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Abstract: Flash floods are one of the harshest natural hazards, having a wide range of substantial
impacts for human and environmental health in the short-term and long-term. On 5 November 2017,
a high-intensity storm caused a catastrophic flash flood event in the town of Mandra, a western,
outer suburb of the Athens Metropolitan Area in Greece. In this study, we determine the aqua regia
extractable concentrations of trace elements in residual sediments and associated soils after the flash
flood and evaluate the fractionation of contaminants in geochemical compartments. Geochemical
data are coupled with physicochemical parameter measurements and mineralogy to identify possible
factors explaining the variability of trace element concentrations, while a dilute acid extraction
is used to monitor changes of the reactive fraction of the trace elements over the term of 1 year
following the flood event. Aqua regia concentrations in flood-deposited sediments reached values
of 1 mg/kg (Cd), 24 mg/kg (Co), 183 mg/kg (Cr), 599mg/kg (Cu), 1080 mg/kg (Mn), 195 mg/kg
(Ni), 122 mg/kg (Pb) and 945 mg/kg (Zn). Multivariate statistical techniques classified the elements
according to their natural or anthropogenic origin. Trace elements of geogenic origin (As, Co, Cr, Mn,
Ni) dominate in flood deposited material. The cluster of anthropogenic elements (Cd, Cu, Pb, Zn,)
shows significant correlation with total organic carbon and magnetic susceptibility, while a significant
seasonal variation has been observed for total organic carbon, Cd and Mn contents in the deposited
sediments. Results allow a better understanding of the distribution of elements in the surface cover
during and after catastrophic events in urban areas and provide useful information on the long-term
exposure of the residents.

Keywords: environmental geochemistry; natural disasters; flooding; surface runoff

1. Introduction

Flash floods are one of the harshest natural hazards with a wide range of tangible and
intangible impacts that can be both short-term and long-term [1–5]. In the Mediterranean
region, flooding becomes an increasingly significant issue [6] as population expands to
river deltas and coastal areas that are subjected to inundation mostly from small rivers [7]
and ephemeral mountain torrents [8–12]. Furthermore, due to climate change, it is expected
that extreme precipitation events and flooding will be increasing in the future [13–15].
In addition to acute catastrophic consequences such as loss of human lives and property
damage, floods play a significant role in the transport of trace elements associated with
particulate matter, especially in severely polluted catchments. In such watercourse systems,
both concentrations of suspended particulate matter and pollutant contents increase with
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the growing discharge, particularly in the early stage of flooding [9,11], [13,16–20]. Their
values can remain high in the surface environment even during the flood attenuation
causing long term health effects that are not well documented [21].

Trace elements can follow different pathways leading from their source to their re-
ceptors, with potential impacts on human health. Specifically, floods play a central role
in modifying the dispersal pollutant patterns in a catchment. During a flood event, the
pollutants formerly temporarily stored in natural or artificial drainage channels are quickly
transferred to floodplains [20,22]. Recently deposited sediments may easily release trace
elements during resuspension with increasing flow velocity, while flooding events may
also cause primary pollution with extreme precipitation causing failures of settling ponds
or washes from stockpiles [19]. In the long term, extensive mud deposits left in some areas
have the potential to act as sources of airborne contaminants and be a potential hazard for
the health of local communities [23]. Inhabitants of flood-impacted areas may be exposed
to Potentially Toxic Elements (PTEs) through the oral, respiratory or dermal pathways.
Risks are maximized in communities living near flood-impacted industrial or agricultural
areas [21,23]. Flooded agricultural areas have also been demonstrated to be affected by
heavy metal pollution [24], after flooding. Furthermore, studies simulating flooding condi-
tions ex situ have demonstrated that the inundation of floodplain soils remobilizes trace
elements [22,25]. The ultimate receptor of flood run-off and suspended particulates is the
marine environment where shallow estuarine and coastal areas can be impacted by metal
pollution causing potentially harmful effects on the marine ecosystem [8,26,27].

