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Abstract: The consumption of energy and resources produces carbon emissions and exacerbates
global warming. As the basic resources for urban development, the development and utilization of
water and land resources consume a large amount of energy, which results in carbon emissions. This
paper presents a study aimed at analyzing the interaction of urban water–land–energy and its carbon
emission effects and finding ways to achieve the win-win situation of carbon emission reduction and
economic development. We used an SD-MOP model combined with system dynamics (SD) and multi-
objective programming (MOP) to describe the feedback relationship between urban water and land
resources utilization and carbon emissions, designed a comprehensive scheme for carbon emission
reduction goal and optimized it in order to achieve the low carbon development goal. Tianjin, one
of the four province-level municipalities, was investigated as a case study for this research. The
simulation results indicate that Tianjin’s carbon emissions from water and land utilization will peak
around 2025 when applying the comprehensive regulation scheme. After optimization, the optimal
regulation scheme would achieve considerable social, economic and environmental benefits. We
suggest the implementation of measures including the optimization of the industrial, energy and land
use structure; the improvement of energy efficiency; increasing residents’ low carbon awareness; and
strengthening industrial and domestic water savings to realize the low carbon development of the
city. The findings of this study will be useful for the management of urban water and land utilization.

Keywords: low carbon development; water and land resources; system dynamics; multi-objective
programming

1. Introduction

Carbon emissions are a main cause of the global temperature rise witnessed over
the past 100 years [1]. The global CO2 concentration increased from 227 ppm in 1750 to
409.85 ppm in 2019. About 81% of total carbon emissions came from fossil fuel combustion
and 19% came from land use change [2]. A series of problems caused by global warming
pose challenges to the survival and development of human society. As a country with
the largest carbon emissions in the world, the Chinese government promised at the Paris
Climate Change Conference in 2015 that carbon dioxide emissions would peak around
2030 and that the carbon dioxide emissions per unit of GDP at this time would be 60–65%
lower than they were in 2005. In 2020, the Chinese government promised the world a new
goal, which was to strive to achieve carbon neutrality by 2060 [3]. Facing the commitments
made by the Chinese government to the world, how to achieve the emission reduction goal
while maintaining economic growth, which is the path to low-carbon development is an
important issue that policymakers should consider.
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The utilization of natural resources consumes energy and generates carbon emissions.
With a large number of industries and residents, the city is not only the main contributor to
energy consumption and greenhouse gas emissions, but also a critical region where carbon
emission reduction action needs to be considered. Land resource is the spatial carrier of
the city, and land use change affects industrial and population distribution, which in turn
affects energy consumption and carbon emissions [2]. Water resources are the limiting
factor for urban development, and their quantity and quality determine urban population
growth, urbanization level, and industrial development patterns. Urban water production
and treatment consume a lot of energy, resulting in carbon emissions. Meanwhile, the
utilization modes of water and land resources also change the habitats of biota and affect the
biological health status [4,5], ultimately affecting urban development and human survival.
In 2012, the U.S. Department of Energy [6] systematically analyzed the carbon emissions of
water and land resources utilization, which is a new approach to carbon emission research.
Zhao et al. [7] introduced this idea into China and carried out empirical research. China’s
development is facing resource and environmental pressures, and the problem of carbon
emissions from the utilization of water and land resources has been attracting more and
more attention.

Research in the field of water and land resources for low carbon development began
to appear around 2000. The research objective has changed from the initial single element
to all water and land resources over the years. In the field of water resource, the research
focuses on issues such as the coupling of crop water, energy and carbon flux [8,9]; car-
bon emissions of regional water resource development and utilization [10,11]; and carbon
and water resource planning [12]. In the field of land resource, early studies focused
on the impact of land use change on soil carbon flux [13] and natural ecosystem carbon
balance [14]. In recent years, the area of study has expanded to the relationship between
land use, energy consumption and carbon budget [15,16], and land use regulation for the
low carbon goals [17]. Recently, more and more scholars have come to the realization
that water resources and land resources are interrelated and mutual resources in different
ways and constitute the resource base of regional social and economic development, with
the two being impossible to completely separate. Therefore, the research has gradually
expanded from focusing on a single element to considering the interaction between water
and land resources as a whole and their interaction with other elements such as energy
and carbon emissions. In terms of the coupling effect of water and land resources, energy,
and carbon emissions, Skaggs et al. [6] explored the mechanism of climate change from
a new perspective—through the coupling of water and land resources’ development and
utilization, energy inputs, and carbon emissions. They took the United States as an example
to analyze the role of the energy–water–land system in climate change mitigation and adap-
tation. Then, different scholars studied agricultural carbon emissions in different regions
from this perspective. For example, Zhao et al. [7] found the ratio of water to land resources
can promote or inhibit agricultural carbon emissions in different provinces in China. Some
scholars have carried out research from the perspective of carbon footprints [18,19], and
proposed a comprehensive analysis method that combines the ecological footprint, energy
footprint, carbon footprint and water footprint. In addition, some scholars [20] used an
energy analysis method to research the impact of land use change on carbon water ecosys-
tem services in sparse grassland areas, and found that the carbon water ecosystem service
function under traditional farming methods is the lowest.

At present, most studies on the regulation of water and land resources are carried
out in the form of resource planning and allocation. The regulation goal has changed
from maximizing the benefits of water and land supply to seeking benefits for society,
the economy, resource balance, and the environment. This change shows that human
beings constantly reflect on the impact of their own behavior on the natural environment
and pursue the sustainable development of both human society and nature. The research
into water resource allocation began in the mid-20th century with the reservoir optimal
scheduling problem, then the research objective extended from the reservoir or irrigation
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area to regions [21], watersheds [22], and cities [23]. The allocation goal has changed
from only focusing on the benefits of water use to pursuing comprehensive benefits to the
economy, society and the ecological environment. Studies of land resource allocation have
been produced and enriched with the establishment of land systems and the development
of land system reform all over the world. In recent years, based on the status quo of social
and economic development, scholars have used a variety of methods to study land use
allocation and land management modes at different scales, including watersheds [24],
cities [25] and industry [26], and the allocation goals have gradually diversified. If only
single element allocation is carried out, it may have an adverse effect on the comprehensive
utilization of resources. Scholars have gradually realized that joint allocation of water
and land resources should be conducted. The early research mainly focused on the joint
allocation of water and land resources in irrigation areas [27]. After 2000, the research
objectives expanded to multiple scales such as regions [28] and watersheds [29]. The
research contents and methods were gradually enriched, and the allocation objectives were
transformed from single objectives to multiple objectives. Other scholars [30] have paid
attention to the role of water resources in transnational land investment, and found that the
potential of rainfed crop production in target areas and the abundance of land resources
are important driving factors for transnational land investment.

