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Abstract: The outbreak of unexpected events such as floods and geological disasters often produces
a large number of emergency material requirements, and when common logistics methods are
often ineffective, emergency logistics unmanned aerial vehicles (UAVs) become an important means.
How to rationally plan multiple UAVs to quickly complete the emergency logistics tasks in many
disaster-stricken areas has become an urgent problem to be solved. In this paper, an optimization
model is established with the goal of minimizing the task completion time and the penalty cost of
advance/delay, and a discrete multi-objective teaching–learning-based optimization (DMOTLBO)
algorithm is proposed. The Pareto frontier approximation problem is transformed into a set of single
objective sub-problems by the decomposition mechanism of the algorithm, and each sub-problem is
solved by the improved discrete TLBO algorithm. According to the characteristics of the problem,
TLBO algorithm is improved by discretization, and an individual update method is constructed
based on probability fusion of various mutation evolution operators. At the same time, variable
neighborhood descent search is introduced to enhance the local search ability. Based on the multi-level
comparative experiment, the improvement measures and effectiveness of DMOTLBO are verified.
Finally, combined with specific case analysis, the practicability and efficiency of the DMOTLBO
algorithm in solving the multi-objective emergency logistics task planning problem of multiple UAVs
are further verified.

Keywords: task planning; emergency logistics UAV; discrete multi-objective; improved TLBO algorithm

1. Introduction

Emergencies such as floods and geological disasters often generate a large number of
emergency needs for emergency supplies. It is necessary to deliver emergency supplies
to the disaster areas quickly, efficiently and accurately in a reasonable and feasible way,
so as to meet the needs of basic survival, treatment of the wounded, sanitation, epidemic
prevention, etc. However, under the complicated terrain conditions and bad weather
environment in disaster areas, it is difficult to realize timely and effective emergency
logistics support, since the commonly used logistics methods are often ineffective. In recent
years, unmanned aerial vehicles (UAVs) have been applied in various places to make up
for the shortage of emergency logistics [1]. How to rationally plan multiple UAVs in the
base to quickly complete the emergency logistics tasks in many disaster-stricken areas has
become an urgent problem to be solved.

At present, the research on UAV task planning is mostly transformed into combi-
natorial optimization problems, and the traditional solutions are deterministic method
based on mixed integer programming (MILP), task allocation method based on market
mechanism and dynamic network flow optimization method. The first one is to model
the UAV task assignment as an integer programming problem, which can be solved by
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branch definition method and tangent plane method, which are two common deterministic
algorithms. However, the integer programming algorithm requires the number of UAVs
exceeds that of targets; furthermore, the cost calculation is too simple, so it is not suitable for
the target allocation problem in practical common situations. Chang [2], Kim [3] and others
analyzed the limitations of the classic multi-UAV task allocation model and established a
multi-UAV task allocation model based on agent and contract network negotiation. The
method is simple in principle, easy to implement and high in efficiency, but it has poor
ability to deal with coordination and constraints, and probably conflicts with individual
interests in pursuit of overall optimization. Sieatkowska [4] and Fu.Z [5] have constructed
a dynamic network flow model with limited capacity, which can solve the optimal re-
source allocation problem of UAV. However, in order to construct a group of one-stage
problem models, the methods oversimplify the cooperative relationship between UAVs
and reduces the credibility. Moreover, the rapid development of intelligent optimization
algorithms in recent years provides a new way to solve UAVs task planning problems,
among which population-based algorithms are common. Population-based intelligent
algorithms generally use the population composed of multiple solutions as the planning
object, and through repeated iteration, find the optimal solution in the search space [6].
Commonly used swarm intelligence algorithms include genetic algorithm, particle swarm
optimization algorithm, ant colony algorithm [7–12]. They are flexible, adaptive and in-
spiring; however, they only focus on the task planning and optimization of multiple UAVs
under a single target, without considering the complexity of mission planning objectives in
the actual environment. Additionally, the solution of multi-objective optimization problem
is to seek the trade-off between multiple objectives of different dimensions, in which Pareto
dominance-based method [13] has been widely used. Zhang Qingfu and others put forward
the multi-objective evolutionary algorithm MOEA/D [14] based on decomposition in 2007,
and introduced the decomposition method in mathematical programming into the field of
multi-objective evolution. However, the multi-objective task assignment problem of multi-
UAVs belongs to a complete NP-hard problem. The multi-objective nature of the solution
process and the large number of UAVs involved will lead to the phenomenon of combined
explosion, which further aggravates the difficulty of solution and needs the support of
effective task assignment algorithm. In addition, most studies consider the task allocation
of military UAV, but there are few studies on the task planning in the field of civilian and
emergency rescue UAV logistics. Actually, combining mathematical programming methods
with intelligent algorithms is a new idea to solve emergency UAVs multi-objective task
allocation problems.

In this paper, the DMOTLBO algorithm, combining MOEA/D and improved discrete
TLBO algorithm, is designed to solve the multi-objective task planning and scheduling
problem of emergency UAVs. The TLBO algorithm is an efficient and intelligent optimiza-
tion algorithm proposed by Rao and other scholars. Inspired by teaching behavior, this
method realizes iterative evolution by simulating the phenomenon of teachers’ classroom
teaching and students’ mutual learning, and has the advantages of less control parameters
and fast convergence speed [15]. Literature research shows that the research of DMOTLBO
algorithm for UAV task planning is non-existent. Firstly, the multi-objective Pareto frontier
approximation problem is transformed into a set of single-objective sub-problems by the
decomposition mechanism, and then the sub-problems are solved based on the improved
discrete TLBO algorithm. On the premise of maintaining the updating mechanism of the
standard TLBO algorithm, the algorithm is discretized, and the teaching and learning stages
are improved, respectively, so that the algorithm can directly conduct global search based
on TLBO idea in discrete solution space. In addition, a variable neighborhood descent
search is constructed to greatly enhance the local search ability of the algorithm. Finally,
through a series of simulation experiments, the feasibility and efficiency of DMOTLBO
algorithm are verified.
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2. Mathematical Modeling
2.1. Assumption

The cooperative task allocation of emergency rescue for multi-UAVs refers to assign-
ing tasks to each UAV, determining the set of target locations of each UAV, the amount
of emergency materials corresponding to each target point and the execution order of
transporting materials, so as to achieve the highest overall efficiency of multi-UAVs in
performing tasks [16].

In the scene of emergency logistics replenishment by using UAV after natural disasters,
there are some disaster sites that are not far from each other but difficult to reach due to
geographical or meteorological factors, and it is necessary to use UAVs of different types
in the emergency rescue flight base to carry out transportation tasks with corresponding
emergency materials such as medicines according to the degree of urgency. Suppose an
emergency command center O undertakes the mission to deliver emergency rescue materi-
als, mainly medicines and lightweight tools, to n disaster sites in a certain area which are
geographically close but scattered and difficult to reach quickly by conventional vehicles in
a short time. The center is now equipped with m various UAVs for emergency rescue, each
of which is represented as Uk(k = 1, 2, . . . , m) and the maximum load and endurance time
of different types of UAVs are different. Each UAV is assumed to be a particle with a con-
stant velocity, that is, the dynamic characteristics of the UAV are not considered, and only
the kinematic characteristics are taken into account. Furthermore, because the transporta-
tion distance considered in this paper is relatively short, the complicated environmental
factors are not considered for the time being. Then, it is assumed that the flight distance
between two locations of the UAV is close to the straight line distance between them, and
the round-trip time of the UAV between the two locations is the same. Additionally, due to
the limitation of energy, the UAV can only fly continuously for a limited distance.