Greece has been affected by flooding since ancient times [9], as evidenced by anti-
flooding works of the Minoan and Mycenaean eras (c. 2000-1050 BC). On 15 November
2017, a high intensity convective storm, leading to precipitation of 300 mm in 13 hours in the
center zone of the incident, hit the western, outer suburbs of the Athens Metropolitan Area
in Greece, causing a disastrous flash flood in the town of Mandra (population 12,888). The
event caused 24 fatalities, and was the deadliest flood in the country since the 1970s. The
catastrophic phase of flooding and its immediate consequences have been systematically
studied by Diakakis et al. [1,10] in terms of flood characteristics including flood extent,
maximum water levels and peak discharge estimations as well as flood impacts in different
aspects of the human and natural environment. However, what remained within deposited
sediment in the aftermath of this event remains unknown. Therefore, there is a need to
assess the long-standing exposure of the returning residents to flood-related contaminants
such as PTEs, potentially posing a substantial health hazard through accidental contact
of Mandra residents with the deposited sediment. During the catastrophic phase of the
flash flood event, vehicles, electrical transformers and various chemicals originating from
households and local industries were dispersed throughout the streets of Mandra and
were accumulated throughout the affected neighborhoods (Figure S1). Areas that were
unaffected by the debris flows and rapidly moving water were covered by depositional
sediments after the flood.

Considering the significance of depositional sediments as pollutant accumulators
and their potentially toxic impact on aquatic and atmospheric environments and human
health [28,29], the present study was conducted to assess the content of PTEs in the surface
soil and flood-deposited sediment in Mandra town. The specific research objectives were
to: (i) determine the contribution of natural versus anthropogenic elemental sources in
the flood deposited sediment and associated soil; (ii) study the fractionation of PTEs in
different compartments of the flood sediments; and (iii) identify seasonal changes in the
reactive elemental fraction of the trace elements by comparing post-storm results over the
term of one year following the flood event.

2. Materials and Methods
2.1. Study Area and Sample Collection

The town of Mandra is situated between the west end of the Athens Metropolitan
Area and the southeast foothills of Mt Pateras (1132 m) (Figure 1). The study area has
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generally flat topography. During the last 5 decades, following industrialization, Mandra
changed from a residential–agricultural area to a mixed-land-uses area (i.e., residential,
agricultural, and industrial). Different types of industries, including oil refineries, steel
facilities, cement factories, petroleum recycling units, an industry of munitions, large
warehouses, oil distribution facilities, and many chemical industry facilities, are located in
the wider area between the two major towns of the plain, Elefsina and Aspropyrgos [30].
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Figure 1. Map of the study area showing sampling locations, sampling traverses (T1, T2) and extent
of inundated area after Diakakis et al. [1]. The study area is indicated by the red dot on the insert
map of Greece.

Geologically, the study area is characterized by an east–west trending ridge mainly
consisting of Middle to Upper Triassic limestone, dolomitic limestone and dolomite rock
(Figure S2). These formations are strongly karstified and at locations they form an irregular
basement for brown-red bauxites [31,32]. Bauxite ore is described as brown-red, mostly
of boehmitic soluble type with pisolitic texture. Red clays (terra rossa) are sometimes
intercalated between bauxite and the overlying limestones, while small lenticular bauxitic
layers appear within the limestone cover [31]. The broader area is characterized by the
presence of active fault zones [33]. Geomorphologically, the area is characterized by the
sharp relief of Mt. Pateras, drained by ephemeral torrents. This results in steep topography
and increased vulnerability to landslide erosion on hillslopes [1].

A total of 30 samples of unconsolidated material, either flood-deposited sediment
(20 samples) or soil from non-flooded locations (10 samples), were collected three weeks
after the flash flood event, 6 December 2017, along the drainage path of the two tributaries
(Soures and Agia Aikaterini) (Figure 1). A total of 15 of the samples were collected upstream
and downstream from the junction of the tributaries to reveal the distribution of the trace
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elements. Another 15 samples were collected along two traverses cutting through the flood
flow: Traverse 1 (T1) crossing at the town center of Mandra; and Traverse 2 (T2) crossing
at the industrial area. This sampling strategy was selected in order to present a cross
section of residential–commercial (T1) and industrial (T2) areas and be able to compare
elemental contents in the flood sediments in the respective areas of Mandra. For a better
understanding of the controlling factors of PTEs in the industrial area, additional samples
were collected seasonally, 4 times per year in the year following flooding along T2. All
samples of 1–1.5 kg each were collected with a PVC spatula at a depth of approximately
0–5 cm. The presence of PTEs and resulting health issues by accidental exposure through
oral, respiratory, or dermal pathways have mostly been studied in the surface soil cover
(0–5cm) [29,34]. It is noted that no soil-core samples were collected, because the assessment
of downwards migration of PTEs was not included in the objectives of the present study.
Examples of sample collection sites are shown in Figure S1 of the Supplementary Material.