The system engineering method is the main method for water and land resource
regulation, including the linear programming model, the MOP model, the SD model,
etc. The linear programming model calculates the optimal solution of water and land
resources regulation that meets the constraints and objectives. Das et al. [31] used the
linear programming model to study the optimal allocation of water and land resources in
irrigation areas of the United States and India with the goal of maximizing the net income
of crops. With the evolution of the regulation objectives for water and land resources to the
comprehensive coordination of economic, social and ecological benefits, the application
of the MOP model is becoming widespread. The multiple objectives of water and land
resources regulation usually include economic objectives such as the economic output of
water resources [32] and land use benefits [33]; social objectives, such as water consumption
satisfaction [32] and the land use intensity level [34]; and environmental objectives, such as
water pollutant discharge [35], forest coverage [36], ecosystem services [37], and carbon
emissions [38]. The SD model has the advantages of simulating the dynamic process of
the system and solving nonlinear and complex time-varying system problems. Since the
regulation of water and land resources involves feedback among multiple subsystems such
as the water and land resources system and the socioeconomic system, the SD model has
been more and more widely used in related research in recent years [39–41]. However, the
SD model has no advantages in multi-objective optimization. Consequently, some scholars
combine it with other models, such as the SD-MOP integration model, which combines the
SD model with the MOP model, to study urban resource planning [42], but research in this
area is scarce [43].

Through a literature review, we found that the existing research has the following
two shortcomings. First, it does not explore the impact of human activities on urban
carbon emissions from the perspective of resource development and utilization or the
coupling mechanism of water and land resource development and utilization, energy
input, economic development, population growth, and carbon emissions. Second, there are
few studies on the comprehensive regulation of water and land resources for low carbon
development goals using multiple methods. In this paper, we adopt the SD-MOP model,
which establishes a MOP model considering economic, social, and environmental benefits
on the basis of identifying important decision variables of the SD model, to study the low
carbon development of urban water and land resources utilization. The NSGA-II algorithm
is used to solve the MOP problem and the technique for order preference, similar to an
ideal solution and analytic hierarchy process integrated model (TOPSIS-AHP), is used
to choose the optimal solution. Then, the urban low carbon water and land resources
utilization scheme considering multi-objectives is obtained, which will be useful for the
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management of urban water and land utilization. This paper makes three contributions.
First, it constructs a conceptual model of urban water and land resources regulation for
low carbon development and clarifies the coupling mechanism of urban water and land
resource utilization and carbon emissions. Second, this paper builds a carbon emission
system dynamics model of urban water and land resources utilization composed of five
subsystems, including population, economy, energy, water resource utilization and land
use, designs the regulation schemes to observe the changes of output variables, and selects
the optimal scheme. Third, this paper builds a MOP model including multi-objectives from
the aspects of society, economy, and environment to further optimize the allocation of water
and land resources of the selected scheme, finally obtaining the optimal urban water and
land resources utilization scheme in line with the goal of low carbon development.

2. Methods and Data
2.1. The Regulation Mechanism of Urban Water and Land Resources Utilization for Low
Carbon Development

Learning from the theories proposed by Skaggs et al. [6] and Zhao et al. [7], we put
forward the regulation mechanism of urban water and land resources utilization for low
carbon development, which consists of three key elements: water, land, and energy. Water
resources are necessary for the survival of urban residents, animals, and plants and provide
raw materials and production conditions for the production processes of various industries.
Land resources provide physical places for urban human activities, the survival of animals
and plants, industrial production, transportation, and other socioeconomic activities, and
also provide the means of production for agriculture. Energy provides a source of power
for various socioeconomic activities. The development and utilization of water, land and
energy interact with each other and produce carbon emissions. Carbon emissions are
not only the metabolites of the interaction of the three elements, but also the external
environmental effects produced by the interaction.

The conceptual model of urban water and land resources utilization and regulation
mechanism for low carbon development is shown in Figure 1. Activities of water resource
utilization, land use and energy development and utilization are the main elements of
the system and are also the resource basis of urban socioeconomic development. Water
resource utilization includes the whole life cycle of water resource utilization, including
water intake, water production, water delivery, water use, and water treatment. Land use
includes agricultural production activities on agricultural land, construction activities on
construction land and other land resource development and utilization activities. Energy
development and utilization include energy extraction, processing, transportation and
consumption. Water, land, and energy are coupled and influenced by supply and demand
relationships, forming a variety of complex feedback loops and interactions through the
water–land relationship, the land–energy relationship, and the water–energy relationship.
The water cycle, land use activities, energy flow, and the carbon cycle constitute the main
contents of urban equilibria, and are affected by external factors such as socioeconomic
development, resource endowment, technical progress, government regulation and the
social environment, which are continuously in the process of dynamic evolution. The
regulation goal is to realize urban low carbon development, intensive utilization of nat-
ural resources, and sustainable socioeconomic development in order to finally achieve a
harmonious coexistence between human society and nature.
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2.2. SD-MOP Model

The SD-MOP model combines the SD model with the MOP model and is a planning
decision support method that has emerged in the past ten years [44]. The SD model can
easily and flexibly conduct decision-making simulations and multi-scheme comparisons
and is suitable for studying the structural function coordination of complex systems and
the dynamic development of medium and long-term systems. It focuses on the long-term,
comprehensive description of system behaviors and trends. However, some parameters
in the model are difficult to quantify accurately, and the answer provided is often not the
optimal solution. The MOP model is suitable for solving the problem from a definite and
static viewpoint and can find the optimal solution of the parameters, but it is difficult to
examine the comprehensive dynamic process of the system. The SD-MOP model overcomes
the limitations of the two models, which can fully reflect the trend of system development,
and precisely describes the structure and function of the system. The carbon emissions of
urban water and land resource utilization are influenced by many factors, and there is a
feedback relationship between each element of the system; thus it can be simulated with
the SD model. Moreover, low-carbon development should yield a win-win situation in
terms of low carbon development. Urban managers need to consider multiple objectives
that are contradictory and irreducible when regulating water and land resources, which is
why the MOP model needs to be used simultaneously. Therefore, this paper selected the
SD-MOP model to seek the optimal scheme.