First, the UAV completes the material transportation task of disaster site i, that is,
completes the task mki. Assuming that the task execution set of UAV Uk is Mk, the corre-
sponding total flight distance of Uk is Lk, and the UAVs are required to return to the base
after completing the task set, then Lk should be the total flight length of Uk returning to the
base from the last target point after carrying out emergency material delivery tasks of each
target point in a given order. Lmax

k denotes the maximum flight distance of Uk in a single
flight. Qmax

k denotes the maximum load of Uk. Additionally, there are several constraints.

2.2. Constraints

Constraint (1): A single UAV can fly to single or multiple disaster sites. However,
the round-trip distance of a single UAV flying mission is less than the maximum cruising
distance of UAV.

Lk ≤ Lmax
k (1)

Constraint (2): It is assumed that the types and corresponding quantities of materials
needed at each disaster site are known. qi denotes the material demand corresponding to
the task target point i, Q(Mk) is the total material demand of all target points in Uk’s task
set, that is, the actual load of Uk when it leaves, so Q(Mk) should not exceed Qmax

k . During
the transportation, the load decreases with the increase in pick-up times, and it is ignored
for the little influence on flight performance in this paper.

Q(Mk) ≤ Qmax
k (2)

Constraint (3) is used to ensure that each task is only executed and completed once.

n

∑
a=0,a 6=b

m

∑
k=1

xabk = 1, b = 1, 2, . . . , n (3)
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Constraint (4) shows each task is executed first or immediately after a certain task.

n

∑
a=0,a 6=s

xask −
n

∑
b=1,b 6=s

xsbk = 0, s = 1, 2, . . . , n, k = 1, 2, . . . , m (4)

Constraint (5) indicates the completion time of each task. UAVs required a different
amount of time to reach each target point in the disaster area, and it costs one UAV a
different amount of time to complete transportation tasks of various sites.

Tb = max{Ta +
m
∑

k=1
xabk·tabk + sbk + R·(

m
∑

k=1
xabk − 1)},

a = 0, 1, . . . , n, b = 1, 2, . . . , n
(5)

Since R represents a positive number large enough, the above formula can guarantee
that b is the next target task point of a.

Constraint (6) indicates that the first mission of each UAV is no more than one.

n

∑
b=1

x0bk ≤ 1, k = 1, 2, . . . , m (6)

Formula (7) represents the initialization of the task, and the completion time of virtual
task 0 is 0, that is, the initial time from the base is 0.

T0 = 0 (7)

Formula (8) calculates the advance and delay time of each task.

TDb ≥ Tb − Eb, b = 1, 2, . . . , n
TDb ≥ Tb − Eb, b = 1, 2, . . . , n

(8)

Formula (9) calculates the value of UAV mission planning and scheduling scheme.

Tmax = max(Tb), b = 1, 2, . . . , n (9)

Constraint (10) defines the value range of all variables.

xabk ∈ {0, 1}, a = 0, 1, . . . , n, b = 1, 2, . . . , n, k = 1, 2, . . . , m,
TFb ≥ 0, TDb ≥ 0, Tb ≥ 0, b = 1, 2, . . . , n

(10)

2.3. Objective Function

Additionally, before an UAV carries out the task, the base has already determined the
expected pick-up time with each disaster-stricken point. When the UAV arrives before the
available time, it needs personnel to wait for picking-up in advance, and when arrives late,
it may cause problems such as delaying the timing of drug treatment and so on. Therefore,
it is required that all UAVs should have the shortest total flight time and arrive on time as
much as possible, that is, the least advance and delay.

The optimization objectives are as follows:

(1) Find the minimum value of the completion time of all tasks, that is, calculate with the
UAV in the base with the longest completion time and find the minimum value:

min f1 = Tmax (11)

(2) Minimizing the sum of advance/delay penalty costs:

min f2 =
n

∑
b=1

(Fb·TFb + Db·TDb) (12)
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The decision variables are:

xabk =

{
1, i f b is the next task poin t a f ter a o f UAV Uk

0, else

x0bk =

{
1, i f b is the f irst task poin t f or Uk

0, else

(13)

The parameters’ meanings are as follows:
a and b represent different disaster sites. m represents the total number of UAVs.

n indicates the total number of UAV task target points that need material support. tabk
indicates the length of time for the UAV Uk to arrive at the disaster-stricken task point a
from the task point b. labk denotes the flight distance of Uk from point a to point b. Assuming
that Uk flies at a constant speed vk, then labk = tabk·vk. sbk indicates the stay time of Uk in a
certain task point b. As in this paper the stay time of picking up supplies is relatively short
to the flight time, so sbk is approximately zero. Tb indicates the delivery arrival time of task
point. Eb denotes the expected delivery time of task point b. TFb indicates the advance
arrival time of task point b. TDb indicates the delay arrival time of point b. Fb indicates the
cost coefficient of advance punishment for task point b. Db indicates the delay penalty cost
coefficient of task point b. Tmax indicates the maximum completion time of all tasks.

3. UAV Emergency Task Planning Based on the DMOTLBO Algorithm
3.1. TLBO Algorithm

Teaching–learning-based optimization algorithm TLBO is a new optimization method
based on the classroom teaching effect proposed by Rao et al. It is a swarm intelligence
evolutionary algorithm that simulates the teaching and influence of teachers on students
in the classroom and the mutual learning process among students, and makes the whole
group continuously evolve forward. Additionally, the group of teachers and students
are the population in TLBO algorithm. The best individual in each generation becomes
the teacher, and the rest are students. TLBO algorithm consists of two stages, namely,
the teaching stage and the learning stage. The former is the stage when students learn
from teachers, and the latter is the stage when students learn from each other to improve
their grades. Given the population size N and the coding length D of the problem, and
Xi = [xi1, xi2, xi3 . . . , xid](i = 1, 2, . . . , N; d = 1, 2, . . . , D) denotes the i-th student in the
class, xid denotes the numerical value of student Xi in dimension d, indicating the achieve-
ment of a certain course. The upper and lower limit of achievement, that is, the range of
independent variables of each dimension is xid= [xl

id, xu
id

]
. The initial population formula

is as follows and r = rand(0, 1) denotes the learning step, which is a random number
on [0, 1].

Xi = L + r·(U − L), L =
(

xl
i1, xl

i2, xl
i3, . . . , xl

id

)
, U = (xu

i1, xu
i2, xu

i3, . . . , xu
id) (14)

3.1.1. Teaching Stage

As a teacher, the optimal individual in the class population Xt updates the population
through the “teaching” operator. Given the parent individual, the formula for generating
new individuals is shown as below:

Xinew(t) = Xiold(t) + r·(Xt(t)− TF·Xm(t)); Xm(t) = {m1(t), m2(t) . . . , md(t)} (15)

in which t is the current iteration number, and md(t) is the average score in each course
of all t-generation students, that is, the average value of independent variable in each
dimension currently.Xt(t) means the optimal individual found in the t-generation, which is
also the expected average level of the next generation. Additionally, as the teaching factor,
TF = round(1 + rand(0, 1)), TF ∈ {1, 2}. Xinew(t) and Xiold(t) denote the i-th individual
before and after the update in the t-generation. At last, comparing the objective or fitness
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function values of the two, the current learning result will be accepted only if it is better
after updating.

3.1.2. Learning Stage

In this stage, the “learning” operator is used to realize mutual learning among in-
dividuals, that is, randomly select individuals in the population, and update the current
population with the difference component between the individual and other individual
vectors for the second round. Taking the minimization problem as an example, using
f (Xi) to represent the current optimization problem the objective function, the formula for
generating new individuals in the learning stage is as follows:

Xinew(t) =
{

Xiold(t) + r·
(
Xj(t)− Xiold(t)

)
, f
(
Xj(t)

)
< f (Xiold(t))

Xiold(t) + r·
(
Xiold(t)− Xj(t)

)
, f
(
Xj(t)

)
≥ f (Xiold(t)

}
(16)

Compare the corresponding objective function or fitness values of Xinew(t) and Xiold(t),
then take the better solution as the offspring individual.

