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Abstract: The dispersion of urban pollutants is affected by the urban morphology parameters. The
objective of this study was to investigate the correlation between PM2.5 distribution and urban
morphology parameters in a cold-climate city in China. Field measurements were performed to
record the PM2.5 concentration and microclimate parameters at 25 points in a 10 km2 urban area
in Harbin, China. It was found that the maximum difference of PM2.5 concentration among the
measuring points at the same time could be up to 69.03 µg/m3. In this study, a geographic information
system (GIS) was used to extract and screen the urban morphology parameter data under reasonable
buffer radius, the gradient boosted regression trees model (GBRT) was used to carry out the prediction
experiment of PM2.5 concentration and explore the nonlinear influence of urban morphology factors
on PM2.5 concentration. In addition, random forest (RF), decision trees (DT), and multiple linear
regression (MLR) models were selected to compare the prediction accuracy of the GBRT model.
The results show that the GBRT model has the highest accuracy, with R2 reaching 0.981; building
density (57%) and average building height (49%) were the two most significant factors affecting
PM2.5 concentration.

Keywords: urban morphology parameters; PM2.5 distribution; gradient boosted regression trees
(GBRT) model; northeast China

1. Introduction

PM2.5 refers to the particulate matter in the atmosphere with a diameter of 2.5 µm or
less, often called lungable particulate matter or fine particulate matter. Due to its small
particle size and a large number of toxic and harmful substances, PM2.5 can easily cause
health damage like respiratory diseases and pulmonary fibrosis to the human body [1].
Therefore, PM2.5 has become one of the most important targets for environmental pollution
prevention and control in the world. There are differences in the PM2.5 situation in different
regions because factors such as climate and urban morphology will have an impact on
the formation and dispersion of PM2.5 [2]. It is very important to understand the spatial
distribution and related dynamic changes of PM2.5, which is conducive to formulating
effective measures to reduce and control the harm caused by PM2.5 combined with the
actual situation. PM2.5 pollution is very serious in cold-climate cities of northeast China. In
addition to common forms of urban air pollution such as long-distance transportation of
pollutants and automobile exhaust emissions, winter heating and inversion layer aggravate
the problem of declining urban air quality and frequent haze weather [3,4]. It is worth
noting that the demand for wind and cold protection of cold-climate cities also forces the
urban morphology design to be relatively simple and closed, which is not conducive to the
dispersion of air pollutants [5]. Therefore, it is of great practical significance to study the
distribution of PM2.5 in cold-climate cities of northeast China.
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The average wind speed and static wind frequency are the main factors affecting
PM2.5 dispersion [6,7]. The influence of urban morphology on PM2.5 is mainly reflected
in two aspects: first, block layout affects the change of temperature and humidity inside
the area, which indirectly affects the condensation and precipitation of air particles [8]. On
the other hand, block layout also affects the wind environment inside the region, which
directly affects the flow and dispersion of air pollutants [9]. Longley I. D. [10] points
out that wind speed and the relative direction of the street are decisive factors affecting
the spatial distribution of PM2.5. When the wind direction is parallel to the street, it is
conducive to the dispersion of PM2.5. By studying the volume relationship between blocks
and buildings, Oke [11] found that wind pressure generated under different block layouts
had different influences on the dispersion of particulate matter and that different street
aspect ratios would produce different spatial vortex structures in the street valley, thus
forming different PM2.5 dispersion conditions. Kaplan [12] took a small-scale block as an
example to simulate the distribution of particulate matter, which confirmed the scientific
nature of the combination of data simulation technology and field monitoring method.
Chan, L. Y. [13] took the long and narrow streets of Hong Kong as an example to study the
influence of its spatial volume on the concentration of PM2.5 and other particulates and
concluded that the aspect ratio of street space is positively correlated with the concentration
of particulates in street valleys.

At present, there are two main prediction methods for PM2.5 concentration: deter-
ministic models and empirical models. Deterministic models are represented by weather
research and forecasting (WRF) and community multiscale air quality (CMAQ). However,
deterministic models have limited the analysis of air quality at micro scales. Among empir-
ical approaches, linear regression models and machine learning methods have received
more attention. Multiple regression is to establish a regression model about the predicted
object through several influencing factors such as meteorological factors, pollution sources,
and land use environment. As a traditional prediction method of air pollutants, this method
can be used to fit and predict pollutant mass concentration or pollution index through re-
gression modeling. For example, Ziomasic et al. [14] established a multiple linear regression
model based on seven meteorological factors to predict the maximum mass concentration
of NO2 in Athens, Greece. Machine learning uses multiple disciplines, such as probability
theory and mathematical statistics, approximation theory, convex analysis, and algorithm
complexity, to extract certain rules or patterns from raw data and then output prediction
information which is widely used in recent years. Kukkonen J. et al. [15] used the neural
network model to predict the concentrations of PM10 and NO2 at two points in Helsinki,
Finland, by taking traffic flow and meteorological factors as predictors. Mckendry I. [16]
used the artificial neural network model to predict the daily maximum and average values
of O3, PM10, and PM2.5 mass concentrations by taking meteorological factors and pollu-
tant mass concentrations as predictors. On the basis of having accurate meteorological
parameters as the input data, all the above studies have achieved good prediction results.
In general, the traditional multiple linear regression model is simple and intuitive, which
can quickly analyze the linear relationship between each parameter, and determine the
influence degree of the influence factor on the predicted object through correlation. How-
ever, in a real urban situation, the prediction environment of air pollutants is very complex,
and there may be a strong nonlinear relationship between air pollutants and the predictors,
which leads to great limitations of the multiple linear regression model to predict results.
Machine learning algorithms obviously show great superiority in solving nonlinear model
problems [17] and support vector machine [18], multi-layer perceptron [19], and sequence
learning [20] have been applied to air pollution research and proved to perform well, but
they cannot rank the influencing variables based on their importance, which cannot provide
a basis for further pollution control and prevention.