The modeling steps of the SD-MOP model are shown in Figure 2 and described
as follows:

(1) On the basis of conducting a system analysis, the SD model is established to simulate
the system development. Then, the key decision variables that have a greater impact
on the system are identified through the sensitivity analysis and system running.
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(2) Taking the key decision variables as independent variables, the objective functions
and constraints are used to build a MOP model. An appropriate method is chosen to
solve the model and obtain the optimal values of the key decision variables.

(3) The optimal values of the key decision variables are fed into the SD model, the model
is run and the simulation results are analyzed. Then, the MOP model is adjusted
according to the decision requirements. Finally, a satisfied optimal decision scheme
is found.
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Figure 2. Modeling steps of the SD-MOP model. SD represents the system dynamics; MOP represents
the multi-objective programming.

2.3. SD Model and Regulation Scheme Design

The SD model of carbon emissions for urban water and land resources utilization
composed of the land use subsystem, the water resource utilization subsystem, the eco-
nomic subsystem, the population subsystem and the energy consumption subsystem was
established using Vensim. The causal loop diagram of the system is shown in Figure 3.
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Figure 3. The causal loop diagram of the system. POP represents the population; NPGR represents
the net population growth rate; UPOP represents the urban population; RPOP represents the rural
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population; UR represents the urbanization rate; IWD represents the irrigation water demand; WDA
represents the water demand of agriculture; DWD represents the domestic water demand; UDWD
represents the urban domestic water demand; RDWD represents the rural domestic water demand;
ADWS represents the awareness of domestic water saving; WDGL represents the water demand of
garden land; WDTI represents the water demand of tertiary industry; WDCI represents the water
demand of construction industry; WDMI represents the water demand of manufacturing industry;
WSP represents the water saving promotion; EWD represents the ecological water demand; TWD
represents the total water demand; UDS represents the urban domestic sewage; STI represents the
sewage of tertiary industry; RWS represents the reused water supply; SWGS represents the surface
water and groundwater supply; TFWS represents the transfer water supply; DWS represents the
desalination water supply; TWS represents the total water supply; DBWSD represents the difference
between water supply and demand; ALA represents the arable land area; PL represents the protection
level; FLA represents the forest land area; GLA represents the garden land area; FC represents
the forest coverage; GA represents the grassland area; AOF represents the area of other farmland;
FA represents the farmland area; RILA represents the residential and industrial land area; TLA
represents the traffic land area; LUIL represents the land use intensity level; WCFLA represents the
water conservancy facilities land area; CLA represents the construction land area; ULA represents
the unused land area; AGDP represents the agriculture gross domestic product (GDP); AGPUFA
represents the agriculture GDP per unit farmland area; SIGDP represents the secondary industry
GDP; SIGPUCLA represents the secondary industry GDP per unit construction land area; CIGDP
represents the construction industry GDP; MIGDP represents the manufacturing industry GDP;
TIGDP represents the tertiary industry GDP; TIGPUCLA represents the tertiary industry GDP
per unit construction land area; TGDP represents the total GDP; HGC represents the household
gasoline consumption; HDC represents the household diesel consumption; HEC represents the
household electricity consumption; HHC represents the household heat consumption; OFFCH
represents the other fossil fuel consumption of household; RLCA represents the residents’ low
carbon awareness; TPAM represents the total power of agricultural machinery; CFP represents the
consumption of fertilizers and pesticides; ALCDL represents the agricultural low carbon development
level; ECSI represents the electricity consumption of secondary industry; HCSI represents the heat
consumption of secondary industry; OFFCSI represents the other fossil fuel consumption of secondary
industry; DCTI represents the diesel consumption of tertiary industry; GCTI represents the gasoline
consumption of tertiary industry; ECTI represents the electricity consumption of tertiary industry;
HCTI represents the heat consumption of tertiary industry; OFFCTI represents the other fossil
fuel consumption of tertiary industry; EE represents the energy efficiency; CEHWU represents
the carbon emissions of household water utilization; CERL represents the carbon emissions of
residential land; CEAL represents the carbon emissions of arable land; CEAW represents the carbon
emissions of agricultural water; CEOF represents the carbon emissions of other farmland; CEWSST
represents the carbon emissions of water supply and sewage treatment; CETL represents the carbon
emissions of traffic land; CESTIWU represents the carbon emissions of secondary and tertiary industry
water utilization; CESTIL represents the carbon emissions of secondary and tertiary industry land;
CEWRU represents the carbon emissions of water resource utilization carbon emissions of water
resource utilization; CELU represents the carbon emissions of land use; CS represents the carbon sink;
NCEWLRU represents the net carbon emissions of water and land resources utilization.

The land use subsystem involves the agricultural production activities on farmland
(including arable land, forest land, garden land, grassland, and other farmland), the
development and construction activities on construction land (including residential and
industrial land, transportation land, and water conservancy facilities land), as well as the
land use carbon sink of arable land, forest land, garden land, grassland area and unused
land. The water resource utilization subsystem involves the service activities of each phase
of the municipal water system (including water supply, water use, and water treatment).
The economic subsystem includes the urban economic development speed and industrial
structure. The population subsystem includes the total population, urban population
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and rural population. The energy consumption subsystem includes the industrial and
household energy consumption. The main variables of each subsystem are shown in
Table 1.

Table 1. The main variables of each subsystem.