2.2. Preparation for Analysis and Laboratory Methods
2.2.1. Determination of Physicochemical Parameters

All samples were transported to the laboratory in plastic zip-lock bags and were dried
at a constant temperature of 50 ◦C for 3 days in an air-dry oven. Subsequently, they were
gently disaggregated and sieved to <2 mm to remove coarse material. Representative
portions of each depositional sediment sample were further sieved through a nylon 70-µm
sieve and kept at an ambient temperature (15–20 ◦C). Major physicochemical properties
including pH, total organic carbon (TOC), magnetic susceptibility and grain size distribu-
tion (sand, silt, clay) were determined. Soil pH was measured after mixing the <2 mm
sample fraction with deionized water (1:2.5 (w/v)) [35]. Total organic carbon (TOC%) was
determined on the <70 µm fraction by loss on ignition (LOI) in a muffle furnace at 500 ◦C
for 24 h [36]. Magnetic susceptibility (χ) was measured on 10 mL, <70 µm fraction samples
using a Bartington Magnetic Susceptibility Meter (model: MS2B) with a dual-frequency
sensor according to a procedure described elsewhere [37]. Further information on magnetic
measurements is provided in the Supplementary Material. Grain size distribution (vol.%)
in the sand, silt and clay fractions was determined using the hydrometer sedimentation
method applied on the coarse fraction (<2 mm) of the samples [38].

2.2.2. Mineralogical Analysis and Scanning Electron Microscopy Study

Qualitative mineralogical analysis was performed by X-ray diffraction (XRD) using
a Siemens D5005 X-ray diffractometer, applying Cu Ka radiation at 40 kV and 40 nA,
in 0.020◦ steps at 1.0 step intervals. Scanning Electron Microscopy–Energy Dispersive
Spectrometry (SEM-EDS) was carried out on carbon-coated soil/ sediment grains, by a
Jeol JSM 5600 SEM instrument, equipped with an Oxford ISIS 300 microanalytical device.
The high-density (specific gravity >2.96) fraction of selected samples was subjected to
SEM-EDS study in the backscatter electron (BSE) mode in order to identify trace element
hosting phases.

2.2.3. Chemical Analysis Methods

Chemical analysis was performed on the <70 µm fraction, previously demonstrated to
be a relevant grain size for assessing environmental risk in urban areas [39]. The near-total
content of PTEs was determined in hot (95 ◦C) aqua regia (HNO3-HCl) digested samples
by ICP-MS. The results were used to calculate the reactivity ratio or percent reactivity.
Solutions were made to final volume of 10 ml with deionized water, and were analyzed
for 33 chemical elements. This study focused on the analytical results of PTEs, i.e., As,
Cd, Cu, Co, Cr, Ni, Mn, Pb, Zn for environmental purposes and some major elements
(Al, Ca, Fe, Mg) to aid the interpretation of mineralogy. Analytical duplicates, in-house
reference materials and reagent blanks were included for the quality control program.
The modified Community Bureau of Reference (BCR) protocol was applied to evaluate
the trace element fractionation in the 7 samples collected along T2 in the industrial area
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with successive extractions by 0.11 M acetic acid, 0.5 M hydroxylammonium chloride in
0.05 M nitric acid (reducing agent) and 1 M ammonium acetate at pH 2 after digestion
with 8.8 M hydrogen peroxide (oxidizing agent) [40]. The specific samples were selected
because they yielded the highest concentrations of Pb and Zn according to the aqua regia
dissolution. A final step using a HNO3-HCl mixture was included to dissolve the residue
after the three extraction steps. All elemental concentrations were measured by Flame
Atomic Absorption Spectroscopy (FAAS), except Cd which was measured by Graphite
Furnace Atomic Absorption Spectroscopy (GFAAS). The recovery rates for each chemical
element were estimated by comparing the sum of the four fractions with the aqua regia
digestion results (see quality control section in Supplementary Material).

The reactive forms of trace elements in the same 7 samples from T2 were extracted by
a dilute acid (0.43 M HNO3) leaching at ambient [41]. The same procedure was applied to
the seasonal samples collected from the same sites. Concentrations of Pb, Zn, Cu, Ni, Cr,
Co and Mn were measured by FAAS and concentrations of Cd by GFAAS.