The decision tree model (DT) is resistant to this potential problem, it can not only
learn decision rules from data features to predict the value of target variables [21] but
also can identify the relationship between response variables and predictive variables [22].
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The gradient boosted regression tree (GBRT) model was developed on the basis of the DT
model, further enhancing the stability and accuracy of prediction. It is widely used in
big data mining research due to its own certain interpretability, accuracy, and efficiency.
The model also shows stronger robustness and generalization ability when dealing with
complex related variables [23].

In summary, a large number of research scholars focused their research on the macro
level of the entire city and concluded that the concentration of PM2.5 is mainly affected by
various pollution sources and meteorological conditions [24,25]. In addition, fixed-point
monitoring is widely used in the world to obtain the PM2.5 pollution status [15]. However,
the observation results of each monitoring point can only represent the PM2.5 concentration
within a certain radius around the monitoring point, while the monitoring points in the
city are sparse, which can only reveal the PM2.5 pollution level within a small space, and
cannot represent the PM2.5 pollution status and spatial difference of the whole city. In order
to facilitate the public to understand the local air quality and help the government to take
measures to prevent and control PM2.5 pollution, it is necessary to analyze and predict
PM2.5 concentration at the block scale.

The problem of winter haze pollution in cold-climate cities of northeast China is very
serious. Therefore, Harbin, a typical cold-climate city, ranked among the top ten cities
with the worst air quality in China, was taken as an experimental case. This study plans
to achieve the following goals: (1) to illustrate the spatial and temporal distribution of
PM2.5 concentration in block scale; (2) to analyze the influence of urban microclimate on
PM2.5 concentration and the influence radius of urban morphology parameters; (3) to
establish a prediction model of PM2.5 concentration in urban blocks of cold climate based
on the gradient boosted regression trees model and verify its effectiveness; (4) to study the
influence degree of different urban morphologies on PM2.5 concentration and give advice
on urban planning for a better environment.

2. Methodology
2.1. Study Area

Harbin (125◦42′–130◦44′ E longitude, 10◦04′–46◦40′ N latitude) is the capital of Hei-
longjiang Province, China with long winters, short and dry summers, and relatively short
spring and autumn seasons. The special climate results in a heating period that lasts for half
a year and huge consumption of fossil fuels. With the improvement of residents’ quality of
life, the consumption of fossil energy and the number of motor vehicles in Harbin have been
increasing in recent years. In addition, a series of factors, such as excessive and substandard
emissions of coal-fired exhaust gas, automobile exhaust emissions, straw burning, and
long-distance transportation of pollutants all have led to the decline of air quality and
frequent haze weather [26]. According to the data released by the local meteorological
department, during the heating period, coal burning and industrial and secondary sources
are important sources of PM2.5 in Harbin, accounting for 25%, 20%, and 19% respectively,
followed by traffic, dust, and biomass burning, as shown in Figure 1.
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Figure 1. Sources of PM2.5 pollution during heating period in Harbin.
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The changes in PM2.5 concentration in Harbin from January 2019 to January 2021
are shown in Figure 2. According to the requirements of China’s Environmental Air
Quality Standard (GB3095-2012), residential and commercial mixed areas, residential areas,
etc., should meet the second level of PM2.5 concentration limit, that is, the 24 h average
concentration is below 75 µg/m3. However, in January, February, and December 2019, the
average daily PM2.5 concentration exceeded 75 µg/m3 for 9, 13, and 13 days respectively.
In January, February, and December 2020, the number of exceeded days was 26, 5, and
7 days respectively. In January 2021, the number of exceeded days was 17 days. In addition,
the monthly average PM2.5 concentration increased significantly in April 2020, which was
caused by straw burning in the surrounding countryside. It can be found that the months
with excessive PM2.5 concentration were mainly concentrated in the heating season of every
year. Therefore, the PM2.5 pollution situation in Harbin in January, February, and December
was selected for this study.
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Figure 2. Changes in PM2.5 concentration in Harbin in recent years.

In order to analyze the impact of urban morphology factors on the dispersion of PM2.5
at the block scale, a study area with diverse spatial attributes should be selected. As shown
in Figure 3, Harbin Central Street covers an area of 10.1 km2 with a perimeter of 6.5 km and
adopts an open block layout was selected as the research field. It covers pedestrian streets,
shopping malls, squares, residential areas, small parks, and other urban activity spaces.
Moreover, the building density in the region is high, the vegetation coverage is moderate,
and the block types are diverse, including multi-story and high-rise buildings, which are
suitable for research.

2.2. Measurement of PM2.5 and Microclimate Parameter

Different building forms and complex road networks result in great differences in
PM2.5 concentration [27]. The micro-scale spatial variability of PM2.5 concentration cannot
be effectively observed by the fixed air quality monitoring stations in Harbin, so more
intensive monitoring points need to be manually arranged. According to previous studies,
there are differences in the arrangement of measuring points, and there is no strict method
to determine the number of measuring points, so the principle of measuring points should
be as comprehensive and abundant as possible. Combined with the actual situation
and the demand of influence radius, 25 monitoring sites were selected for synchronous
measurement with a monitoring density of 0.4 km2. The arrangement of measuring points
is shown in Figure 3.