Subsystem Main Variables

Land use subsystem

Arable land area, forest land area, garden land area, grassland
area, other farmland area, residential and industrial land area,
traffic land area, water conservancy facilities land area, and
unused land area.

Water resource utilization
subsystem

Total water demand, water demand of agriculture, water demand
of manufacturing industry, water demand of tertiary industry,
water demand of construction industry, domestic water demand,
ecological water demand, total water supply, surface water and
groundwater supply, transfer water supply, desalination water
supply, and reused water supply.

Economic subsystem

Total GDP, agriculture GDP, secondary industry GDP, tertiary
industry GDP, agriculture GDP per unit farmland area, secondary
industry GDP per unit construction land area, and tertiary
industry GDP per unit construction land area.

Population subsystem Total population, urban population, rural population, and net
population growth rate.

Energy consumption
subsystem

Electricity/heat/other fossil fuel consumption of secondary
industry, electricity/heat/diesel/gasoline/other fossil fuel
consumption of tertiary industry and household, and total power
of agricultural machinery.

After the model is established, a running test, historical test and sensitivity analysis
needed to be performed to ensure that the model could meet the running conditions and
could be used to simulate the carbon emissions of urban water and land resources utiliza-
tion. Then, we selected variables from the subsystems, and designed the comprehensive
regulation schemes for carbon emission reduction.

2.4. Mop Model and Regulation Scheme Optimization
2.4.1. Key Decision Variables Identification

Considering that the allocation area of each land type in the regulation schemes is set
artificially, it is difficult to reach the optimal solution. Meanwhile, since water resource is
the limiting factor of urban development and plays a bottom-line role in maintaining the
operation of the city, thus we selected the parameters with high sensitivity from the land
use and water resource utilization subsystems as the key decision variables, and optimized
them with the MOP model.

2.4.2. Objective Function Establishment

The regulation of urban water and land resources utilization for low carbon devel-
opment needs to achieve multi-objective coordination, which means the city can obtain
more development opportunities while meeting carbon emission reduction targets. Water
and land resources, as the basic resources supporting urban development, should meet
the needs of urban development under the premise of intensive utilization. The values of
other parameters in the MOP model except the key decision variables equal the values in
the SD model. Accordingly, this paper established the following three objective functions
consisting of social, economic and environmental benefits.

The objective function of social benefit is to minimize the total water demand, and can
be expressed as follows:

MinF1 = yxgg + qn + qs +
2

∑
i=1

pcidci +
3

∑
m=1

jgmygm (1)
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where F1 is the total water demand; yx is the size of irrigated area; gg is the irrigation water
demand per unit area; qn is the other water demand of agriculture; qs is the ecological
water demand; pci is the population; dci is the per capita domestic water demand; i = 1, 2
represents urban and rural areas, respectively; jgm is the manufacturing industry GDP;
ygm is the water demand per unit GDP; m = 1, 2, 3 represents manufacturing industry,
construction industry and tertiary industry, respectively.

The objective function of economic benefit is to maximize the total GDP, and can be
formulated as follows:

MaxF2 = yc×
4

∑
n=1

ndn + (ec + f c)×
3

∑
j=1

jsj (2)

where F2 is the total GDP; yc is the agriculture GDP per unit farmland area; ndn is the area of
each type of farmland; n = 1, 2, 3, 4 represents the arable land area, garden land area, forest
land area, and other farmland area, respectively; ec is the secondary industry GDP per unit
construction land area; f c is the tertiary industry GDP per unit construction land area; jsj
is the area of each type of construction land; j = 1, 2, 3 represents residential and industrial
land area, traffic land area and water conservancy facilities land area, respectively.

The objective function of environmental benefit is to minimize the net carbon emissions
of urban water and land resources utilization, and can be calculated as follows:

MinF3 = ct + nd1(gt− gh) + nd4ot− js3sh +
4

∑
k=1

ysk p fk +
2

∑
j=1

jsj jtj −
3

∑
n=2

ndnlhn (3)

where F3 is the net carbon emissions of urban water and land resources utilization; ct is
the carbon emissions of water supply and sewage treatment; gt is the carbon emission
intensity per unit arable land area; gh is the carbon sink intensity per unit arable land
area; ot is the carbon emission intensity per unit other farmland area; sh is the carbon sink
intensity per unit water conservancy facilities land area; ysk is the water demand; p fk is the
carbon emission intensity per unit water consumption; k = 1, 2, 3, 4 represents agriculture,
secondary industry, tertiary industry and household, respectively; jtj is the carbon emission
intensity per unit residential and industrial land area/traffic land area; lhn is the carbon
sink intensity per unit garden land/forest land area.

2.4.3. Constraint Conditions Determination

According to urban land use planning, water supply and water use planning, we
selected parameters related to water and land resources allocation in the SD model and set
parameter constraints.

The water resource and land resource constraint conditions can be expressed as follows:

GGmax ≤ yxgg ≤ GGmin (4)

SHmax ≤
2

∑
i=1

pcidci ≤ SHmin (5)

CYmax ≤
3

∑
m=1

jgmygm ≤ CYmin (6)

NDmax ≤
4

∑
n=1

ndn ≤ NDmin (7)

JSmax ≤
3

∑
j=1

jsj ≤ JSmin (8)
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where GGmax and GGmin represent the maximum and minimum of irrigation water de-
mand; SHmax and SHmin represent the maximum and minimum of domestic water demand;
CYmax and CYmin represent the maximum and minimum of manufacturing water demand;
NDmax and NDmin represent the maximum and minimum of farmland area; JSmax and
JSmin represent the maximum and minimum of construction land area.