2.3. Statistical Analysis and GIS

The MINITAB 17 software was used for statistical analysis. Data and geochemical
maps with spatial distributions of PTEs concentrations, in the depositional sediments and
soils of the studied area were compiled in a geographical information system (GIS) (ArcGIS
Pro). The GIS included geospatial information (georeferenced sampling points, simplified
lithological map, topography, extent of inundated area [1]) and land use data from the
Corine land cover database [42]. Graduated size symbols were used for data posting maps
of aqua regia extractable concentrations of the studied trace metals and other parameters
(pH, % TOC and χ). The natural breaks method, based on the histogram of each variable,
was adopted to define the concentration classes.

3. Results
3.1. Physical Characteristics and Magnetic Susceptibility of Soils and Sediments

The key physicochemical properties of the samples are presented in Table 1. The
samples are weakly alkaline, with medium to high equivalent calcium carbonate content.
The TOC content varies widely in the samples (1.5–4.9%), while in terms of grain size
distribution the fine fraction dominates with percentages of clay, silt and sand of 5.9–24%,
65–84% and 0.6–22%, respectively. The measured magnetic susceptibility values (χ), indi-
cate that the samples are dominated by a ferrimagnetic component. The χ values of less
than 0.1 × 10−6 m3 kg−1 are indicative of dominating antiferromagnetic or paramagnetic
components [43]. The samples yielded an average χ value of 1.99 × 10−6 m3 kg−1, which is
20 times over 0.1 × 10−6 m3 kg−1 indicating the predominance of secondary ferrimagnetic
minerals. A significant statistical relationship was identified between the geochemical and
mineral magnetic data (see below), suggesting that there is a link between magnetite-like
phases and trace metals (Cu, Cd, Pb and Zn) in the Mandra environment.

Table 1. Statistical summary of physicochemical properties, magnetic susceptibility (χ) and aqua regia
extractable concentrations of major and trace elements for the collected samples (n = 30). Median total
concentrations of some studied elements in the soils of the neighboring Thriassio plain as determined
in previous study of Massas et al. [30], are provided for comparison.

Parameter Mean Median Minimum Maximum Standard Deviation Median of Thriassio soil [30]

pH 8.00 8.03 7.27 8.36 0.24 8.0
TOC (%) 2.80 2.74 1.45 4.93 0.95 2.86
Sand (%) 6.29 4.29 0.57 21.7 5.8 50.9
Silt (%) 78.9 79.5 64.6 84 4.27 27.6

Clay (%) 14.9 13.9 5.93 23.5 4.82 21.5
χ (10−6 m3/kg) 1.99 1.97 1.09 3.03 0.39

Al (%) 2.04 2 0.86 3.19 0.63
As (mg/kg) 10.9 11 6 15 2.21
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Table 1. Cont.

Parameter Mean Median Minimum Maximum Standard Deviation Median of Thriassio soil [30]

Ca (%) 12.3 12.1 2.49 24.6 4.73
Cd (mg/kg) 0.70 0.70 0.25 1.1 0.16
Co (mg/kg) 18.2 18 8 24 4.17 24
Cr (mg/kg) 93.6 89.5 58 183 24
Cu (mg/kg) 53.6 31.5 19 599 104 37.8

Fe (%) 2.75 2.72 1.53 3.86 0.61 1.6
Mg (%) 1.31 1.23 0.7 2.53 0.43

Mn (mg/kg) 739 742 350 1080 171 320.8
Ni (mg/kg) 133 134 64 195 32.4 81.1
Pb (mg/kg) 49.9 40 24 122 25.8 111.8
Zn (mg/kg) 170 106 52 945 186 154.6

3.2. Mineralogical Composition of the Samples

Mineral phases commonly found in the samples include calcite, dolomite, quartz, illite,
albite, clinochlore and other subordinate clay minerals (Figure 2). Calcite is one of the most
abundant minerals in most of the examined samples, reflecting the effect of the limestone
bedrock. Quartz, the most resistant mineral to physical and chemical weathering, is also
abundant in the samples. Trace amounts of illite and clinochlore were also identified by
XRD. No significant differences were observed in the XRD patterns of the seasonal samples.
It is noted, however, that the performed mineralogical analysis is only qualitative and
although the relative abundance of mineral phases in the samples may vary seasonally,
this could not be verified in this study, given the limitations of our interpretation and the
variation between the collected samples.
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The SEM-EDS study of selected samples revealed the presence of grains rich in PTEs
such as (Cu, Zn)-oxide phases, as well as magnetite spherules which are typically formed
by combustion processes in urban environments [28] (Figure 3 and Table S1).