Sustainability 2022, 14, 2618 5 of 19

Sustainability 2022, 14, x FOR PEER REVIEW  5  of  20 
 

moderate, and the block types are diverse, including multi‐story and high‐rise buildings, 

which are suitable for research. 

2.2. Measurement of PM2.5 and Microclimate Parameter 

Different building forms and complex road networks result  in great differences  in 

PM2.5 concentration [27]. The micro‐scale spatial variability of PM2.5 concentration cannot 

be effectively observed by  the  fixed air quality monitoring stations  in Harbin, so more 

intensive monitoring points need to be manually arranged. According to previous studies, 

there are differences in the arrangement of measuring points, and there is no strict method 

to determine the number of measuring points, so the principle of measuring points should 

be as comprehensive and abundant as possible. Combined with the actual situation and 

the demand of influence radius, 25 monitoring sites were selected for synchronous meas‐

urement with a monitoring density of 0.4 km2. The arrangement of measuring points is 

shown in Figure 3. 

 

Figure 3. The layout of the study area and measurement points. 

The measured parameters include the PM2.5 concentration at each measurement point 

and  the microclimate parameters  including  temperature  (T), humidity  (RH), and wind 

speed (WIND). Twenty‐five sets of portable monitors were used to detect pollutants at 

different monitoring sites. Each set contains a DylosDC1700 particle detector, an NK5500 

weather station, and a tripod. Recent literature on measurements has confirmed that the 

DylosDC1700 particle detector and NK5500 weather station perform well after reasonable 

calibration to investigate the small‐scale spatial variability of PM2.5 personal exposure and 

assess the effect of environmental features [8,28,29]. Related information such as instru‐

ment precision is listed in Table 1. The measuring instruments were placed on a tripod 

with a height of 1.5 m to obtain pedestrian height data. As shown in Figure 4, measure‐

ment point No.6, located in the center of St. Sophia Cathedral Square, is selected to show 

the field measurement. 

Figure 3. The layout of the study area and measurement points.

The measured parameters include the PM2.5 concentration at each measurement
point and the microclimate parameters including temperature (T), humidity (RH), and
wind speed (WIND). Twenty-five sets of portable monitors were used to detect pollu-
tants at different monitoring sites. Each set contains a DylosDC1700 particle detector, an
NK5500 weather station, and a tripod. Recent literature on measurements has confirmed
that the DylosDC1700 particle detector and NK5500 weather station perform well after
reasonable calibration to investigate the small-scale spatial variability of PM2.5 personal
exposure and assess the effect of environmental features [8,28,29]. Related information
such as instrument precision is listed in Table 1. The measuring instruments were placed
on a tripod with a height of 1.5 m to obtain pedestrian height data. As shown in Figure 4,
measurement point No.6, located in the center of St. Sophia Cathedral Square, is selected to
show the field measurement.

The measurement was carried out from December 2020 to February 2021. In order to
eliminate the interference of snow and other factors, the experiments were carried out in
clear days and abnormal data were removed. Finally, a total of 21 days were selected for
research. The chosen days contain different air pollution conditions of light, moderate, and
heavy haze issued by the Meteorological Observatory. The specific selected test dates and
their morning, middle, and evening meteorological conditions are listed in Table 2. In this
study, round-the-clock monitoring was conducted and hourly data were recorded at each
site. According to different research purposes, the measured data are processed, which are
mainly divided into the following three parts:

(1) Observe the temporal and spatial variation of PM2.5 concentration. The hourly PM2.5
concentration data of each measuring point for 21 days were collected, and then the
hourly average was calculated to observe the temporal distribution characteristics of
PM2.5 concentration. The PM2.5 concentration data of each measuring point at 10:00
and 22:00 for 21 days were collated, and then the mean value of these two times was
calculated to observe the spatial distribution characteristics of PM2.5 concentration.

(2) Observe the influence of urban microclimate on PM2.5 concentration. According to
the temporal distribution characteristics of PM2.5 concentration, the typical moments
when PM2.5 concentration changes were selected. The PM2.5 concentration and micro-
climate data at the corresponding moments of each measuring point for 21 days were
collected, and then the average value at the corresponding moments was calculated
to observe the influence of microclimate change on PM2.5 concentration.

(3) Collect data for predictive model training and validation. The hourly PM2.5 concen-
tration and microclimate data of each measuring point for 21 days were collected
and combined with the subsequent urban morphology and other related data, fi-
nally, 12,600 sets of data were obtained, and then the training and verification of the
prediction model was carried out.
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Table 1. Technical parameters of measuring instruments.

Name Usage Technical Parameter

NK5500 weather station Wind speed,
Temperature, Humidity

Wind speed measurement range is 0.6–60 m/s, accuracy is ±3%,
1 inch|25 mm diameter impeller with precision axle and low-friction

Zytel® bearings;
Temperature measurement range is −29–70 ◦C, accuracy ±0.5 ◦C,

platinum resistance temperature sensor;
Humidity measurement range is 0–100%, accuracy is ±2%, polymeric

capacitance humidity sensor.
The measurement range is the number of particles in the air per

0.01 cubic feet of volume. The unit is µg/m3. Laser scattering method.

DylosDC1700 particle detector PM2.5 concentration
Two kinds of particles of 0.5 µm and 2.5 µm can be detected. This

value divided by 100 is the mass concentration of PM2.5, commonly
used in China.
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Table 2. Average weather conditions of each period on the test day.

