9,11,12,75,79,81]. This work differs in that it uses the
formalism of chaos theory [21,35], that allows for establishing a relationship between ur-
banization processes and the temporal evolution of the concentration of pollutants and
meteorological variables [17].

This qualitative study uses the Lyapunov’s exponent, which is a chaotic parameter,
to quantify the loss of information. This loss was faster in the 2017–2020 period (Table 5),
with greater urban densification compared to 2010–2013. This would indicate a natural
connection to a more chaotic system, relative to intensive changes in urban density and
roughness (Period 2017–2020). The Kolmogorov entropy [21] of the measured variables of
meteorology and pollutants gives the entropic fluxes. There is also the effect of Kolmogorov
cascade, which contributes to the process of heat dissipation in the atmospheric layers
next to the ground, intensifying the energy transfer in turbulence on a large scale [25].
The indexes constructed, in a first approximation, CK and CD together with <∆I>, and LZ
and H show variations directly related to the increase in urban densification and surface
roughness (square meters of high-rise buildings) (Figures 5–8).

Chaos theory shows that meteorological data are also disturbed in their comparison
between periods (2010–2013 and 2017–2020) by the effect of the entropy flow of pollutants,
urban densification, and also by the effect of the Kolmogorov cascade. The wind time series
for the period 2017–2020 shows that through the Lempel–Ziv algorithm it is possible to find
new data subsequences inside it, which increases the complexity counter. The development
of urban canyons generated by high-rise buildings offers the wind a more intricate mobility
scenario. This produces a more chaotic, more complex series when compared with the
period 2010–2013 (Table 6). It happens the other way around with relative humidity (RH)
and temperature (T) (Figures 9 and 10). This loss of complexity in the RH and T variables
can be related, for the period 2017–2020, with less new information in the data chains of
their time series, and fewer variations in RH and T between autumn, winter, spring and
summer, as shown in Figures 9 and 10. As indicated, the central zone of Chile currently
offers a dry and cold winter and a very hot summer. These current climate dynamics, which
in the last 30 years have led to a more limited seasonality, are to be considered along with
process of increasing urbanization.

The wind plays a significant role in the transport and dispersion of pollutants, in
addition to being influenced by local conditions of relief and roughness [12,56]. When its
speed increases, the greater is the volume of air that moves per unit of time through the
area where a source of pollutant emission is located. This turbulent surface layer is where
pollutants are transported and dispersed. Table A1 compares the LZ and H values for the
wind of both periods and presents the increase in complexity in 2017–2020.

Temperature participates in the daily dynamics of warming–cooling of the Earth’s
surface, with a great effect on the location of the base of the subsidence inversion layer
and the intensity with which it affects Santiago de Chile. This complex structure of urban
atmosphere also supports the effect of thermal islands [3,7,9,56].

Other studies that analyze the data on the relationship between RH and urban growth
in the areas around the measuring instruments also show a decreasing trend in RH
(Figure 9a,b). In the case of this study, there is a decline in RH between the periods
2010–2013 of 60%, and 2017–2020 of 56%.

The results from this study, along with those of several others, press for a more rigorous
urban planning, the use of new construction materials and mitigation measures [82–88]
both in time and space.
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6. Conclusions

Through a qualitative study of time series that constitute the database of two time
periods, it is shown that they satisfy the criteria to be defined as chaotic (Dc < 5, λ > 0,
0.5 < H < 1, 0 < LZ < 1, SK > 0). In general, chaos theory studies dissipative, complex,
or connected (nonlinear) phenomena, which are also of low predictability, entropic and
irreversible. This allows us to anticipate the nature of the processes that have been induced
by human activity at the study site. There is a high probability that this could also be shown
in many other parts of the world.