3.3. Geochemical Characterization of Soil and Depositional Sediment Samples
3.3.1. Aqua Regia Extractable Trace Elements

The elemental concentrations after aqua regia digestion of the total samples are sum-
marized in Table 1. Of the PTEs, Zn, Mn and Cu are the elements that display the greatest
variation, with concentration ranges of 52–945 mg/kg, 350–1080 mg/kg and 19–599 mg/kg,
respectively. All elements show a wide range in their concentration values reflecting the
contribution of the flood in the investigated area. In terms of median values, Mn, Ni and
Zn display the highest concentrations in aqua regia analysis. Median values of the studied
elements follow the decreasing order of Ca > Fe > Al > Mg > Mn > Ni > Zn > Cr > Pb > Cu >
Co > As > Cd. Compared to a previous study by Massas et al. [30], considered to be a good
representation of the local soil geochemical baseline as it was performed in the adjacent
area of Thriassio Plain, levels of Pb, Cu and Zn in the present dataset are considerably
lower. Contrarily, the Mn median concentration displays an over two-fold increase in the
present study. A further striking difference compared to the Thriassio soil study is the
significantly higher silt content of samples of the present study, reflecting the effect of the
flash-flood event on the related depositional sediment.
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A comparison of PTE contents in samples collected within and outside the flooded
area revealed that maximum values correspond to sampling points within the flooded area
for all elements (Figure 4); however, differences were found to be statistically significant
only for Co and Ni (ANOVA, p < 0.05).

In order to group the studied trace elements and to identify possible common sources,
a hierarchical cluster analysis was performed on elemental concentrations and other param-
eters measured in the samples, using the weighted pair-group average based on Pearson
correlation coefficients [43]. The results are presented graphically in the dendrogram of
Figure 5. Two distinct clusters are identified based on a criterion of similarity of over 50%,
whereas pH forms a separate cluster. The first cluster is divided into multiple subclusters
and contains % clay, Ni, Fe, Mn, Co, As and Cr. The second cluster includes %TOC, χ, Cu,
Pb, Zn and Cd, and is subdivided into two subgroups; χ, Cd and Pb are clustered in one
subgroup and Cu, Zn and %TOC in a second subgroup. The magnetic susceptibility (χ)
presents similarity of over 75% with Cd and Pb. A correlation between %TOC and Cu-Zn
is observed, indicating an apparent relationship of these parameters.
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In order to further explore the controlling factors of elemental associations, factor
analysis was performed on aqua regia extracted elemental concentrations, pH, %TOC,
%clay content and magnetic susceptibility (χ). The factor analysis results are presented
in Table 2.

Three factors are identified, accounting for 78% of the total variance. The first factor
accounts for 43.1% of the total variance, and includes %clay, Ni, Co, Fe, Mn, As and Cr
with positive loadings. The second factor controls 19.9% of the total variance and includes
%TOC, χ, Pb and Cd with negative loadings. In the present study, magnetite spherules,
which are typical products of combustion processes [28,44] have been identified in the
urban samples during the SEM-EDS analysis (Figure 3). The third factor, accounting for
14.8% of the total variance contains Cu and Zn with high positive loadings. This is further
supported by the SEM-EDS results (Figure 3, Table S1), where some of the grains appear to
be rich in these two trace elements.



Sustainability 2022, 14, 2448 9 of 17

Table 2. Total variance explained and matrix of Varimax rotated factor loadings and communalities
for elemental concentrations extracted by aqua regia and physicochemical soil parameters.

Variable Factor 1 Factor 2 Factor 3 Communality

pH −0.406 0.219 −0.474 0.437
TOC −0.072 −0.716 0.169 0.546
Clay 0.771 0.201 0.113 0.647

χ 0.444 −0.793 0.039 0.828
Cu 0.132 −0.112 0.941 0.916
Pb −0.190 −0.825 0.288 0.799
Zn −0.144 −0.427 0.871 0.961
Ni 0.863 0.023 0.112 0.758
Co 0.976 −0.012 0.012 0.954
Mn 0.926 0.002 −0.035 0.859
Fe 0.950 −0.223 0.035 0.953
As 0.892 −0.252 0.151 0.882
Cd 0.361 −0.658 0.197 0.602
Cr 0.785 −0.362 −0.004 0.747