The standard TLBO algorithm has a simple parameter model, fast convergence speed
and strong search ability, but it is easy to fall into local optimum because of less pop-
ulation diversity. Therefore, this paper improves the standard TLBO algorithm by the
DMOTLBO algorithm, introducing the idea of discretization and a mutation operator based
on probability.

3.2. UAV Emergency Task Planning Based on DMOTLBO Algorithm

The DMOTLBO algorithm adopts a decomposition mechanism and a set of different
weight vectors to decompose the multi-objective optimization problem (MOP) into a set
of single-objective optimization problems for simultaneous solution, optimizing each sub-
problem with TLBO algorithm. Each sub-problem divides neighbors according to its
own weight vectors, and employs the co-evolution mechanism between sub-problems
to improve the information sharing of neighbor solutions and reduce the computational
complexity. In order to ensure the efficient operation of the algorithm, combining with the
characteristics of UAV task assignment problem, a sequence coding method is designed;
based on this, improved discrete teaching and learning stages are applied to the individual
evolution process, and a variable neighborhood descent search stage is added to strengthen
local search.

3.2.1. Decomposition Mechanism

For small-scale examples, the ε constraint method is used to transform a certain
objective in the bi-objective optimization model into a constraint. By constructing a set of
single-objective ε constraint problems and accurately solving them with CPLEX, the Pareto
optimal frontier of the current bi-objective task allocation problem is obtained. The specific
process is shown in the figure below, Ω and ε represent the search space of the problem
and a small positive number, respectively.

For medium- and large-scale examples, all optimized non-inferior solutions are re-
garded as approximate Pareto optimal frontier.

At the same time, the multi-objective UAV task planning problem is divided into N
subproblems, where N is equal to the population size, and the weight vector is designed
with uniform mixture. The weight vectors corresponding to subproblems are set as follows:
wi = (λ1

i , λ2
i ) in which λi is indicated as: λi = ( i−1

N−1 , N−i
N−1 ), i = 1, 2, . . . , N. The objective

function of subproblem is set by normalized Chebyshev aggregation method, and the
operation mechanism is shown in Figure 1.
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For sub-problem i, Fi(x) is used to express the fitness of solution x. f1 and f2 represent
the values of Objective 1 and 2 of solution x. f max

1 , f min
1 , f max

2 , f min
2 represent the maximum

and minimum values of Objective 1 and 2 under the current iteration times, respectively.
Additionally, if Z∗ = (Z∗1 , Z∗2 ) = (0, 0) is the reference point, then the aggregation function
can be expressed by the following Formula.

Fi(x) = max[λ1
i ·(

f1 − f min
1

f max
1 − f min

1
−O1), λ2

i ·(
f2 − f min

2
f max
2 − f min

2
−O2)] (17)

According to the above formula, combined with the Tchebycheff aggregation mech-
anism, the algorithm will search the intersection point of each weight vector and Pareto
frontier in the feasible solution space. Because of the uniform distribution of λi, the algo-
rithm will obtain a group of uniform solutions on Pareto frontier. In addition, the Euclidean
distance between weight vectors is calculated, and the nearest T weight vectors are taken
as neighbors of each sub-problem.

3.2.2. Sequence Coding Mode

TLBO algorithm was originally used to solve the continuous variable optimization
problem, and all individuals in the population were coded by real numbers. At present, for
the research of UAV task planning, although the solution of the problem can be obtained
through reasonable decoding rules by using real coding, the search efficiency of the algo-
rithm is low because of the redundant information. Therefore, sequence coding is used to
represent the solution of UAV task planning problem. Each individual is a solution to the
problem. Given n denotes total number of tasks when m indicates the total number of UAVs,
the code length is (n + m − 1), where code 1~n represent the numbers of task target points,
and code (n + 1)~(n + m − 1) are the division symbols. From this, it can be seen that (m − 1)
separators can divide the arrangement of Task 1~n into m subsequences (including empty
sequences), which constitute the task sequences of the corresponding UAV. Assuming that
the total number of tasks and UAVs are 12 and 5, respectively, Figure 2 shows the encoding
and decoding method of the example, where the coded sequence (12, 10, 8, 11, 14, 6, 9, 16, 1,
5, 13, 3, 7, 15, 2, 4), code 1–12 are the task numbers, and code 13–16 represent the division
symbol, which can be used to obtain the disaster-stricken points that each UAV needs to
perform the material delivery task.
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After decoding, it means that: UAV 1 carries out the flight task M1, including disaster
sites 12, 10, 8 and 11, when UAV 2’s mission is M2, including task target points 6 and 9, and
UAV 3’s flying mission M3 includes target points 1 and 5, meanwhile UAV 4’s task set is
M4, including points 3 and 7; UAV 5’s task set is M5 which includes task target points 2
and 4. Additionally, UAVs need to execute subtasks in order.

3.2.3. Adaptive Discrete Teaching Stage

The main teaching stages are divided into teaching preparation, teacher training and
teaching stage. In the early stage of the algorithm, the population mainly move closer to
the optimal individual quickly to learn from the teacher. However, as the iteration goes
on, the ability of individuals to maintain their own state is enhanced, which slows down
the speed of approaching the optimal individual and avoids gathering around the teacher
prematurely. For each individual in the population in the current iterative state Xi(t), the
update is realized by discretization on the basis of the teaching stage of the standard TLBO
algorithm, and the specific operation is carried out according to the following formula.

Xi(t + 1) = OBX
{

δ⊗ Xiold(t), TF ⊗ PMX[Xt(t), Xm(t), m, n], m′, n′
}

(18)

In teaching preparation stage, the preview process of students before class in the
current iterative state is represented by δ⊗ Xi(t), that is, the dynamic adaptive learning
of student individuals in the teaching stage. Additionally, nonlinear adaptive mutation
factor δ and random number r are introduced to perform mutation operation, in which
δ = γ[cos(π· t

T ) + λ], λ = 1, γ = 0.5, δ ∈ (0, 1), λ is the value step of δ when γ is δ’s
change rate and r = rand(0, 1). Only when r ≤ δ the mutation operation is conducted. It
can be seen that with the increase in iteration times, students’ ability to maintain their own
state is enhanced, which slows down the speed of approaching the optimal individual so
avoids gathering around the teacher prematurely.

Additionally, three neighborhood operations, namely, exchange, insert and changeover,
are designed to achieve the mutation effect after preview as shown in Figure 3. Two different
integers, i and j, are randomly generated, which are not greater than the encoding length,
given that Exchange(Xi, i, j) is exchanging the code at the i-th position in Solution Xi
with that at the j-th position to generate a new solution, and the update of solution with
Insert(Xi, i, j) will insert the code at the i-th position in Xi into the j-th position, when
during the process of Changeover(Xi, i, j) the code between the i-th and j-th positions can
be reversed.
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In order to better search different areas of the problem solution space, the whole
iteration process is divided into three stages, and the above three neighborhood operations
are performed, respectively. The self-learning process is shown in Formula (18):

Xinew(t) = δ⊗ Xiold(t) =


Exchange[Xiold(t), i, j], i f 0 < t ≤ T/3&r ≤ δ;
Insert[Xiold(t), i, j], i f T/3 < t ≤ 2T/3&r ≤ δ;
Changeover[Xiold(t), i, j], i f 2T/3 < t ≤ T&r ≤ δ;
Xiold(t), else.