2.4.4. Optimal Solution to the MOP Model

The classical MOP model is usually solved by transforming the multi-objective prob-
lem to a single objective problem through objective weighting, objective programming and
ε–constraint method, for which some parameters need to be manually specified, resulting
in strong subjectivity and unsatisfactory optimization results. In recent years, scholars
began to use intelligent algorithms to solve the MOP problem, which reduces the subjective
impact on solutions and improves the solution accuracy. The genetic algorithm is one of the
intelligent algorithms suggested by Holland in 1975. Based on the evolutionary principle
of “survival of the fittest”, the solution of the problem is expressed as “chromosome”.
Through the evolution of chromosomes, a better individual, that is, the optimal solution
of the problem, is finally obtained. Due to the high parallelism and global search ability,
the genetic algorithm has been widely used in solving MOP problems. Of them, NSGA-II,
PESA-II and SPEA-II enjoyed more attention and have been widely used in engineering and
scientific fields [45–47]. PESA-II algorithm has good astringency especially when solving
high-dimensional optimization problems, but the selection takes a long time and has poor
diversity. SPEA-II algorithm has the advantage in solving high-dimensional optimization
problems, and can obtain uniformly distributed Pareto-optimal solutions, but the clustering
process is time-consuming and inefficient. The NSGA-II algorithm has high efficiency and
good solution distribution [44], which is suitable for low-dimensional MOP problems. Our
study has three objective functions; thus the NSGA-II algorithm can be used to solve the
MOP problem.

The NSGA-II algorithm includes the following steps: initially, an initial random
parent population of size N is generated. Fast, non-dominated sorting is assumed and a
first offspring population of size N is created through the usual selection, crossover, and
mutation operators. Then, starting from the second generation, the parent population
and the offspring population are combined to obtain a population of size 2N. Then, the
combined population is subjected to fast, non-dominated sorting and crowding distance
calculation, and appropriate individuals are selected to form a new parent population of
size N. Finally, a new offspring population is generated through using the usual population
operators of the genetic algorithm. The loop will stop until the maximum evolutionary
algebra is reached, and the Pareto-optimal solutions will be output.

The solution of the MOP problem is divided into two steps. One is to use the NSGA-II
algorithm to obtain the Pareto-optimal solutions; the other is to find an optimal decision
scheme from Pareto-optimal solutions, which is determined by using a combination method
of TOPSIS and AHP. The TOPSIS method selects the solution with the shortest distance
from the positive ideal solution and the farthest distance from the negative ideal solution
as the optimal decision scheme. It has the advantages of robust logical structure, simple
calculation process and considering both the positive and negative ideal solutions at the
same time. The AHP method is assumed to calculate the weight of each objective and is
one of the input parameters for the TOPSIS. The decision-making steps of the TOPSIS-AHP
method are as follows:

1. Constructing the normalized initial matrix.
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Assuming there are n Pareto-optimal solutions and each solution has m attributes, the
initial matrix is constructed as:

X =


x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
. . .

...
xn1 xn2 · · · xnm

 (9)

Creating the weighted normalization matrix, and the attributes are vector normalized.
The formula is shown in Equation (10) and the normalized matrix Z is obtained.

zij =
xij√
n
∑

i=1
x2

ij

(10)

2. Determining the positive and negative solutions.

For the optimization problem whose purpose is to minimize the objective function,
the positive ideal solution (Z+) is composed of the minimum value of each column, and
the negative ideal solution (Z−) is composed of the maximum value of each column.

Z+ = (max{z11, z21, · · · , zn1}, max{z12, z22, · · · , zn2}, · · · , max{z1m, z2m, · · · , znm}) = (Z+
1 , Z+

2 , · · · , Z+
m ) (11)

Z− = (min{z11, z21, · · · , zn1}, max{z12, z22, · · · , zn2}, · · · , max{z1m, z2m, · · · , znm}) = (Z−1 , Z−2 , · · · , Z−m ) (12)

3. Setting weights of objective functions.

First, experts are invited to score the relative importance of pairwise attributes. The
score of relative importance takes a number from 1 to 9, and the judgment matrix A is
formed. A value of 1 indicates that the two factors are of equal importance, while a value of
9 indicates that the former is extremely important compared with the latter. Six experts are
considered valid [48]. Second, the matrix A is normalized by column to obtain the matrix
bij, then finding the sum by row to obtain the matrix Wj, and calculating the weights of
each objective function wj and feature vector W. Finally, the maximum eigenvalue λmax
is used to calculate the consistency index CI and consistency ratio CR (RI = 0.58). When
CR < 0.1, the judgment matrix passes the consistency test.

bij =
aij

m
∑

i=1
aij

(13)

Wj =
m

∑
j=1

bij (14)

wj = Wj/
m

∑
j=1

Wj (15)

W = [w1, w2, · · · , wm]
T (16)

λmax =
1
m

m

∑
j=1

(AW)j

wj
(17)

CI =
λmax −m

m− 1
(18)

CR =
CI
RI

(19)
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4. Calculating the distances between the Pareto-optimal solutions and the positive and
negative ideal solutions, which are expressed as Di

+ and Di
−, respectively.

D+
i =

√√√√ m

∑
j=1

wj(Z+
j − zij)

2 (20)

D−i =

√√√√ m

∑
j=1

wj(Z−j − zij)
2 (21)

5. Calculating the distances between the Pareto-optimal solutions and the optimal
scheme Ci (0 ≤ Ci ≤ 1). The closer the distance value is to 1, the better the evaluation
scheme is.

Ci =
D−i

D+
i + D−i

(22)

2.5. Data

This paper selected Tianjin, a city in eastern China, as the research area, and collected
relevant data from 2004 to 2019. The water resource utilization data came from the Tian-
jin Water Resources Bulletin, data including land use areas, consumption of fertilizers
and pesticides, the irrigated areas, agriculture, secondary and tertiary industry GDP and
population came from the Tianjin Statistical Yearbook. The energy consumption data of
industries and household came from the China Energy Statistical Yearbook. The prices
used in this paper were converted according to the price in 2004 to eliminate the multiyear
price impact.