Variance 6.035 2.783 2.072 10.8893
% Cumulative

variance 0.431 0.199 0.148 0.778

3.3.2. Sequential Extraction Results and Reactive Trace Element Concentrations

The chemical partitioning patterns of the investigated elements according to the modi-
fied BCR sequential extraction procedure in the 7 depositional sediments of T2, collected
1 month after the flash flood, are shown in Figure 6. The results are expressed as percentage
distributions of the elements within each fraction. The elemental fractions were evaluated
to provide a first approximation of the potential metal mobility and bioaccessibility of PTEs
in the collected samples. The first fraction corresponding to water-soluble, easily exchange-
able and carbonate-related forms is interpreted as the most mobile and bioaccessible in
the environment [45]. Fraction 2 corresponds to elements bound to Fe and Mn oxides and
fraction 3 corresponds to elements complexed with sulfides and organic matter. Fraction
2 can be mobilized with increasing reducing conditions and fraction 3 with increasing
oxidizing conditions. As a result, the sum of the first three steps of the sequential extraction
(F1 + F2 + F3) is considered as the potentially labile fraction, whereas the residual forms of
metals are unavailable for transport, plant uptake or be bioaccessible to humans [46].

Copper in the depositional sediments was mainly concentrated in the residual (62%)
and oxidizable phases (24%) and showed a weaker association with the reducible (10%)
and exchangeable phases (5%), except for one sample which reached percentages of 44% in
the reducible and 8% in the exchangeable phase, respectively. Lead was strongly associated
with the oxidizable and residual phases in most samples with smaller amounts in the
reducible and exchangeable fractions (24% and 10%, respectively). The percentage of
exchangeable Pb fraction was found to be significantly high for sample FL09 (16%). The
chemical association of Zn was dominated by reducible/specifically adsorbed (32%) and
residual (41%) phases, with the oxidizable (19%) and exchangeable (9%) fractions being of
secondary importance. The exchangeable Zn phase was notably high (18%) in sample FL10.
Cadmium in the depositional sediments was the most vulnerable PTE to mobilization with
a high percentage (41%) extracted in the initial steps of exchangeable/specifically adsorbed
fraction. High percentages of Co (6–44%) and Mn (35–66%) were also related to the labile
fraction with concentrations ranging from 8 to 24 mg/kg for Co and 750 to 1080 mg/kg for
Mn. The chemical partitioning of Mn was dominated by the reducible phase. A significant
contribution of the residual fraction was found for Co, probably indicating that some Co
may be held in acid soluble, phyllosilicate minerals. The operational speciation of both Ni
and Cr was governed by the residual species in the sediments with extraction percentages
reaching 80–90% during the strong acid dissolution stage.
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The reactive trace elements concentrations in the same 7 samples, determined by
using the 0.43 M HNO3 extraction represents the fraction of metals that is available for
environmental mobilization and therefore is relevant to human health risks. The proportion
of reactive elements in the studied samples, expressed as the percentage of the concentration
that is extracted by aqua regia is presented in the boxplots of Figure 7.

Zinc presented a wide range of percentages, varying from 35% up to 100% of total
content across the sampling points. Additionally, Cd ratios also covered a wide range, from
55% to 100%, indicating that the proportion of the reactive phases’ pool of this element is
not controlled solely by the total Cd content. Furthermore, Pb, Cu, Mn and Co presented
high medians and a wide variation concerning the percentages of dilute HNO3 over aqua
regia ranging from 42% to 87% of total content. Contrarily, significantly lower percentage
medians and variation were estimated for Ni and Cr, i.e., below 30% for all samples.

Regarding the seasonal variation in reactive elemental concentrations, significant
differences (ANOVA, p < 0.05) between the first sampling, 3 weeks after the flood and
samplings during the following months were observed only for Cd and Mn (Figure 8). It
is noted that measurements of TOC in the respective samples immediately after the flood
also yielded significantly higher values compared to the following seasons of the year.
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3.4. Spatial Distribution of Trace Elements and other Measured Parameters