(19)

In the teacher training stage, the population mean is updated discretely, which corre-
sponds to the operation of finding the gap between the current optimal individual and the
average level in the teaching stage of standard TLBO algorithm, and can also be understood
as training and optimizing the teacher by the following formula.

Xtnew(t) =
{

TF ⊗ PMX[Xt(t), Xm(t), m, n], i f TF = 2
Xm(t), else

(20)

Select an individual Xt(t) randomly from the external archive EP to represent the
teacher, when Xm(t) represents the average score of the current population through iter-
ation. Additionally, according to many tests, when TF is 2, it is more effective to execute
Partially Matching Crossover PMX(·). The workflow is shown in Figure 4a. Firstly, se-
lect consecutive coding positions between m and n (m ≤ n) in Xt(t) and Xm(t); secondly,
the code selected in Xm(t) is placed in the same position of Xt(t) to generate temporary
offspring individuals; finally, conflict detection is carried out, mapping relationship is
established according to the code values at the selected positions, and the repeated codes
in temporary offspring individuals are mapped to other codes, so as to generate a new
expected average level as Xtnew(t).
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Figure 4. Schematic diagram of crossover operators, where (a,b) represent the schematic diagram of
PMX(·) and OBX(·), respectively.

In the teaching stage, each individual continuously learns and then improves the
average fitness value of the whole population through the order-based crossover operator
as the following formula

X′inew(t) = OBX
{

Xinew(t), Xtnew(t), m′, n′
}

. (21)
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shown in Figure 4b. The steps are as follows: firstly, randomly select the sequential coding
positions between m′ and n′ (m′ ≤ n′) in Xinew(t) and Xtnew(t), secondly, keep the selected
codes in Xinew(t) and set the rest to 0 to generate temporary offspring individuals, then
determine the position in Xtnew(t) of the non-zero codes in the temporary progeny and
put the rest into the zero position of the temporary progeny in order to generate a new
individual. Finally, compare the aggregate function values of Xi(t + 1) and Xiold(t), and
keep the better one as X′′inew(t).

3.2.4. Discrete Learning Stage

First, use X′′inew(t) from teaching stage to update Xi(t). Additionally, the discretization
update is realized according to the following formulas:

X′′inew(t) = r⊗ PBX[Xi(t), Xnew
i (t)] =

{
PBX[Xi(t), Xnew

i (t)], i f r > 0.5;
Xnew

i (t), else

Xnew
i (t) =

{
OBX[Xi(t), Xj(t), p, q], i f Fi(Xi(t)) < Fi(Xj(t))
OBX[Xj(t), Xi(t), p, q], i f Fi(Xi(t)) ≥ Fi(Xj(t))

, r = rand(0, 1)
(22)

In the learning stage of the standard TLBO algorithm, student individuals learn from
other students with a certain learning probability r. However, in DMOTLBO, students learn
from each other through crossover operation. First of all, for Xi(t), another individual Xj(t)
is randomly selected from its neighbors. Xnew

i (t) is generated by OBX(·) operation between
Xi(t) and Xj(t) in the interval [p, q]. Owing to the update carried out among students in
a small range, it can avoid premature gathering in the direction of global optimum and
effectively ensure the diversity of population.

However, just like learning in real life, you also need to have a certain ability to
identify what you have learned. If student individual s absolutely trusts and receives the
acquired knowledge in the mutual learning stage, the algorithm may easily fall into local
optimum. Therefore, the position-based crossover operator PBX(·) shown in Figure 5 is
further introduced. When learning probability r > 0.5, randomly select multiple coding
positions (which can be discontinuous) in Xi(t), find the positions of the selected codes in
Xnew

i (t), and set the rest to 0 to generate temporary children, then find out the positions of
non-zero codes in temporary children, and put the rest of the codes in order into temporary
children to replace 0 to generate new individuals X′inew(t). Finally, compare the aggregate
function values of X′′inew(t) and Xi(t), and keep the better to update Xi(t). Additionally,
the execution of the whole DMOTLBO discrete search has ended till now.
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3.2.5. Variable Neighborhood Search

Considering that the variable neighborhood descent search algorithm has strong local
development ability, a corresponding stage is added to DMOTLBO. The main idea is to
use multiple different neighborhoods for system search. First, the minimum neighborhood
is used, and when the solution cannot be improved, it is switched to a slightly larger
neighborhood. If it can continue to improve the solution, the algorithm workflow will return
to the smallest neighborhood, otherwise will continue to switch to a larger neighborhood.

Specifically, the disturbance operation is performed once for each high-quality solution
Xi(t) in local search, then the insertion operator Insert(·) used to fulfill variable neighbor-
hood descent search, the search depth is controlled by parameters, and X* is used to record
the optimal solution in the optimization process. The process is as follows.

Step1: do X*←Xi(t), l←1, respectively, and turn to step 2;
Step2: perturb the current solution Xi(t) by using the neighborhood structure exchange

operator Exchange(·), and then generate the variation solution tem1, that is,
tem1 = Exchange(Xi,u,v). If Fi (tem1) < Fi (X*), do X*←tem1;

Step3: mutate the current solution tem1 by using the neighborhood structure insertion
operator Insert(·), and then generate the mutated solution tem2, that is,
tem2 = Insert(tem1,u,v).

Step4: if Fi (tem2) < Fi (X*), make tem1←tem2, X*←tem2, l←1, respectively, then turn
to step 3, otherwise, let l←l + 1, and go to step 5.

Step5: if l < L, turn to step 3, otherwise, go to step 6.
Step6: terminate the iterative search.
Step7: update X*, and do Xi(t + 1)= X*.
Besides, u, v (u 6= v) are random numbers, and u, v are regenerated every time

Exchange(·) and Insert(·) operations are performed.

3.3. DMOTLBO Algorithm Workflow

The workflow of the DMOTLBO algorithm is shown in Figures 6 and 7. At the initial
stage of DMOTLBO, firstly generate N initial solutions xi (i = 1, 2, . . . , N) randomly, and then
generate N weight vectors λi (i = 1, 2, . . . , N) by uniform mixture method, in which the set
consisting of T weight vectors closest to the vector λi is denoted as Vi =

{
λi1 , λi2 , . . . , λiT

}
,

whose corresponding lower is denoted as Pi = {i1, i2, . . . , iT}. Then, assign a weight
vector to each solution. Calculate the aggregate function values, namely the fitness values,
select the non-inferior solutions, and establish the external archive EP as the non-inferior
solution set.

Then, the discrete teaching, learning stage and variable neighborhood descent search
in the DMOTLBO algorithm are employed to evolve and update the population. The
algorithm framework is shown in Figure 7. Therefore, in fact, the non-inferior solution in
the initial population is used to initialize EP. Then, in the iterative process, EP is updated
according to Pareto dominance relation.
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Then, the discrete teaching, learning stage and variable neighborhood descent search 
in the DMOTLBO algorithm are employed to evolve and update the population. The 
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4. Simulation and Analysis
4.1. Simulation Environment

The simulation was carried out on a computer with 16 GB memory and 11th Gen Intel
(R) Core (TM) i7-1165G7 @ 2.80 GHz CPU, and MATLAB R2016a was used to program each
test. Consult the Reference [17] and set small-scale and medium–large-scale examples to
generate the test data set of this paper. Given the number of UAVs m = 2, set the number of
task target points n ∈ {10, 12, 14, 16, 18, 20}; and if m ∈ {5, 8, 10}, then set n ∈ {30, 50, 80, 100,
150, 200}. The symbol m × n is used to represent cases of different scales, and 24 groups
of cases are generated. The related parameters are set as follows: the coordinates of the
task target point x, y are randomly generated in 60 × 60, the cost coefficient of advance
penalty is Fb ∈ { 0.1, 0.2, . . . , 0.5}, when the cost coefficient of delay penalty is Db ∈ {0.6, 0.7,
. . . , 1.0}, and the expected delivery time of materials obeys discrete uniform distribution

Eb ∈ DU(0, 2
5 ·

m
∑

k=1

n
∑

b=1

labk
m·vk

). Besides, based on experiments, the algorithm can show good

performance when the size of population and external archive are both set to 30. The
maximum running time of different algorithms for solving small-scale examples is set to
20 s, and that of medium and large-scale examples is set to 60 s. The neighbor size t of the
DMOTLBO algorithm and the iteration number LS of variable neighborhood search are set
to 15 and 8, respectively.
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The synthetic evaluation indicator Inverse Generation Distance (IGD), convergence
indicator Generation Distance (GD) and uniformity indicator Spread (SP) are chosen to
evaluate the algorithm performance.