The CK quotient for the 2017–2020 period with higher urban densification are lower
for the six communes in Santiago when compared with the values of the 2010–2013 period
(Figure 4) of lower densification. Therefore, it is proven that for the 2017–2020 period,
the value of the persistence of the meteorological variables of temperature and relative
humidity is lower than the value calculated for the PM10 and PM2.5 pollutants, respectively.
This can be interpreted, in a first approach, as a decay in the initial conditions of the natural
micrometeorology. The meteorological variables (T, RH, WV) are of basic use for any
climatological model. Urban densification contributes to the prominence of pollutants
according to the comparative demonstration in the 2017–2020 and 2010–2013 periods.

The Hurst exponent and the fractal dimension are related to the roughness of the
time series. The fractal dimension is a statistical quantity that allows us to mathematically
describe objects that present a high degree of complexity. The interperiod comparison of
the time series of meteorological variables and pollutant concentration shows an increasing
change in complexity in favor of the period 2017–2020, a period of urban growth.
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Appendix A

It is also possible to analyze the time series from another point of view, using the
Hurst Exponent, H. Through the fractal dimension, D = 2 − H, the roughness of the time
series is analyzed, allowing us to describe objects that present a high degree of complexity,
comparing them according to the study periods.

If 0.5 < H < 1, these are time series that present persistence (long-term memory effects).
Theoretically, what happens in the present will affect the future forever, and all current

https://sinca.mma.gob.cl
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changes are correlated with all future changes. In the case of the present study, it means
that the time series are persistent, since 0.5 < Hurst exponent < 1.0.

Table A1. All the values of the Hurst exponent (H) for all the variables of interest by studied commune
and the two periods (2010–2013 and 2017–2020).

PM10 PM2.5 CO T HR WV

EML 2010–2013
H 0.967 0.973 0.959 0.989 0.991 0.976
D 1.033 1.027 1.041 1.011 1.009 1.024

2017–2020
H 0.922 0.963 0.933 0.915 0.942 0.975
D 1.078 1.037 1.067 1.085 1.058 1.025

EMM 2010–2013
H 0.972 0.977 0.981 0.991 0.990 0.980
D 1.028 1.023 1.019 1.009 1.010 1.02

2017–2020
H 0.906 0.983 0.933 0.917 0.941 0.976
D 1.094 1.017 1.067 1.083 1.059 1.024

EMN 2010–2013
H 0.972 0.974 0.953 0.989 0.991 0.968
D 1.028 1.026 1.047 1.011 1.009 1.032

2017–2020
H 0.929 0.960 0.933 0.916 0.942 0.973
D 1.071 1.04 1.067 1.084 1.058 1.027

EMO 2010–2013
H 0.965 0.955 0.937 0.992 0.989 0.968
D 1.035 1.045 1.063 1.008 1.011 1.032

2017–2020
H 0.936 0.925 0.933 0.919 0.942 0.974
D 1.064 1.075 1.067 1.081 1.058 1.026

EMS 2010–2013
H 0.969 0.973 0.953 0.990 0.992 0.957
D 1.031 1.027 1.047 1.010 1.008 1.043

2017–2020
H 0.921 0.975 0.933 0.915 0.942 0.976
D 1.079 1.025 1.067 1.085 1.058 1.024

EMV 2010–2013
H 0.967 0.970 0.952 0.989 0.989 0.956
D 1.033 1.03 1.048 1.011 1.011 1.044

2017–2020
H 0.931 0.966 0.933 0.919 0.942 0.975
D 1.069 1.034 1.067 1.081 1.058 1.025

The fractal dimension (D) of the meteorological variables and of the pollutants is
greater in the period 2017–2020. If the average value of the fractal dimension, D, is calcu-
lated for the pollutant time series, (P), and for the meteorological variables, (MV), then a
quotient is constructed, CD = DMV/DP (similar to CK):

CD,COMMUNE =
∑ fractal dimensions of the meteorological vaiablesCOMMUNE

∑ fractal dimensions of the pollutantsCOMMUNE
(A1)

and it is plotted considering the square meters of built surface associated with each com-
mune and according to the two periods of the study, thus Figure 4 is obtained.
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