The spatial distribution of aqua regia extractable concentrations of the studied trace
elements, plotted by using graduated size symbols, are presented in Figure 9. Distinct
differences in the distribution pattern of the elements are observed, with the highest
concentrations of Pb, Cu and Zn observed in samples collected after the flood along T2
which crosses the industrial area of Mandra town. Specifically, statistically significant
higher concentrations in T2 were estimated for Pb and Zn (ANOVA, p < 0.05). Contrarily,
Cr, As, Mn, Ni and Co presented a more homogeneous distribution in the sampling area,
without noticeable differences in sampling points from the industrial area. The statistical
summary of concentration data for all studied trace elements is provided in Table S2 and
the spatial patterns of other measured parameters, i.e., pH, %TOC and χ are presented in
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Figure S3. Of these parameters, only χ seems to follow the pattern of the first group of trace
elements with higher values in samples from the industrial area.
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4. Discussion
4.1. Natural versus Anthropogenic Sources of Trace Elements

While the atmospheric fluxes onto impervious urban surfaces may significantly con-
tribute to the contamination of urban runoff and play an important role in elemental cycling
in the urban environment [47], the dominating process in the study area has been the influx
of eroded material from upstream during the flash flood event. This is evidenced by the
higher enrichment in Cr > Ni > Mn > Fe in the flood deposited material, compared to the
adjacent Thriassio soils based on the previous study by Massas et al. [30], as well as the
grouping of measured parameters according to the multivariate techniques applied.

Specifically, the cluster analysis results show a distinct classification of the elements
according to their origin. Arsenic, Co, Cr, Fe, Mn and Ni were significantly positively
correlated to clay content, providing evidence that these elements were mainly of geogenic
origin and dominant in the flood deposited sediment. Cadmium, Cu, Pb and Zn are
grouped in a separate cluster which also contains magnetic susceptibility (χ). The trace
elements of this latter cluster are typical anthropogenic contaminants [30,48–50].

The above associations are further supported by the results of factor analysis. The
positive loadings of the first group of elements indicate that the major controlling factor
is their common geogenic origin from upstream eroded material. Furthermore, a strong
positive correlation is observed between Al and Fe (Figure S4) in the collected samples,
indicative of the influence of the geological background to the chemical composition of the
flood-deposited sediment. Bauxite occurrences in the area are a potential source of this
group of trace elements. Although detailed literature information on trace element contents
of bauxite occurrences from the study area is lacking, other bauxitic laterite deposits of
Central Greece have been studied in the past in this respect [32]. These deposits are lying on
similar geology i.e., on karstified Triassic–Jurassic limestone, and are conformably overlain
by Lower Cretaceous limestone. They occur either as isolated typical Ni or bauxitic–laterite
ores or as an association of Fe - Ni ore at the lower part of the deposit, followed by bauxitic–
laterite towards its upper part and are characterized by exceptionally high As, Cr and Co
contents. Arsenates were found to occur as sorbed species onto goethite-type phases in the
bauxitic laterites of Central Greece [51]. Terra rossa, a reddish clayey to silty–clayey soil
especially widespread in the Mediterranean region, which covers limestone and dolomite,
is also present in the study area. Terra rossa may have formed exclusively from the insoluble
residue of limestone and dolomite but often comprises a span of parent materials which
arrived on the carbonate terrain via different transport mechanisms [52]. Typical minerals
of Mediterranean terra rossa including carbonates (calcite, dolomite) and aluminosilicate
minerals (illite and chlorite) were identified in samples of the present study (Figure 2).
The typical red color of the material is due to Fe oxides, present as hematite and goethite
effectively acting as sorption surfaces of trace elements.

Regarding the spatial distribution of trace elements, significantly higher concentrations
of Pb and Zn were observed in T2 which crosses the industrial area of Mandra town. This
indicates that the accumulation of these PTEs in the depositional sediments is considerably
influenced by automobile traffic and industrial facilities. The potential sources of these
metals include vehicle emissions from the dense network of roads and can be tied to
automobile byproducts. Additional sources of these elements in an urban environment can
be incinerators, pipes, cables, and paints [53]. However, the possibility that a proportion
of some trace elements of mainly geogenic origin such as As and Cr is influenced by
anthropogenic sources, especially within the industrial area of Mandra, cannot be excluded.