(3) IGD is used to reflect the convergence and distribution of the algorithm. The smaller
the IGD, the better the overall performance of the algorithm including convergence
and distribution. IGD can be calculated by Formula (22).

IGD(P, P∗) =
∑

v∈P∗
d(v, P)

|P∗| (23)

(4) GD is used to measure the average distance between each point in the non-inferior so-
lution set and the real frontier. The smaller the value of GD, the better the convergence
of the algorithm. Additionally, its calculation formula is:

GD(P, P∗) =
∑

x∈P
d(x, P∗)

|P| (24)

(5) SP, which can be calculated by Formula (24), is used to measure the distribution uni-
formity of the non-inferior solution set. The smaller the SP, the better the performance
of the algorithm.

SP =

d f + dl +
|P|−1

∑
i=1

∣∣∣di − d
∣∣∣

d f + dl + (|P| − 1) · d
(25)

In the formulas above, P* is a set of uniformly distributed reference points sampled
from the true Pareto frontier PF of the test problem, P is the Pareto solution set obtained,
and |P*| is the number of individuals in the point set distributed on the real frontier.
d(v, P) represents the minimum Euclidean distance between P and the individual v in P*,
when d(x, P∗) represents that between P* and the individual x in P. di is the Euclidean
distance between the i-th solution and the (i + 1)-th solution in P, d is the average distance,
and d f , dl respectively represent the Euclidean distance between the two extreme solutions
in P and the two endpoints of the real frontier.

4.2. Verification of Improvement Measures Effectiveness

In the process of population evolution, DMOTLBO algorithm uses multiple crossover
operators based on probability to generate offspring individuals, which can enhance the
global search performance of the current algorithm. At the same time, the introduction of
variable neighborhood descent search can improve the local search ability of DMOTLBO
algorithm and further improve the quality of solution. The effectiveness of the above meth-
ods can be verified by case studies. In this paper, each test example is solved independently
20 times by different algorithms, and statistical analysis is carried out based on performance
evaluation indexes. Mean represents the average value of indicators, and Std represents
the corresponding standard deviation. Firstly, the DMOTLBO algorithm is used to solve
the problem, and the indicators are calculated. Then, the DMOTLBO algorithm without
variable neighborhood search is used as algorithm TLBO 1. Finally, the same cases are
solved by the TLBO algorithm, which only includes teaching preview operation, teacher
training operation, teacher teaching operation and students’ mutual learning operation
and post-learning review operation, and its average optimization effect is analyzed as
the comparative algorithm TLBO 2. The results are shown in Figure 8 as below. Overall,
in the vast majority of test examples, DMOTLBO has achieved relatively small IGD, GD
and SP values, and its convergence, distribution uniformity and diversity are excellent,
which indicates that the mixed use of multiple crossover algorithms and the embedding of
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variable neighborhood descent search have obviously enhanced the optimization ability of
TLBO algorithm and promoted the performance of the algorithm.
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4.3. Verification of Algorithm Effectiveness

In order to verify the efficiency of DMOTLBO, it is compared with pre-P MOEA/D [18]
and HMOMBO [19]. Pre-P MOEA/D is also a mixed multi-objective optimization algorithm
based on decomposition, proposing to divide the population before breeding offspring.
Meanwhile, HMOMBO is a new multi-objective evolutionary algorithm based on mixed
swarm intelligence, integrating monarch butterfly optimization framework and mutating
infeasible solutions based on constraints. For each test example, calculate the mean and
standard deviation of IGD of the three test algorithms, respectively, and the results are
shown in Table 1 where the optimal ones are shown in bold black. The results of GD
and SP refer to Tables A1 and A2, respectively, in Appendix A. In order to ensure the
fairness of algorithm evaluation, under the level of significance a = 0.05, a t-test is per-
formed on each algorithm according to the method given in Reference [20], and “+” “−”
“≈” indicate that the algorithm is superior to, inferior to and similar to the comparison
algorithm, respectively.

It can be seen from Table 1 that for the comprehensive indicator IGD, DMOTLBO
achieved a winning rate of 18/24 in 24 groups of examples, when the IGD corresponding to
pre-P MOEA/D and HMOMBO achieved minimum values for three times, respectively. As
far as the convergence indicator GD is concerned, the DMOTLBO algorithm performs better
in test examples with the ratio of 20/24, and the numbers corresponding to pre-P MOEA/D
and HMOMBO are 2 and 2, respectively. For the distribution indicator SP, the DMOTLBO
algorithm obtains the best value in 19 of 24 test cases, and the winning ratios of pre-P
MOEA/D and HMOMBO are 2/24 and 3/24, respectively. Generally speaking, the Pareto
solution set found by DMOMTLBO algorithm with more competitive average quality has
better convergence and distribution compared with the optimization results of the other
algorithms. In most cases, it can provide better solutions than the comparison algorithms.
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Table 1. Case result of Mean and Std of IGD corresponding to three test algorithms.

NO. m × n
Pre-P MOEA/D HMOMBO DMOTLBO

Mean Std Mean Std Mean Std
1 2 × 10 1.190 × 10−1 (+) 2.14 × 10−2 2.634 × 10−1 (−) 5.22 × 10−2 1.812 × 10−1 (−) 4.47 × 10−2

2 2 × 12 3.487 × 10−1 (+) 6.96 × 10−2 8.924 × 10−1 (−) 3.29 × 10−2 4.872 × 10−1 (−) 8.30 × 10−2

3 2 × 14 9.874 × 10−1 (−) 8.37 × 10−2 7.457 × 10−1 (+) 1.71 × 10−2 9.455 × 10−1 (−) 5.37 × 10−2

4 2 × 16 1.198 × 10 (≈) 1.52 × 10−1 1.101 × 10 (≈) 2.53 × 10−1 1.043 × 10 (+) 1.51 × 10-1

5 2 × 18 4.859 × 10−1 (+) 5.40 × 10−2 6.284 × 10−1 (−) 8.06 × 10−2 5.872 × 10−1 (≈) 6.89 × 10−2

6 2 × 20 6.356 × 10−1 (≈) 7.43 × 10−2 6.243 × 10−1 (+) 6.51 × 10−2 6.291 × 10−1 (≈) 1.61 × 10−1

7 5 × 30 1.149 × 10−1 (−) 2.98 × 10−2 8.346 × 10−2 (+) 1.35 × 10−2 9.348 × 10−2 (≈) 2.16 × 10−2

8 5 × 50 1.698 × 10−1 (−) 2.04 × 10−2 1.896 × 10−1 (−) 4.93 × 10−2 6.391 × 10−2 (+) 1.65 × 10−2

9 5 × 80 1.814 × 10−1 (−) 5.38 × 10−2 2.031 × 10−1 (−) 5.50 × 10−2 7.542 × 10−2 (+) 2.22 × 10−2