3. Results and Analysis
3.1. Design of Regulation Scheme for Carbon Reduction Goal

The spatial boundary of the SD model was the administrative region of Tianjin. The
starting time of simulation was 2004 and the simulation time was from 2005 to 2030. The
historical test period was from 2005 to 2019, and the time step was one year. We determined
the model parameters according to historical data and development trend forecast. First,
we used the Check Model and Units Check that comes with the Vensim software to perform
the running test. The test results showed that the model structure and variable units passed
the test, and the model could run normally. Additionally, we carried out the historical
test by taking total population, total GDP, water demand of agriculture, water demand
of manufacturing industry, domestic water demand, total water supply, arable land area,
construction land area, raw coal consumption of secondary industry, household natural gas
consumption, carbon sink and net carbon emissions of water and land resources utilization
from 2005 to 2019 as the test variables. The simulated values of the model were compared
with the actual values, and the error rate of each variable was calculated. The results
showed that all the error rates were less than 10%, which are acceptable [49]. In addition,
we selected twenty parameters shown in Figure 4 for model sensitivity analysis. Each
parameter was increased by 15% of the original value to calculate the corresponding change
range of each output variable of the system. As shown in Figure 4, the sensitivity of
all the parameters was less than 15%, indicating that the model had good stability. The
secondary industry GDP per unit construction land area and the tertiary industry GDP
per unit construction land area were more sensitive than the other parameters. The other
parameters with higher sensitivity included the net population growth rate, irrigation
water quota, change in per capita residential and industrial land area, water demand per
unit industry GDP, change in forest land area and the domestic water demand coefficient
for urban residents. The above test results show that the SD model can be used for carbon
emission simulation and prediction of water and land resources utilization in Tianjin.
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Figure 4. The sensitivity analysis of SD model. 1. Secondary industry GDP per unit construction
land area; 2. Tertiary industry GDP per unit construction land area; 3. Net population growth rate;
4. Irrigation water quota; 5. Change in per capita residential and industrial land area; 6. Water
demand per unit industry GDP; 7. Change in forest land area; 8. Domestic water demand coefficient
for urban residents; 9. Raw coal consumption per unit industry GDP; 10. Change in per capita traffic
land area; 11. Electricity consumption per unit tertiary GDP; 12. Change in garden land area; 13. Heat
consumption per unit industry GDP; 14. Per capita heat consumption; 15. Domestic water demand
coefficient for rural residents; 16. Change in per capita arable land area; 17. Change in other farmland
area; 18. Per capita gasoline consumption; 19. Agriculture industry GDP per unit farmland area;
20. Raw coal consumption per unit tertiary GDP.

Tianjin’s 13th Five Year Plan for Climate Change Mitigation put forward the goal to
achieve a peak in carbon emissions around 2025, five years ahead of the 2030 promised
by the state to the world. It is difficult to achieve this by taking a single measure. In
real policy practice, it is also necessary to combine various emission reduction measures
and adopt a comprehensive regulation scheme in order to reach the established goal of
peaking carbon emissions while maintaining steady economic growth. To this end, we
selected variables from each subsystem of the SD model and combined them to set up
five comprehensive regulation schemes (Table 2). The increase or decrease of variables in
the energy structure optimization and land use structure optimization schemes give the
change in 2030 compared with the forecast results of the original model, and the increase
or decrease of variables in the other regulation measures give the change in 2030 compared
with the current value in 2019.

The model parameters were modified in turn according to the five schemes, and after
running the model, the simulation results of the annual net carbon emissions of water
and land resource utilization predicted by each scheme are shown in Figure 5. It can be
seen that the carbon emissions of each scheme are sorted in descending order: scheme I >
scheme II > scheme III > scheme V > scheme IV. Observing the variable settings of schemes,
because the emission reduction efforts of scheme I, scheme II and scheme III are lower
than those of the other two schemes, the net carbon emissions of water and land resources
utilization are significantly higher than those of the other two schemes, and the net carbon
emissions will continue to grow and will not reach the peak in 2030.
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Table 2. The comprehensive regulation schemes for carbon emissions of water and land resources in
Tianjin.

Regulation
Measures

Variable
Settings Scheme I Scheme II Scheme III Scheme IV Scheme V

Industrial
structure

optimization

Proportion of
secondary

industry GDP

6 percentage
points decrease

7 percentage
points decrease

7 percentage
points decrease

8 percentage
points decrease

8 percentage
points decrease

Proportion of
tertiary

industry GDP

6 percentage
points increase

7 percentage
points increase

7 percentage
points increase

8 percentage
points increase

8 percentage
points increase

Industrial
energy

efficiency
improvement

Energy
consumption

per unit GDP of
secondary in-

dustry/tertiary
industry

32% decrease 34% decrease 34% decrease 35% decrease 35% decrease

Increasing of
residents’ low

carbon
awareness

Per capita
residential

energy
consumption

2% decrease 2% decrease 4% decrease 4% decrease 5% decrease

Energy
structure

optimization

Proportion of
raw coal

consumption of
secondary
industry

0.65 percentage
points decrease

1 percentage
points decrease

1 percentage
points decrease

1.35 percentage
points decrease

1.35 percentage
points decrease

Proportion of
natural gas

consumption of
secondary
industry

0.65 percentage
points increase

1 percentage
points increase

1 percentage
points increase

1.35 percentage
points increase

1.35 percentage
points increase

Proportion of
raw coal

consumption of
tertiary indus-
try/household

0.03 percentage
points decrease

0.04 percentage
points decrease

0.04 percentage
points decrease

0.05 percentage
points decrease

0.05 percentage
points decrease

Proportion of
natural gas

consumption of
tertiary indus-
try/household

0.03 percentage
points increase

0.04 percentage
points increase

0.04 percentage
points increase

0.05 percentage
points increase

0.05 percentage
points increase

Water saving
irrigation

Irrigation water
quota 2% decrease 2% decrease 3% decrease 3% decrease 5% decrease

Industrial water
saving

Water demand
per unit of

industry GDP
3% decrease 3% decrease 5% decrease 5% decrease 7% decrease

Domestic water
saving

Domestic water
demand

coefficient for
urban residents

1% decrease 1% decrease 2% decrease 2% decrease 3% decrease

Land use
structure

optimization

Proportion of
farmland

1.5 percentage
points increase

2 percentage
points increase

2 percentage
points increase

3.5 percentage
points increase

2.5 percentage
points increase

Proportion of
construction

land

1.5 percentage
points decrease

2 percentage
points decrease

2 percentage
points decrease

3.5 percentage
points decrease

2.5 percentage
points decrease
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Figure 5. The net carbon emissions of five comprehensive regulation schemes.