8:00–10:00 12:00–15:00 19:00–22:00
WeaT (◦C)/WeaRH (%)/WeaWIN (m/s)/WeaPM2.5 (µg/m3)

1 December 2020 −12.6/70/2.8/112.7 −9.2/54.2/3/86.8 −12.4/72/2.6/117
2 December 2020 −13.1/69.3/3.3/79 −10.2/61.8/2.9/70.3 −13.1/74/2.5/98.5
9 December 2020 −8.6/53.3/5.2/66 −5.4/60.5/5.3/90 −7.9/67.3/2.6/115

16 December 2020 −20.6/63.7/3/78 −16.4/51.5/3.9/65.5 −17.9/52.8/4.5/77.8
22 December 2020 −7/72.7/6.2/115 −5.7/62.5/4.7/134.3 −13.1/88.5/0.7/147.3
24 December 2020 −17/71.7/2.5/114.7 −14.1/59.5/2.6/139 −19.4/86/0.73/149.3

1 January 2021 −23.2/72/2.4/62.3 −18.6/57.5/2.5/95 −22.8/65/1.6/83.5
4 January 2021 −20.9/65.7/3.3/77.3 −17.4/55.3/2.9/92.3 −20.9/73.3/2.2/65.5
5 January 2021 −21.5/65.7/2.7/56.3 −17.5/55.3/3/77.5 −19.8/64.8/2.4/99
9 January 2021 −22.7/68/2.4/99 −17.9/54/3.2/155.8 −19.8/65.5/2/135.5
11 January 2021 −15.2/67.3/3.7/101.3 −12.1/57/3.4/90.3 −15.1/78.8/1.3/74.5
12 January 2021 −15.7/84.3/1.6/102.3 −8.9/73.8/2.7/96.5 −8.6/92.5/2/91.3
13 January 2021 −17/79.3/4/83.7 −14.3/70.8/3.8/104.5 −16.4/84/1.9/96.8
14 January 2021 −19.3/75.7/2.3/112.3 −16.4/66.3/1.9/99.3 −18.7/77.5/1.4/53.8
20 January 2021 −13.9/83/1.7/68 −4.2/85.5/4.8/99 −6.4/83.3/2.9/68.8
21 January 2021 −15.3/82.7/1.2/107.7 −8.9/56.8/3/198.8 −15.9/71.3/2.4/70
23 January 2021 −16/77/1/142.3 −7.6/52.8/1.3/162.3 −13.8/80.5/1.3/214.5
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Table 2. Cont.

8:00–10:00 12:00–15:00 19:00–22:00
WeaT (◦C)/WeaRH (%)/WeaWIN (m/s)/WeaPM2.5 (µg/m3)

24 January 2021 −11.2/83.3/0.7/263.3 −2.5/56.3/1.3/210.5 −13.8/88.3/1.1/62
8 February 2021 −10.5/78/2.1/118 −3.2/63/2.3/116 −14.5/82/2.4/121

14 February 2021 −8.4/62/3.2/89 −2.3/54/3.6/78 −11.6/76/3.5/95
15 February 2021 −7.6/79/2.8/91 −1.9/69/3.4/88 −10.8/86/2.6/111

2.3. Urban Morphology Parameters Analysis
2.3.1. Urban Morphology Parameters Selection and Computation

Existing studies have shown that air pollution was affected by the traffic conditions,
topographic features, economic development, population density, and local weather in the
area [25] This study focuses on the impact of urban morphology on PM2.5 of the urban
canopy. Therefore, transport emissions, building morphology, climate, and local PM2.5
concentration are taken as research carriers. The impact of social factors like economic
development and population density on PM2.5 is controversial, so it is not within this study.
Considering the large difference of traffic networks in Harbin and the limited condition
of obtaining traffic flow data, the road density was selected as the quantitative index of
traffic pollution factor. In addition, due to the special climatic conditions in a cold-climate
city, the leaves of most local trees have withered, and the impact on PM2.5 is very weak,
so it will not be studied here. Finally, referring to previous studies, the selection of urban
morphology parameters should meet the following four criteria:

(1) The parameters should significantly affect PM2.5 concentration.
(2) The parameters should be easy to extract and calculate.
(3) The parameters affect the design.
(4) Parameter redundancy should be avoided.

Finally, 4 meteorological indicators and 7 urban morphology indicators are selected.
Meteorological indicators include hourly wind speed (WeaWIND), hourly humidity (WeaRH),
hourly temperature (WeaT), and hourly PM2.5 concentration (WeaPM2.5) released by the
Observatory. Urban morphology indicators include road density (RD), frontal area index
(FAI), building volume density (BVD), building density (BD), plot ratio (PR), average
building height (AH), and the standard deviation of building height (SDBH). Each urban
morphology index is obtained by a geographic information system (GIS), and its research
significance and calculation method are listed in Table 3.

Table 3. Selected urban morphology factors.

Urban Morphology Factor Unit Equation of Calculation Theoretical Meaning

RD % RD = ∑ Li
A Traffic pollution intensity

FAI % FAI = F
A The blocking effect of the buildings in the plot on the airflow

BVD % BVD = ∑n
i=1 Si Hi
Hmax A The spatial density of the buildings in the plot

BD % BD = ∑n
i=1 Si
A

The level of building density in the horizontal direction
within the plot

PR - PR = ∑n
i=1 Sihi

A
The overall volume and development intensity of the

buildings in the plot

AH m AH = 1
n ∑n

i=1 Hi Vertical building development intensity

SDBH - SDBH =

√
1
n

n
∑

i=1
(H − AH)2

The degree of difference and dislocation of the vertical
building height within the plot