10 5 × 100 1.673 × 10−1 (−) 2.72 × 10−2 2.156 × 10−1 (−) 3.55 × 10−2 7.092 × 10−2 (+) 2.11 × 10−2

11 5 × 150 1.985 × 10−1 (−) 3.89 × 10−2 3.004 × 10−1 (−) 5.15 × 10−2 1.005 × 10−1 (+) 2.50 × 10−2

12 5 × 200 2.005 × 10−1 (−) 7.04 × 10−2 5.023 × 10−1 (−) 9.71 × 10−2 1.333 × 10−1 (+) 1.54 × 10−2

13 8 × 30 8.587 × 10−2 (−) 2.51 × 10−2 1.198 × 10−1 (−) 2.60 × 10−2 4.479 × 10−2 (+) 8.47 × 10−3

14 8 × 50 1.220 × 10−1 (−) 1.30 × 10−2 1.598 × 10−1 (−) 4.45 × 10−2 4.792 × 10−2 (+) 3.73 × 10−3

15 8 × 80 1.542 × 10−1 (−) 1.60 × 10−2 1.914 × 10−1 (−) 5.98 × 10−2 5.198 × 10−2 (+) 1.46 × 10−2

16 8 × 100 1.812 × 10−1 (−) 3.40 × 10−2 2.306 × 10−1 (−) 4.84 × 10−2 6.582 × 10−2 (+) 9.46 × 10−3

17 8 × 150 1.630 × 10−1 (−) 2.37 × 10−2 2.012 × 10−1 (−) 3.28 × 10−2 5.872 × 10−2 (+) 1.50 × 10−2

18 8 × 200 1.562 × 10−1 (−) 2.10 × 10−2 2.357 × 10−1 (−) 6.20 × 10−2 6.727 × 10−2 (+) 1.29 × 10−2

19 10 × 30 9.304 × 10−2 (−) 1.41 × 10−2 1.338 × 10−1 (−) 2.58 × 10−2 4.824 × 10−2 (+) 1.24 × 10−2

20 10 × 50 1.756 × 10−1 (−) 2.25 × 10−2 2.005 × 10−1 (−) 3.20 × 10−2 6.383 × 10−2 (+) 1.49 × 10−2

21 10 × 80 1.753 × 10−1 (−) 2.75 × 10−2 1.987 × 10−1 (−) 4.14 × 10−2 5.498 × 10−2 (+) 1.31 × 10−2

22 10 × 100 1.527 × 10−1 (−) 4.27 × 10−2 2.142 × 10−1 (−) 6.30 × 10−2 5.340 × 10−2 (+) 7.36 × 10−3

23 10 × 150 1.732 × 10−1 (−) 4.35 × 10−2 2.278 × 10−1 (−) 5.20 × 10−2 7.502 × 10−2 (+) 1.04 × 10−2

24 10 × 200 1.368 × 10−1 (−) 1.83 × 10−2 2.012 × 10−1 (−) 4.31 × 10−2 6.109 × 10−2 (+) 8.48 × 10−3

+/−/≈ 3/19/2 3/20/1 18/3/3

4.4. Cases Analysis

In order to further verify the effectiveness and efficiency of the model and algorithm
proposed in this paper, simulation cases are given here. A rectangular coordinate system
XOY is set up due to the fact that the related programming problems are considered in a
two-dimensional environment. The task area is set to a rectangular area of 60 km × 60 km,
and the emergency rescue flight base are set to the point (30, 30). The flight performance of
the UAV is shown in Table 2. Randomly generate a corresponding number of task target
locations in the simulation area. On this basis, the number of rescue UAVs m is set to
3, the number of target points n is set to 30, that is, 3 × 30 examples are generated, and
then 4 × 40 and 5 × 50 examples are constructed, respectively. The examples select the
UAVs from Table 2 in order from top to bottom, respectively. Other relevant parameter
settings are shown in Table A3 in Appendix A, including advance penalty cost coefficient
Fn, delay penalty cost coefficient Dn and expected delivery time of materials En. Keep the
scenarios and parameters in this example the same, then solve the three groups of cases
with DMOTLBO, pre-P MOEA/D and HMOMBO algorithms mentioned above.

Table 2. The flight performance of the UAVs chosen.

No. UAV No. Brand Model Average Cruise
Speed (km/h)

Max-Endurance
(h)

Maximum Load
Capacity (kg)

1 M1 Zongheng CW100 100 10 20
2 M2 Zongheng CW30 90 6 6
3 M3 Zongheng CW10 81 1.6 3
4 M4 Ebee a 80 1.6 2
5 M5 Ebee b 70 0.9 1
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Take the 5 × 50 example as an example, there are some conflicts between the two
optimization objectives of the current model, and Figure 9 shows an optimal solution
obtained by DMOTLBO algorithm. The planning result of DMOTLBO is: M1 flying orange
task flow and line, M2 flying red task flow and line, M3 flying gray task flow and line, M4
flying blue task flow and line, and M5 flying green task flow and line, as shown in the
table below.
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Additionally, UAVs are planned to perform emergency logistics tasks in sequence. The
outcome data of the planning result is shown in Table 3.

Table 3. The outcome data of the planning result of the DMOTLBO algorithm.

No. UAV No. Route Color Route Total
Length/km

Last Task Flight
Length/km Duration/h Total Material

Quantity/kg
Constraint

Satisfaction

1 M1 Orange 0-37-44-41-39-40-47-49-
38-48-43-45-42-36-0 122.608 103.740 1.037 19.732 Satisfy

2 M2 Red 0-17-19-20-24-28-32-35-
34-44-31-30-27-25-0 99.933 87.850 0.976 5.910 Satisfy

3 M3 Gray 0-13-14-11-5-2-4-1-10-9-
12-15-50-16-0 97.416 84.887 1.048 2.850 Satisfy

4 M4 Blue 0-22-26-46-33-29-23-18-
15-21-0 100.721 85.589 1.070 1.960 Satisfy

5 M5 Green 0-8-7-3-6-0 78.263 41.494 0.593 0.928 Satisfy

Then, calculate the same problems with the pre-P MOEA/D and HMOMBO algo-
rithms mentioned above. Table 4 shows the mean and standard deviation of IGD, GD and
SP of the test results obtained by the three algorithms. The data show that, compared with
the pre-P MOEA/D algorithm and HMOMBO algorithm, the indicators of the test results
obtained by the DMOTLBO algorithm are better, indicating that its non-inferior solution
set is better in convergence and distribution, which effectively verifies the practicability
and efficiency of the current algorithm for UAV emergency logistics task planning.
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Table 4. Data comparison of Mean and Std of IGD, GD, and SP, corresponding to DMOTLBO and the
two contrast algorithms, respectively.