Tianjin is a typical resource-based water-scarce city, where the water supply is partly
dependent on transfer water from other provinces. Thus, water saving is particularly
important for Tianjin. Meanwhile, economic development is also the premise to ensure the
sustainable development of the city. Therefore, we chose the total water demand and total
GDP of scheme IV and scheme V for further analysis. The results are shown in Figure 6.
It can be seen that the total water demand of scheme V is less than that of scheme IV,
indicating that scheme V has higher water utilization efficiency and performs better than
scheme IV in water resource utilization. The total GDP of the scheme V is larger than that
of scheme IV, and has the faster economic development speed. The main reason is that
the conversion of construction land into farmland in scheme V is less than that in scheme
IV, and construction land can generate more GDP than farmland. Since Tianjin needs to
ensure economic growth while achieving the carbon emission reduction target, Scheme V
also performs better than Scheme IV considering urban economic development. Generally,
the overall performance of Scheme V is better than Scheme IV.
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3.2. Optimization of Regulation Scheme for Low Carbon Development Goal

Urban low carbon development means coordinated promotion of economy, society
and environment, which is a typical multi-objective problem. The key decision variables
selected in this paper are: change in irrigation water quota (x1), change in water demand per
unit industry GDP (x2), change in domestic water demand coefficient for urban residents
(x3), change in per capita arable land area (x4), change in garden area (x5), change in forest
land area (x6), and change in other farmland area (x7), changes in per capita residential and
industrial land area (x8), and change in per capita traffic land area (x9). According to the
urban water supply planning, drainage planning, land use planning, combined with the
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prediction of the SD model, the specific values of independent variable constraints were
determined.

We wrote the NSGA-II program using Matlab software (version R2020a). The relevant
parameters set were as follows: the population size was 200, the number of iterations was
500, the crossover and mutation rates were 1 and 0.11, the number of model objective
functions was 3, and the number of independent variables was 9. The economic benefit
objective function took a negative value, so that the optimization directions of the three
objective functions were consistent, all of which were minimized. After 500 generations
of evolution, individuals were distributed evenly on the Pareto front shown in Figure 7,
which shows that NSGA-II has advantages in maintaining population diversity.
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We assumed the TOPSIS–AHP method to seek the optimal scheme from the Pareto-
optimal solutions following the four steps. Firstly, constructing the normalized initial
matrix with the three objective functions including total urban water demand, total GDP
and net carbon emissions of water and land resources utilization. Then, since the objective
function takes minimization as the optimization objective, the minimum value of each
column was selected as the positive ideal solution and the maximum value of each column
was selected as the negative ideal solution. Thirdly, seven experts from universities and
research institutions were invited to score the relative importance of the three objectives
at a meeting in May 2021 and the judgment matrix was constructed. Among the experts,
three are in the field of environmental science, two are in the field of management science
and the other two are in the field of resource planning. The weight matrix of the three
objective functions is W = (0.1226, 0.3202, 0.5571)T and CR = 0.0009 < 0.1, which passes the
consistency test. Finally, we calculated the distances between the Pareto-optimal solutions
and the optimal scheme, and sorted the distances. The maximum value of Ci is 0.61,
and the optimal solution is: x1 = −3.13× 10−5, x2 = −5.96× 10−6, x3 = −3.81× 10−5,
x4 = −7.03× 10−3, x5 = 6.12, x6 = 34.3, x7 = −15.06, x8 = −3.05, x9 = 1.88.

3.3. Analysis of Optimal Regulation Scheme

We substituted the optimal parameters into the SD model to compare the changes in
the operating results of scheme V.
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Initially, we subtracted the total water demand, total GDP and net carbon emissions
of the original scheme V during the prediction period from the values of the optimized
scheme to compare the changes of the objective function value, as shown in Figure 8. The
results show that the total water demand of the optimized scheme was slightly lower than
that of the original scheme V. It would decrease by 0.28 × 104 m3 in 2022 and 1.15 × 104 m3

in 2030. The total GDP of the optimized scheme was higher than that of the original scheme
V. It would increase by CNY 63.4 × 108 in 2022 and CNY 309.7 × 108 in 2030. The net
carbon emissions of the optimized scheme were also higher than that of the original scheme
V. They would increase by 44.3 × 104 t in 2022 and 158.9 × 104 t in 2030. Since the growth
rate of net carbon emissions was lower than that of total GDP, the annual carbon emissions
per unit GDP during the forecast period of the optimized scheme was lower than that of
the original scheme V. As shown in Figure 9, the optimized scheme would achieve the
carbon peak target in 2025, which would meet the carbon emission reduction target of
Tianjin. Since the GDP of the optimized scheme was higher than the original scheme, it
would create greater economic development space in the future for the city in the context
of COVID-19’s negative impact on society and economy.
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Additionally, we analyzed the water and land resources allocation of the optimized
scheme, and compared the changes between each land use type and water use of each
section. The values of arable land area, garden land area, forest land area, other farmland
area, residential and industrial land area, traffic land area, agricultural water demand,
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water demand of manufacturing industry and domestic water demand in the original
scheme V during the prediction period were subtracted from the values of the optimized
scheme, and they are shown in Figure 10. The results show that in terms of farmland, the
arable land area, garden land area and forest land area of the optimized scheme were larger
than those of the original scheme V, with an increase of 54.67 km2, 32.78 km2 and 51.7 km2,
respectively in 2030. The optimized scheme has more sufficient arable land resource, which
is more conducive to maintaining food security. As the main carbon sink land, garden
land and forest land have a larger area after optimization, which is more conducive to
absorbing carbon emissions. In addition, the increase of the area of the two land types is
advantageous to improving the urban ecological environment, forest coverage and citizens’
living environment. As an important carbon source land, the area of other farmland in
the optimization scheme is less than that in the original scheme V, with a reduction of
177.84 km2 in 2030, which helps to reduce carbon emissions. In terms of construction land,
the area of residential and industrial land area and traffic land in the optimized scheme
are higher than those in the original scheme V, with an increase of 33 km2 and 19.63 km2