Note: Hi is the height of each building in the buffer area; Hmax is the height of the tallest building in the buffer
area; hi is the number of floors of each building in the buffer area; Si is the bottom area of each building in the
buffer area; R is the total floor area of vehicles in the buffer area; F is the sum of the windward area of the building
in the direction of the incoming wind (the incoming wind is from the northwest, which is the dominant wind
direction of Harbin in winter); Li is the road length in the buffer area; A is the total area of the buffer area.
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2.3.2. Determination of Influence Radius of Urban Morphology Parameters

Diverse urban morphology factors have different degrees of impact on PM2.5 concen-
tration under different buffer zones [30]. As shown in Figure 5, in order to obtain the urban
morphology factors that can explain the change of PM2.5 concentration to the maximum
extent, we established buffer zones of different sizes with each measuring point as the
center of the circle. According to the existing literature [8,30], we set the radii to 50 m,
100 m, 200 m, 300 m, 400 m, and 500 m respectively.
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Figure 5. Changes in architectural spatial morphology under different buffer radii.

The correlation analysis between urban morphology factors with different buffer radii
and the PM2.5 concentrations of corresponding measurement points was carried out to
obtain the buffer radius which can highest interpretation of PM2.5 concentration, and the
correlation coefficient R2 and significance Sig. are calculated for comparison. If R2 were the
largest and Sig. (2-tailed) were less than 0.05, then urban morphological parameters under
this buffer radius will apply for further analysis.

2.4. Gradient Boosted Regression (GBRT) Trees Model
2.4.1. Model Construction Principle

Gradient boosted regression trees (GBRT) model is derived from the ensemble learn-
ing boosting algorithm and have improved on it. Boosting is an integrated method for
improving model accuracy. The idea is to combine many “weak learners” into one “strong
learner” [31]. It is a numerical optimization technique in which predictors are successively
added to the set, and each predictor modifies its predecessor. The gradient descent method
is used to minimize the loss expectation function. This sequential process focuses on
residuals and continues to iterate until the model meets the observations with minimal
residuals. The workflow of the GBRT algorithm is shown in Figure 6.
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The main process of GBRT model establishment is as follows:
Let training set sample T = {(x1,y1), (x2,y2), . . . , (xn,yn)},
Determine loss function:

L(y, f (x)) = (y− f (x))2 (1)

Step 1. Initialize the first weak learner:

f0(x) = argmin
c

N

∑
i=1

L(yi, c) (2)

Step 2. Let the number of iterations m = 1, 2 . . . , M

(a) For i = 1, 2, . . . , N. The negative gradient direction of the loss function was calculated,
and the predicted value of the model was obtained, which was used as the prediction
residual. The negative gradient of the i-th training data is as follows:

rmi = −
[

∂L(y, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

(3)

(b) Build a regression tree on the basis of rmi, and obtain the leaf node area Rmj of the m-th
tree. Predict the leaf node area of the decision tree to obtain an approximate value of
the fitting residual.

(c) For j = 1, 2, . . . , J. Linear search is used to obtain the value in the range of leaf nodes.
Minimize the loss function. The best residual fitting value of each blade is as follows:

cm = argmin
c

n

∑
i=1

L(yi, fm−1(xi) + c) (4)

(d) Update the regression tree:

fm(x) = fm−1(x) +
J

∑
j=1

cmj I
(
x ∈ Rmj

)
(5)

Step 3. Get the final model:

f (x) = fM(x) =
M

∑
m=1

J

∑
j=1

cmj I
(
x ∈ Rmj

)
(6)

2.4.2. Model Construction and Comparative Validation

Finally, 11 factors including urban morphological variables were selected. PM2.5
concentration and climate variables released by the Meteorological Observatory were used
as input variables. The PM2.5 concentration of each measurement point recorded every
hour was used as the output variables of the model. Among them, 70% were divided into
training data and 30% test data. Before calculation, grid search (GS) was used to adjust the
model parameters, and the Z-score algorithm was used for dimensionless standardization
of all data.

In order to verify the prediction accuracy of the GBRT model, decision tree (DT),
random forest (RF), and multiple linear regression (MLR) were selected to complete the
contrast experiment. Among them, the MLR model is one of the traditional regression
methods, while DT and RF models belong to machine learning, which are among currently
popular forecasting research methods. The coefficient of determination (R2), mean square
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error (MSE), and mean absolute error (MAE) are selected as the model evaluation indicators.
The formula is as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (7)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

Note: yi is the actual value of PM2.5 concentration; yi is the average value of PM2.5
concentration; ŷi is the predicted value of PM2.5 concentration; n is the total amount of
experimental data.

3. Results and Analysis
3.1. Temporal and Spatial Distribution of PM2.5 at Urban Block Scale

We performed 24 h simultaneous monitoring of 25 measurement points for 21 days,
collated hourly average data and day–night average data of each measuring point, and then
observed the time and spatial distribution characteristics of PM2.5 concentration. In this
measurement, it was found that there was a big difference in PM2.5 concentration among
different measurement points, and the maximum difference can reach 69.03µg/m3. The
temporal distribution of PM2.5 concentration is shown in Figure 7. As shown in Figure 7,
the daily variation of PM2.5 concentration presents a bimodal distribution. The PM2.5
concentration’s first peak appears between 9:00 and 10:00 in the morning. After 10:00, the
concentration begins to decline rapidly, and it drops to a minimum between 15:00 and 16:00
when a valley appears. After that, the concentration gradually increased again, reaching a
second peak around 21:00–22:00. After 22:00, the concentration decreased slowly, reaching
the second valley around 5:00, and then rising again.