4.2. Trace Element Fractionation in Flood Sediments and Seasonal Variation

Undoubtably a more relevant indicator for assessing the health risk for humans and
the ecosystem after the flood is the fractionation of trace elements in easily mobilizable
forms, which can trigger exposure to PTEs. In this respect, the modified BCR method
results provided a clear indication of the most susceptible trace elements to mobilization
in the order Cd > Mn > Pb > Co > Ni > Cr. The results of sequential extraction for Zn and
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Cu were not consistent between the analyzed samples, probably indicating involvement
of very site-specific conditions in the control of their speciation. Furthermore, the notable
fractionation of Cr and Ni in the residual phase signifies the presence of Cr-spinels and
Ni-bearing silicate lattices, such as serpentine and smectite minerals, as a major structural
component in the analyzed samples. This is supporting the hypothesis of the upstream
eroded soil being the major contribution to the flood deposited sediments. Indeed, soils of
the wider region upstream with similar bedrock geology are rich in such minerals as found
in previous studies at the area of Thiva [54,55].

Reactivity ratios, involving data from the dilute HNO3 extraction, are also used as
metal availability indices since they correspond to the percentage reactive fraction of
metal’s total concentration in soil. This reduces the influence of the geogenic factor on these
environmental availability indicators and makes them more sensitive to anthropogenic
pollution sources. The availability of metals in soils is mainly influenced by the clay and
total organic carbon content, the pH, and the composition of the soils’ parent material.
This could differentiate the estimated reactive percentages of trace elements in different
soils even under the same land use pattern and total metal amounts [30]. Reactivity ratios
depend on the proportion of the mobilizable phases in the given soil matrix; the higher the
ratio, the higher the proportion of the host phases that are susceptible to dissolution by
the given reagent [56]. In the present study the highest reactivity ratios, reaching values
over 90%, have been observed for Zn, Cd, Pb, Cu, Mn and Co extracted by dilute HNO3
over total content extracted by aqua regia. The same trend was observed for most of these
elements as estimated by the modified BCR extraction analysis; thus, those trace elements
are the most vulnerable to mobilization in the flood runoff.

The lower concentrations of Cd during the December sampling period, 3 weeks after
the flood, signify that many cadmium compounds found either in atmospheric dust or in
effluents of principal sources, such as cadmium sulfate and cadmium chloride that are quite
soluble in water, were probably washed out by the flood [57]. However, the significantly
higher concentrations of Mn during the December sampling period might reflect the flood
event and the load-bearing materials and volumes of soil drifted by the flood. Further
research entailing soil coring is necessary to be able to assess the downwards migration of
PTEs and possible infiltration into the aquifer. Furthermore, research gaps to be addressed
in similar events in the future include further modelling of relationships between extreme
events and health impacts; improved understanding of factors affecting vulnerability to
climate extremes; and assessment of the effectiveness of adaptation in different settings [58].

5. Conclusions

Increasing frequency or severity of some extreme weather events, such as extreme
precipitation, flooding, droughts, and storms, threaten the health of people during and after
such events [15]. Extreme precipitation events due to environmental change are expected to
become more frequent in the future, however, their effects on health are difficult to quantify,
because secondary and delayed consequences are poorly reported. The flash flood in
Mandra is a typical example of this type of natural disaster with possible long-term effects,
possibly affecting human and ecosystem health. The present study provided insight into
potential factors affecting the origin and fractionation of trace elements in flood deposited
sediments and their further dispersion in the surface environment by successfully applying
a set of analytical techniques that proved effective in providing relevant information.

An enrichment of Cr > Ni > Mn > Fe in the flood-deposited material compared to the
local soil geochemical baseline has been identified, indicating that the major contribution to
the chemistry of flood deposits was the upstream eroded material. Furthermore, the flood
has resulted in remobilization of some elements in the surface cover and their sequestration
in environmentally mobile phases as evidenced by the elevated concentrations of trace
elements such as Pb and Zn in the flooded industrial area of Mandra. Regarding the
elemental fractionation in the flood sediments, the high percentage (40%) of Cd in the
operationally defined exchangeable fraction, suggests that this PTE is the most susceptible
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to mobilization during runoff. High reactivity ratios, reaching values of over 90%, have
been observed for Cd, and Zn, indicating vulnerability of both PTEs to mobilization, should
the physicochemical conditions of the soil cover change. There was a significant seasonal
variation of TOC, Cd and Mn in the months following the flood, whereas no significant
difference was observed for the other studied PTEs. The results of the present study provide
an objective basis for better management of the risks related to exposure of inhabitants to
contaminated flood deposited sediments in areas of similar characteristics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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area, Figure S4: Correlation between Al and Fe in collected samples, Table S1: Results of SEM-EDS
microanalysis, Table S2: Comparison of trace element concentrations in samples of the two traverses.
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