Case Indicator
DMOTLBO Pre-P MOEA/D HMOMBO

Mean Std Mean Std Mean Std

3 × 30
IGD 5.63 × 10−2 8.90 × 10−3 1.07 × 10−1 2.18 × 10−2 8.21 × 10−2 2.01 × 10−2

GD 2.16 × 10−2 4.50 × 10−3 9.50 × 10−2 1.68 × 10−2 1.38 × 10−1 4.79 × 10−2

SP 4.31 × 10−1 4.05 × 10−2 7.28 × 10−1 9.13 × 10−2 7.49 × 10−1 1.41 × 10−1

4 × 40
IGD 4.75 × 10−2 6.57 × 10−3 1.48 × 10−1 1.96 × 10−2 1.56 × 10−1 3.87 × 10−2

GD 3.85 × 10−2 1.03 × 10−2 1.16 × 10−1 1.85 × 10−2 1.26 × 10−1 5.21 × 10−2

SP 3.77 × 10−1 9.83 × 10−2 7.79 × 10−1 1.09 × 10−1 8.53 × 10−1 2.15 × 10−1

5 × 50
IGD 6.67 × 10−2 1.56 × 10−2 1.71 × 10−1 1.87 × 10−2 1.93 × 10−1 5.04 × 10−2

GD 5.88 × 10−2 7.98 × 10−3 1.29 × 10−1 2.39 × 10−2 1.31 × 10−1 2.57 × 10−2

SP 5.42 × 10−1 4.96 × 10−2 7.72 × 10−1 5.62 × 10−2 8.47 × 10−1 2.07 × 10−1

To sum up, relative to existing algorithms, the performance advantages of the DMOTLBO
algorithm provides a new idea for the existing research, which benefit from the following
five aspects: (1) adopting a multi-objective algorithm framework based on the decompo-
sition mechanism, combining with an aggregation function, and using a uniform weight
design of mixture can make the solution distribution better; (2) combined with the TLBO
algorithm to solve the sub-problems, the algorithm has the advantages of no parame-
ters and high efficiency in solving optimization problems; (3) using the sequence coding
method, it can directly perform the global search based on the mechanism of the standard
TLBO algorithm in the solution space of discrete problems, thus obviously improving the
global search efficiency of the original algorithm; (4) using a variety of crossover mutation
operators based on probability to further improve the optimization efficiency; (5) the local
search ability of the algorithm is ensured by embedding variable neighborhood descent
search to search carefully near the high-quality solution.

5. Conclusions

In this paper, aiming at the task planning of UAV emergency material delivery, a
mathematical optimization model is established with the goal of minimizing the task
completion time and the penalty cost of advance/delay, and a discrete multi-objective
teaching–learning-based optimization (DMOTLBO) algorithm is proposed. The Pareto
frontier approximation problem is transformed into a set of single objective sub-problems
by the decomposition mechanism of the algorithm, and each sub-problem is solved by the
improved discrete TLBO algorithm. According to the characteristics of the problem, TLBO
algorithm is improved by discretization, and an individual update method is constructed
based on the probability fusion of various mutation evolution operators. At the same
time, variable neighborhood descent search is introduced to enhance the local search
ability. Based on the multi-level comparative experiment, the improvement measures and
effectiveness of DMOTLBO algorithm are verified. Finally, combined with specific case
analysis, the practicability and efficiency of DMOTLBO algorithm in solving the multi-
objective emergency logistics task planning problem of multiple unmanned aerial vehicles
are further verified. The key innovations and merits of the UAV planning method proposed
lie in the fact that the TLBO algorithm being combined with the decomposition mechanism
is introduced for the first time to solve the UAV mission planning problem, and the
algorithm with outstanding search capability and efficiency is improved by discretization
and descent search. The proposed method provides a new idea for UAV mission planning
research and fills the blank of multi-target mission planning of rescue UAV in emergency
logistics to some extent. Nevertheless, the UAV task planning method is only considered in
the two-dimensional environment, and the UAV is simplified at the same time, ignoring the
UAV dynamic performance, wind and other factors, as well as complex situations such as
the mid-mission change, etc. In the next step, further research will be carried out and higher
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dimensions and more influencing factors will be considered to improve the practicability
of the method.
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Appendix A

Table A1. Case result of Mean and Std of GD corresponding to three test algorithms.

NO. m × n
Pre-P MOEA/D HMOMBO DMOTLBO

Mean Std Mean Std Mean Std
1 2 × 10 8.781 × 10−2 (+) 4.15 × 10−2 1.234 × 10−1 (+) 5.89 × 10−2 3.882 × 10−1(−) 5.69 × 10−2

2 2 × 12 5.349 × 10−1 (+) 1.96 × 10−1 4.324 × 10−1 (+) 1.13 × 10−1 8.722 × 10−1 (−) 3.07 × 10−1

3 2 × 14 4.871 × 10−1 (+) 9.86 × 10−2 2.048 × 10−1 (+) 5.98 × 10−2 6.482 × 10−1 (−) 1.19 × 10−1

4 2 × 16 3.345 × 10−1 (−) 2.11 × 10−1 3.651 × 10−1 (−) 1.64 × 10 2.934 × 10−1 (+) 1.51 × 10−1

5 2 × 18 8.287 × 10−1 (−) 2.18 × 10−1 6.787 × 10−1 (−) 1.35 × 10−1 5.652 × 10−1 (+) 9.46 × 10−2

6 2 × 20 7.083 × 10−1 (−) 1.89 × 10−1 5.128 × 10−1 (−) 1.96 × 10−1 4.378 × 10−1 (+) 8.99 × 10−2

7 5 × 30 9.980 × 10−2 (≈) 1.82 × 10−2 5.810 × 10−1 (−) 3.01 × 10−2 1.004 × 10−1 (≈) 5.87 × 10−2

8 5 × 50 9.650 × 10−2 (−) 2.27 × 10−2 9.478 × 10−2 (−) 2.10 × 10−2 4.598 × 10−2 (+) 7.29 × 10−3

9 5 × 80 1.021 × 10−1 (−) 1.38 × 10−2 9.842 × 10−2 (−) 1.28 × 10−2 6.041 × 10−2 (+) 1.01 × 10−2

10 5 × 100 9.987 × 10−2 (−) 7.12 × 10−3 1.205 × 10−1 (−) 3.46 × 10−2 7.032 × 10−2 (+) 5.87 × 10−3

11 5 × 150 1.342 × 10−1 (−) 1.64 × 10−2 2.413 × 10−1 (−) 6.27 × 10−2 8.593 × 10−2 (+) 1.45 × 10−2

12 5 × 200 1.542 × 10−1 (−) 6.89 × 10−2 4.287 × 10−1 (−) 1.12 × 10−1 1.482 × 10−1 (+) 3.81 × 10−2

13 8 × 30 6.583 × 10−2 (−) 1.97 × 10−2 9.840 × 10−2 (−) 2.05 × 10−2 3.578 × 10−2 (+) 1.28 × 10−2

14 8 × 50 7.333 × 10−2 (−) 1.49 × 10−2 1.048 × 10−1 (−) 2.05 × 10−2 3.135 × 10−2 (+) 9.12 × 10−3

15 8 × 80 7.164 × 10−2 (−) 1.53 × 10−2 1.258 × 10−1 (−) 4.70 × 10−2 3.359 × 10−2 (+) 6.98 × 10−3

16 8 × 100 1.026 × 10−1 (−) 1.53 × 10−2 1.893 × 10−1 (−) 6.47 × 10−2 5.293 × 10−2 (+) 8.79 × 10−3

17 8 × 150 1.187 × 10−1 (−) 1.66 × 10−2 1.839 × 10−1 (−) 3.11 × 10−2 4.489 × 10−2 (+) 1.30 × 10−2

18 8 × 200 9.349 × 10−2 (−) 2.05 × 10−2 2.123 × 10−1 (−) 2.76 × 10−2 4.872 × 10−2 (+) 4.64 × 10−3

19 10 × 30 7.142 × 10−2 (−) 1.49 × 10−2 9.754 × 10−2 (−) 3.24 × 10−2 5.475 × 10−2 (+) 9.58 × 10−3

20 10 × 50 1.359 × 10−1 (−) 3.49 × 10−2 1.542 × 10−1 (−) 4.12 × 10−2 5.872 × 10−2 (+) 1.49 × 10−2

21 10 × 80 1.135 × 10−1 (−) 2.43 × 10−2 1.672 × 10−1 (−) 4.45 × 10−2 5.342 × 10−2 (+) 2.13 × 10−2

22 10 ×
100 1.374 × 10−1 (−) 1.53 × 10−2 1.983 × 10−1 (−) 4.88 × 10−2 6.234 × 10−2 (+) 5.23 × 10−3

23 10 ×
150 1.203 × 10−1 (−) 9.15 × 10−3 2.012 × 10−1 (−) 1.81 × 10−2 5.634 × 10−2 (+) 7.35 × 10−3

24 10 ×
200 9.870 × 10−2 (−) 3.13 × 10−2 1.987 × 10−1 (−) 5.13 × 10−2 6.129 × 10−2 (+) 3.87 × 10−3

+/−/≈ 3/20/1 3/21/0 20/3/1
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Table A2. Case result of Mean and Std of SP corresponding to three test algorithms.