In general, there are low wind speeds near the ground and a strong inversion layer at
night in winter in Harbin, which is not conducive to the horizontal and vertical dispersion
of pollutants. With the increase of surface temperature in the daytime, the inversion layer
weakens or disappears, while the effects of near-surface wind and turbulence are strength-
ened. On the other hand, the temperature in the northern winter decreases significantly at
night, the demand for coal increases compared with the daytime, therefore, smoke and dust
emissions reach the maximum of the day. After 22:00, human activity gradually ceased
and the amount of coal burned at night was greatly reduced. In addition, around 8:00 and
18:00 correspond to the peak commuting period, and the traffic flow during this period
increases rapidly and exhaust emissions are the largest. It is worth noting that the peak at
night appears after 20:00, 1–2 h behind the off-duty peak, indicating that there is a process
of accumulation of pollutants. It can be found that during the day, traffic flow is larger than
that at night, the production activities are concentrated, and the emissions are high. How-
ever, the change in PM2.5 concentration shows that PM2.5 concentration at night is higher
than that during the day and decreases more slowly. The pollution at night is more serious
than that during the day. It shows that the dispersion effect of meteorological factors is
more significant than the impact of human activities on the change of PM2.5 concentration.

The spatial distribution of PM2.5 concentration is shown in Figure 8. As shown in
Figure 8, the average PM2.5 concentration data of each measurement point during the day
(10:00) and at night (22:00) of 21 days were selected. The maximum concentration difference
was 62.2 µg/m3 and 55.5 µg/m3, respectively.
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Figure 7. PM2.5 concentration’s time distribution.
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Figure 8. Spatial distribution of PM2.5 concentration: (a) the day (10:00); (b) the night (22:00).

It can be found that the PM2.5 concentrations at points 3 and 22 are higher than other
measurement points. These points are densely built with high BD, BVD, and PR, which are
not conducive to the dispersion of PM2.5. The intensity of traffic flow is also relatively large,
and the increase in RD greatly increases PM2.5 pollution. FAI is higher at point 23 near 22,
which is conducive to PM2.5 dispersion, so PM2.5 concentration at point 23 is lower. SDBH
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at point 1 is higher than that at point 7, which is conducive to PM2.5 diffusion, so the PM2.5
concentration at point 1 is lower. At points 6, 11, and 12, the PM2.5 concentrations are lower
than other measurement points because these points are in parks or squares, with low BD
and RD and far from the road, which is conducive to the spread of PM2.5. In addition,
contrary to daytime, the value of point 5 at night is lower than point 19, and the values of
points 25 and 14 level off. Points 25 and 5 are located on the streets with heavy traffic, and
as the traffic flow at night decreases, the PM2.5 concentration decreases accordingly.

3.2. Correlation Analysis of PM2.5 Concentration and Microclimate

In the study of the time distribution of PM2.5 concentration in Section 3.1, we found
that PM2.5 concentration reached its minimum value at 5:00 (No.1) and 16:00 (No.3) and
reached its maximum value at 10:00 (No.2) and 22:00 (No.4). Therefore, we selected the
microclimate and PM2.5 concentration measured data at these moments to combine with
linear regression analysis for correlation research.

As shown in Figure 9a, there is a significant negative correlation between air tempera-
ture and PM2.5 concentration. With the rise of temperature, PM2.5 concentration shows a
trend of gradual decline. The measured data show that the variation law of the correlation
between PM2.5 concentration and temperature is different from that of meteorological
temperature (No.1: WeaT = −17.6 ◦C, R2 = 0.88; No.2: WeaT = −14.1 ◦C, R2 = 0.82; No.3:
WeaT = −9.2 ◦C, R2 = 0.79; No.4: WeaT = −15.9 ◦C, R2 = 0.74), indicating that meteoro-
logical temperature has little influence on the correlation between PM2.5 concentration
and temperature.

As shown in Figure 9b, wind speed has a significant negative correlation with PM2.5
concentration. With the increase of wind speed, PM2.5 concentration shows a trend of
gradual decline. The measured data showed that the correlation between PM2.5 con-
centration and wind speed increased with the increase of meteorological wind speed.
Among them, No.3 has the largest meteorological wind speed, and the correlation be-
tween PM2.5 concentration and wind speed is the strongest (No.1: WeaWIN = 1.4 m/s,
R2 = 0.78; No.2: WeaWIN = 2.8 m/s, R2 = 0.87; No.3: WeaWIN = 3.5 m/s, R2 = 0.91; No.4:
WeaWIN = 2.3 m/s, R2 = 0.83), indicating that the higher the meteorological wind speed,
the more significant the correlation between PM2.5 concentration and wind speed.

As shown in Figure 9c, there is a significant positive correlation between relative
humidity and PM2.5 concentration. With the rise of relative humidity, PM2.5 concentration
shows a trend of gradual increase. Among them, No.1 has the largest meteorological
relative humidity, and the correlation between PM2.5 concentration and relative humidity
is the strongest (No.1: WeaRH = 87.6%, R2 = 0.86; No.2: WeaRH = 70.6%, R2 = 0.81; No.3:
WeaRH = 59.8%, R2 = 0.76; No.4: WeaRH = 77.6%, R2 = 0.84), indicating that the higher
the meteorological relative humidity, the more significant the correlation between PM2.5
concentration and relative humidity.

In summary, urban microclimate has an obvious effect on PM2.5 concentration. The
increase in temperature and wind speed are conducive to the dispersion of PM2.5. Microcli-
mate also has spatial variability and is related to urban morphology factors [32]. Therefore,
the influence of urban morphology factors on microclimate should also be considered.