in 2030, giving more space for the development of urban industry and transportation.
After optimization, the area of construction land in 2030 will be basically the same as
the current area, which is in line with the goal of not increasing the construction land
area after 2020 proposed in Tianjin’s land use planning. In terms of water demand, the
agricultural water demand, manufacturing water demand, and domestic water demand
of the optimized scheme are smaller than those of the original scheme V, which will be
reduced by 0.43 × 108 m3, 0.23 × 108 m3, and 56 × 108 m3, respectively in 2030, indicating
more economical and efficient water use mode.
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To sum up, although the optimized scheme produced more carbon emissions than
the original scheme V, it could still reach the carbon peak goal of Tianjin. Additionally,
the total economic volume of the optimized scheme was larger, which would give the
urban economy more room for growth in the future. The optimized scheme would have
better performance in water use efficiency, which has great significance for Tianjin, a
typical resource-based water-scarce city. The allocation of urban land resource would
be more reasonable, as it not only protects arable land resource, develops forest land
resource that ensure food security and improve the urban ecological environment, but
also strictly controls the expansion of construction land and keeps the dynamic balance of
construction land by meeting the construction land objective determined in the city’s land
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use development plan and reserving more space for future urban development. Thus, the
optimized scheme can be used as a reference decision scheme for Tianjin.

4. Conclusions and Policy Implications
4.1. Conclusions

We assumed the SD-MOP model to study the carbon emissions of urban water and
land resources, which can provide a decision-making scheme for urban low carbon de-
velopment. We began by describing the regulation mechanism of urban water and land
resources utilization for low carbon development consisting of three elements: water re-
source utilization, land use, and energy development and utilization. The three elements
are interrelated and are mutual resources through their water–land, land–energy, and
water–energy relationships, jointly supporting human socioeconomic activities, and taking
carbon emissions as the environmental effect. The coupling interactions are influenced
by external factors such as socioeconomic development, resource endowment, technical
progress, government regulation and social environment, and are in the process of dynamic
evolution. Additionally, we established a SD model of carbon emissions for urban water
and land resources utilization, and designed five regulation schemes for Tianjin. The
simulation results show that two of the schemes would achieve the carbon peak in 2025,
scheme V was the better option in terms of its higher total GDP and less total water de-
mand. In closing, we identified the key variables of the SD model, and built a MOP model
considering society, economy and environment benefits to further optimize the allocation
parameters of water and land resources in scheme V according to the requirements of
urban planning. Then, the optimized parameters obtained by the NSGA-II algorithm and
TOPSIS-AHP method were input into the SD model, and the simulation results show that
after optimization, Tianjin would still achieve the urban carbon peak in 2025. The urban
economic level would be further improved, and the allocation of water and land resources
would be more reasonable after optimization.

4.2. Policy Implications

The coupling interaction of urban water and land resources utilization and energy
consumption produces carbon emissions, which are affected by socioeconomic, technology
and resource endowment. Accordingly, the carbon emissions of water and land resources
utilization need to be regulated by comprehensive rather than a single measure from the
aspects of industrial structure, energy structure, energy efficiency, water utilization, land
use structure and residents’ low carbon awareness to achieve the emission reduction target.

At present, the proportion of industrial structures in Tianjin is 1.5:34.1:64.4, while
the proportion of tertiary industry in developed countries is higher than 70%. In contrast,
Tianjin’s secondary industry accounts for a large proportion, while the development of
tertiary industry lags far behind. The tertiary industry has greater economic contribution
and comsumes less energy, thus it is necessary to further adjust the industrial structure
and vigorously develop the tertiary industry to reduce carbon emissions while promoting
economic growth.

With the implementation of Tianjin’s “coal-to-electricity” and “coal-to-gas” plans,
Tianjin’s raw coal consumption has been greatly reduced. In the future, the energy structure
adjustment to reduce coal and increase natural gas has limited potential for carbon emission
reduction. The proportion of other clean energy, such as wind energy, solar energy and
bioenergy, etc., should to be increased, and the energy efficiency should be improved
through technological innovation, so as to promote carbon emission reduction from the
energy consumption side.

Improving water use efficiency and strengthening industrial and domestic water
conservation are of great significance to Tianjin, a typical water-scarce city in China. It is
necessary to implement water-saving technology and strengthen water-saving publicity
to reduce urban water demand, thereby reducing the carbon emissions of water resource
utilization. Construction land is the main carbon source, and forest land and garden land
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are carbon sinks. Thus the allocation of land resources should be further optimized, which
not only reserves construction land for urban development, but also strictly controls its
scale by making room for carbon sink land, and enhances the land use of intensity level of
construction. The forest land should be protected and developed to increase carbon sink,
thereby reducing land use carbon emissions. Meanwhile, the protection and low carbon
utilization of arable land should be strengthened to ensure urban food security.

Residents’ carbon emissions from daily living are an important contributor to carbon
emissions of urban water and land resources utilization. It is important to improve residents’
low carbon awareness through various measures to enable them to practice low carbon
lifestyles and achieve carbon emission reduction. For example, restricting the excessive
packaging of commodities and the use of disposable products, encouraging green travel
methods such as walking, shared bicycles, and public transportation, and inspiring the
conservation and utilization of energy for daily living, such as electricity and gas saving.

Our study still has some limitations and provides opportunities for future study. First,
the carbon emission accounting in this paper is based on statistical data. With the rise of the
internet of things and big data, it is possible to combine the real-time monitoring data with
statistical data to calculate the carbon emissions. In addition, in terms of the limitations of
statistical data, some factors are simplified in the SD model. In future research, the model
variables and equations can be improved in combination with the utilization characteristics
of water and land resources in different cities, so as to make them more consistent with
particular cities. Finally, this paper constructs an MOP model including economic, social
and environmental benefits. Other optimization objectives could be added according to
different research needs, such as maximizing the urban ecosystem services or maximizing
water use satisfaction, etc., in future research to meet the different needs of decision makers.
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