NO. m × n
Pre-P MOEA/D HMOMBO DMOTLBO

Mean Std Mean Std Mean Std
1 2 × 10 5.098 × 10−1 (+) 4.68 × 10−2 5.892 × 10−1 (−) 1.09 × 10−1 5.242 × 10−1 (≈) 7.21 × 10−2

2 2 × 12 6.102 × 10−1 (+) 1.82 × 10−1 7.069 × 10−1 (−) 2.13 × 10−1 6.331 × 10−1 (≈) 1.90 × 10−1

3 2 × 14 7.013 × 10−1 (≈) 1.38 × 10−1 6.213 × 10−1 (+) 8.99 × 10−2 7.065 × 10−1 (−) 9.01 × 10−2

4 2 × 16 7.315 × 10−1 (≈) 1.82 × 10−1 7.637 × 10−1 (−) 1.92 × 10−1 7.103× 10−1 (+) 1.19× 10−1

5 2 × 18 7.896 × 10−1 (−) 1.59 × 10−1 6.309 × 10−1 (+) 1.36 × 10−1 6.498 × 10−1 (≈) 2.39 × 10−1

6 2 × 20 7.763 × 10−1 (−) 9.44 × 10−2 6.551 × 10−1 (+) 9.21 × 10−2 6.695 × 10−1 (≈) 1.93 × 10−1

7 5 × 30 7.121 × 10−1 (−) 8.93 × 10−2 7.380 × 10−1 (−) 1.30 × 10−1 5.392 × 10−1 (+) 6.57 × 10−2

8 5 × 50 6.952 × 10−1 (−) 5.03 × 10−2 7.953 × 10−1 (−) 2.10 × 10−1 5.176 × 10−1 (+) 5.01 × 10−2

9 5 × 80 8.245 × 10−1 (−) 1.61 × 10−1 9.012 × 10−1 (−) 1.98 × 10−1 5.109 × 10−1 (+) 1.55 × 10−1

10 5 × 100 7.598 × 10−1 (−) 1.84 × 10−1 8.824 × 10−1 (−) 1.87 × 10−1 5.897 × 10−1 (+) 5.72 × 10−2

11 5 × 150 9.469 × 10−1 (−) 2.14 × 10−1 7.583 × 10−1 (−) 2.00 × 10−1 6.309 × 10−1 (+) 1.66 × 10−1

12 5 × 200 9.281 × 10−1 (−) 2.47 × 10−1 7.813 × 10−1 (−) 2.50 × 10−1 7.031 × 10−1 (+) 1.17 × 10−1

13 8 × 30 6.481 × 10−1 (−) 1.68 × 10−1 6.311 × 10−1 (−) 1.34 × 10−1 4.334 × 10−1 (+) 9.48 × 10−2

14 8 × 50 7.620 × 10−1 (−) 1.15 × 10−1 6.775 × 10−1 (−) 5.64 × 10−2 4.307 × 10−1 (+) 4.72 × 10−2

15 8 × 80 8.678 × 10−1 (−) 2.37 × 10−1 7.247 × 10−1 (−) 1.80 × 10−1 4.456 × 10−1 (+) 6.35 × 10−2

16 8 × 100 9.456 × 10−1 (−) 2.31 × 10−1 7.271 × 10−1 (−) 1.42 × 10−1 5.589 × 10−1 (+) 5.09 × 10−2

17 8 × 150 8.360 × 10−1 (−) 1.12 × 10−1 6.946 × 10−1 (−) 1.10 × 10−1 5.998 × 10−1 (+) 8.35 × 10−2

18 8 × 200 9.568 × 10−1 (−) 3.40 × 10−1 7.050 × 10−1 (−) 2.10 × 10−1 5.375 × 10−1 (+) 7.01 × 10−2

19 10 × 30 7.093 × 10−1 (−) 1.79 × 10−1 6.542 × 10−1 (−) 1.65 × 10−1 4.465 × 10−1 (+) 7.91 × 10−2

20 10 × 50 8.130 × 10−1 (−) 1.89 × 10−1 7.129 × 10−1 (−) 1.90 × 10−1 3.923 × 10−1 (+) 1.87 × 10−1

21 10 × 80 8.287 × 10−1 (−) 1.67 × 10−1 7.462 × 10−1 (−) 7.02 × 10−2 4.102 × 10−1 (+) 4.63 × 10−2

22 10 × 100 7.838 × 10−1 (−) 1.22 × 10−1 7.014 × 10−1 (−) 9.56 × 10−2 4.509 × 10−1 (+) 8.78 × 10−2

23 10 × 150 9.422 × 10−1 (−) 1.37 × 10−1 7.463 × 10−1 (−) 1.20 × 10−1 6.120 × 10−1 (+) 1.00 × 10−1

24 10 × 200 9.092 × 10−1 (−) 1.68 × 10−1 6.699 × 10−1 (−) 1.40 × 10−1 5.873 × 10−1 (+) 7.76 × 10−2

+/−/≈ 2/20/2 3/21/0 19/1/4

Table A3. Relevant parameter settings in simulation cases.

n Fn Dn En qn n Fn Dn En qn

1 0.5 0.9 20 0.200 26 0.2 0.7 63 0.300
2 0.2 0.8 24 0.150 27 0.2 1.0 50 0.150
3 0.4 0.8 32 0.108 28 0.4 0.9 24 0.310
4 0.3 0.8 48 0.150 29 0.5 0.8 66 0.160
5 0.3 0.9 50 0.200 30 0.3 0.8 51 0.200
6 0.2 0.9 60 0.108 31 0.2 0.7 52 0.200
7 0.2 0.7 55 0.112 32 0.3 0.9 33 0.400
8 0.4 0.7 29 0.600 33 0.3 0.8 37 0.300
9 0.3 0.7 09 0.200 34 0.1 0.9 38 0.200

10 0.2 0.7 27 0.150 35 0.1 0.6 46 0.300
11 0.4 0.6 44 0.250 36 0.4 1.0 66 1.250
12 0.3 0.7 28 0.200 37 0.3 1.0 16 1.200
13 0.2 0.8 05 0.200 38 0.5 0.9 13 1.350
14 0.1 0.7 49 0.200 39 0.3 1.0 05 2.580
15 0.4 0.7 55 1.000 40 0.3 0.8 45 1.362
16 0.3 0.7 67 0.150 41 0.4 0.8 59 1.350
17 0.2 0.8 14 0.200 42 0.4 0.7 40 1.320
18 0.1 0.8 01 0.100 43 0.2 0.6 16 1.732
19 0.4 0.7 31 1.000 44 0.4 1.0 04 4.000
20 0.1 0.6 14 0.300 45 0.5 1.0 63 1.410
21 0.4 0.7 43 0.200 46 0.5 0.9 23 0.100
22 0.4 0.8 14 0.200 47 0.3 0.7 76 1.320
23 0.2 0.8 37 0.100 48 0.1 0.7 59 1.550
24 0.1 0.7 04 0.500 49 0.3 0.7 10 1.308
25 0.4 0.7 44 0.150 50 0.3 0.7 13 0.300
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