3.3. Model Analysis and Comparison of Validation Results

The urban morphology parameters of each measuring point under the buffer radius
of 50 m, 100 m, 200 m, 300 m, 400 m, and 500 m are extracted by GIS and divided into
six groups for research. In each group, we successively analyzed the correlation between
each urban morphology parameter and its corresponding PM2.5 concentration at different
times and at different measuring points. Among them, the PM2.5 concentration data comes
from the 24 h continuous monitoring of each measuring point for 21 days. Finally, the corre-
lation analysis results of different urban morphology parameters and PM2.5 concentration
in each group are obtained, as shown in Table 4. It can be found that BVD, BD, FAI, and RD
reach the maximum when the buffer radius is 300 m. PR and SDBH reach the maximum
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when the buffer radius is 200 m. AH reaches the maximum at a buffer radius of 500 m. The
urban morphology factors with the highest correlation were selected for further analysis.
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Table 4. Correlation analysis of urban spatial morphology factors and PM2.5 concentration under
different buffer radii.

Urban Morphology Factor RD FAI BVD BD PR AH SDBH

No.1: R2/sig (50 m) 0.696/0.0 0.633/0.5 0.766/0.0 0.580/0.0 0.635/0.0 0.663/0.09 0.731/0.06
No.2: R2/sig (100 m) 0.754/0.0 0.685/0.0 0.829/0.0 0.628/0.0 0.605/0.0 0.718/0.0 0.792/0.0
No.3: R2/sig (200 m) 0.792/0.0 0.720/0.01 0.87/0.0 0.660/0.02 0.794/0.0 0.754/0.0 0.890/0.0
No.4: R2/sig (300 m) 0.895/0.0 0.814/0.0 0.915/0.03 0.846/0.0 0.750/0.0 0.752/0.02 0.840/0.0
No.5: R2/sig (400 m) 0.625/0.0 0.568/0.0 0.688/0.0 0.521/0.0 0.753/0.0 0.795/0.0 0.656/0.0
No.6: R2/sig (500 m) 0.533/0.1 0.485/0.0 0.586/0.0 0.444/0.0 0.640/0.0 0.852/0.01 0.560/0.2

As shown in Table 5, the coefficients of determination (R2), mean square error (MSE),
and mean absolute error (MAE) of decision tree (DT), random forest (RF), and multiple
linear regression (MLR) models were calculated respectively. All the evaluation indexes
of GBRT, DT, and RF models are higher than those of the MLR model, indicating that the
machine learning model has a higher explanatory effect on the difference of PM2.5 concen-
tration. The reason is that it captures linear and nonlinear relationships between variables.
Meanwhile, MAE and MSE of the GBRT model were 1.452 µg/m3 and 3.246 µg/m3, respec-
tively, which were 26.3% and 31.5% lower than those of RF and DT models on average.

Table 5. The prediction accuracy of each model on the test set.

GBRT MLR RF DT

MAE (µg/m3) 1.452 3.690 1.631 2.308
MSE (µg/m3) 3.246 8.872 4.285 5.197

R2 0.978 0.791 0.966 0.894

The comparison between the actual value and predictive value of the GBRT model is
shown in Figure 10. From the results of the model, the GBRT model performs well, with
an R2 value of 0.978, indicating that the prediction performance of the GBRT model is
stable during the whole research period. To sum up, the GBRT model has the minimum
prediction error, the best fitting effect, and high prediction accuracy.
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Figure 10. Comparison of the real value and the predicted value of the GBRT model.

3.4. The Influence of Urban Spatial Morphology on PM2.5 Distribution

According to the above study, the GBRT model has high accuracy in predicting PM2.5
concentration. Therefore, the “Feature_importances” command of the GBRT model is used
to further study the influencing factors. The analysis of the contribution degree of each
influencing factor is shown in Figure 11.
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It can be found that WeaPM2.5 is the most significant factor affecting PM2.5 concen-
tration. In previous studies, the air monitoring station far away from the city was often
selected to estimate PM2.5 concentration [33]. However, it does not apply to the assessment
of PM2.5 concentration at the block scale. The monitoring site is located in Daoli District,
Harbin. Therefore, the data of meteorological stations in this area were selected for re-
search. The influence degree of urban morphology factors on PM2.5 in descending order
are: BD > AH > PR > RD > BVD > SDBH > FAI.

4. Discussion and Urban Design Recommendations

In recent years, the difference in PM2.5 concentration and its relationship with urban
morphology factors have attracted much attention. Based on previous studies, this paper
considers the influence of potential factors such as microclimate and urban morphology on
PM2.5 concentration. All of these variables were measured synchronously at high-density
measuring points. Compared with previous single studies on buildings, green space,
roads, and water bodies at block scale [34,35], this study focuses more on comprehensive
consideration of various influencing factors, which is helpful to understand the mode and
degree of influence of urban space on PM2.5 concentration.

In terms of urban morphology, it is found that building density, average building
height, and road density all have an impact on PM2.5 concentration which is consistent
with previous research but with some differences, for example, Gao Y. [17] proposed that
traffic land and PM2.5 concentration have a strong correlation, and the correlation is more
than that of other urban morphology factors. However, in this study, although road density
has a high correlation with PM2.5 concentration, it is lower than building density, average
building height, and other influencing factors. The main reason for this difference is that
cities in different regions have different sources of PM2.5 pollution. Pollution in southern
cities is still dominated by vehicle emissions even in winter, while in Harbin, a cold-climate
city, the heating emissions are even greater in winter. In terms of urban microclimate,
temperature and wind speed are strongly negatively correlated with PM2.5 concentration,
while relative humidity is strongly positively correlated with PM2.5 concentration, which is
basically consistent with previous studies [4]. In terms of selecting research methods for
PM2.5 concentration prediction, some scholars have conducted prediction research on air
pollution. As shown in Table 6, the following methods are common, and each has its own
advantages and disadvantages.
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Table 6. The advantages and disadvantages of existing research results.

Model Advantage Disadvantage

Empirical
model

Linear regression
model

Land use
regression (LUR) Fast calculation speed Failed to capture the

nonlinear relationships

Multiple linear
regression (MLR) Fast calculation speed Failed to capture the

nonlinear relationships

Machine learning
method

Decision tree (DT) Capture the nonlinear relationships Low prediction accuracy

Random forest (RF)
Capture the nonlinear relationships;

Rank the influencing variables based on
their importance

-

Gradient boosted
regression trees (GBRT)

Capture the nonlinear relationships;
Rank the influencing variables based on

their importance
-

Support vector
machine (SVM) Capture the nonlinear relationships

Cannot rank the
influencing variables based

on their importance

Multi-layer
perceptron Capture the nonlinear relationships

Cannot rank the
influencing variables based

on their importance

Sequence learning Capture the nonlinear relationships
Cannot rank the

influencing variables based
on their importance

Deterministic
model

-

Weather research and
forecasting (WRF) Applicable to macroscale Limited the analysis of air

quality at microscales

Community multiscale
air quality (CMAQ) Applicable to macroscal Limited the analysis of air

quality at microscales

In this study, the GBRT model was used to further analyze the influencing factors of
PM2.5 concentration in near-surface cities, and design suggestions for promoting urban air
pollutant dispersion were put forward as follows:

(1) Horizontal layout of buildings: Building density is the urban morphology factor that
has the greatest impact on PM2.5 concentration, with an impact degree of 57%; plot
ratio and building volume density have an impact degree of 33% and 22% respectively.
Therefore, building density parameters should be given priority.

(2) Vertical layout of buildings: the influence degree of average building height and
standard deviation of building height is 49% and 12% respectively, so it is necessary
to make reasonable restrictions on building height. Attention should also be paid to
the diversity of building height.

(3) Existing buildings: it is unrealistic to demolish buildings on a large scale, but the
existing urban spatial form can be improved. The impact degree of frontal area index
and road density is 11% and 23% respectively. The essence of the impact of road
density on PM2.5 concentration comes from automobile exhaust emissions. Based
on this, removing part of the windward wall and controlling street vehicles is a
practical solution.

In conclusion, designers and relevant departments should comprehensively consider
the design scheme according to the actual situation. It is worth noting that the actual built
environment is very complex, and the generation and dispersion of air pollution is the
result of a combination of various factors. This study mainly focuses on the relationship
between urban morphological characteristics and PM2.5 concentration. However, such
as the location distribution of pollution sources, wind direction, turbulence, heat and
momentum fluxes, surface temperature, solar radiation for shadowing effects, seasonality
and others are also important factors affecting the distribution of PM2.5 in cities. Therefore,
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pollution sources should be included in future research. At the same time, the accuracy
of GBRT model prediction is closely related to sample data. When the training samples
can represent the characteristics of the predicted problems, the learning efficiency, and
prediction accuracy of the model will be better. On the contrary, the GBRT model will learn
a lot of useless experience, which will greatly reduce the prediction rate and affect the
prediction accuracy. Therefore, in future research, it is necessary to improve the analysis of
sample data to make the prediction research more accurate.

5. Conclusions

In this study, a machine learning method was introduced to establish a prediction
model of PM2.5 concentration in cold-climate cities. At the same time, this model is used to
analyze the influencing factors of PM2.5 concentration, providing theoretical reference and
technical support for relevant workers in the design and governance of urban blocks. The
main conclusions are as follows:

(1) There are significant temporal and spatial differences in PM2.5 concentration. The
temporal difference indicates that the daily variations in PM2.5 concentration are influ-
enced by human activities and meteorological factors. The curves of the average daily
variations of PM2.5 concentration are similar, with two peaks. The spatial difference
indicates that the variation in PM2.5 concentration is influenced by urban morphology
factors, and PM2.5 concentration is different under different urban morphology.

(2) There is a significant linear relationship between microclimate and PM2.5 concentra-
tion. Wind speed and temperature are negatively correlated with PM2.5 concentration,
while humidity is positively correlated with PM2.5 concentration. However, both
microclimate and PM2.5 concentrations are affected by urban morphology, indicat-
ing that urban morphology, microclimate, and PM2.5 concentration interact with
each other.

(3) Compared with other models, it is found that the gradient boosted regression trees
(GBRT) prediction model has higher prediction accuracy and stability. The GBRT
model was used to rank the influencing factors, and it was found that, except for the
local PM2.5 concentration and climate data released by meteorological stations, urban
morphology factors contributed significantly to the change of PM2.5 concentration.
The highest influence degree is building density and average building height, followed
by plot ratio, road density, building volume density, and finally standard deviation of
building height and frontal area index.
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Nomenclature

RD Road density (%)
FAI Frontal area index (%)
BVD Building volume density (%)
BD Building density (%)
PR Plot ratio
AH Average building height (m)
SDBH Standard deviation of building height (m)
T Measured hourly temperature (◦C)
WIND Measured hourly wind speed (m/s)
RH Measured hourly humidity (%)
WeaT Hourly temperature released by the Meteorological Observatory (◦C)
WeaWIND Hourly wind speed released by the Meteorological Observatory (m/s)
WeaRH Hourly humidity released by the Meteorological Observatory (%)
WeaPM2.5 Hourly PM2.5 concentration released by the Meteorological Observatory (µg/m3)
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