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Abstract: Various mobility services have been proposed based on the integration of automated
vehicle (AV) and road infrastructure. Service providers need to identify a set of road sections for
ensuring the driving safety of an AV-based mobility service. The main objective of this research is
to analyze the safety performance of AVs on the road geometrical features present during this type
of mobility service. To achieve the research goal, a mobility service is classified by a combination
of six road types, including expressway, bus rapid transit (BRT) lane, principal arterial road, minor
arterial road, collector road, and local road. With any given road type, a field test dataset is collected
and analyzed to assess the safety performance of the AV-based mobility service with respect to
road geometry. Furthermore, the safety performances of each road section are explored by using a
historical dataset for human-driven vehicle-involved accident cases. The result reveals that most of
the dangerous occurrences in both AV and human-driven vehicles show similar patterns. However,
contrasting results are also observed in crest vertical curve sections, where the AV shows a lower
risk of dangerous events than that of a human-driven vehicle. The findings can be used as primary
data for optimizing the physical and digital infrastructure needed to implement efficient and safe
AV-based mobility services in the future.

Keywords: mobility service; automated vehicle; driving safety; road geometrical feature; human-driven
vehicle

1. Introduction

Many strategies have been investigated (1) to address the limitations of current public
bus transport, such as low service quality and profitability, and (2) to satisfy requirements
for new mobility services, such as mobility-as-a-service and ride-hailing [1–4]. One of the
best alternatives to reduce labor costs and operational inefficiency for a mobility service is to
incorporate an automated vehicle (AV) system into public transport [5]. For instance, Navya
operates an automated driving shuttle service in Sion, Switzerland, servicing 25 locations.
In Bad Birnbach, Germany, EasyMile runs an automated shuttle service linking train stations
and downtown areas. AV-based public transport services increase customer convenience
by linking them with the existing public transport system, thereby effectively reducing
waiting time, traffic volume, and road congestion [6].

Most previous research has forecasted that the traffic flow capacity would be increased
by employing an AV system [7–11]. However, the results from actual driving environments
suggest otherwise. In particular, a commercially available adaptive cruise control (ACC)
for the AV produced a longer headway than that of a human-driven vehicle [12,13], which
may often result in a capacity drop [14]. It was also observed that the speed fluctuation
of the preceding vehicle was amplified and transmitted to the following vehicle [15]. The
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performance of lane-keeping systems (LKS) in AVs also varies with vehicle type, and AVs
performed poorly on curves and hills [16]. The American Automobile Association also
conducted a similar test on public roads and found that 73% of AV system malfunctions
involved the LKS [17]. Major malfunctions included “abrupt disengagement”, “erroneous
disengagements in terms of perceived inattention”, “ping-ponging within the lane”, and
“becoming uncomfortably close to other vehicles or guardrails in the lateral direction”,
especially on curved roads. The system was also affected by sunlight and lane type.

Accordingly, there has been growing interest in the road geometry and environmental
conditions for automated vehicles to drive safely. The SAE J3016 defines operational design
domains (ODD) as “operating conditions under which a given driving automation system
or feature thereof is specifically designed to function” [18]. Level 5 automated vehicles have
unlimited ODD, but they do not yet exist. Level 4 controls itself without fallback to the
driver even in dangerous situations, but it is operated only in limited spaces. Level 3, the
level of the complete object, event detection, and response (OEDR), requests fallback to the
driver when it escapes from the ODD, and the scope of ODD varies differently depending
on the definition of the dynamic driving task (DDT). Since perfect OEDR is not performed
below level 2, continuous concentration by the driver is required [18]. SAE J3016 does not
provide the exact feature of ODD at each automated level due to the wide range of possible
ODDs and possible features. The ODD cannot be defined collectively, and it inevitably
varies depending on the DDT and driving area given the mobility condition. Therefore,
when designing a mobility service accompanied by automated driving, the DDT and
driving area should be defined first, and the ODD should be designed based on numerous
actual driving tests. For example, AVs should be able to recognize lanes on curved roads
at high speed and perform well under different environmental brightness conditions [19].
The ODDs for AV-based public transport include intersections and pedestrian crossings,
and its DDTs involve pedestrian recognition, signal recognition, and intersection turns [20].

On the other hand, traditional mobility service requires a three-step planning pro-
cess [21–23]. First, the new mobility service area is selected based on a customer demand
survey; second, the mobility service type is identified; and third, the appropriate route for
the service type is created, the road infrastructure for operation is repaired, and vehicles
are deployed. However, because the service areas for AV-based mobility (AVM) are limited,
differences exist in steps 2 and 3 of the traditional mobility service planning process. The
AVM’s service area shall be determined after investigating the road infrastructure and
environmental condition. The service provider decides whether automated vehicles can
be operated in that area. Thereafter, suitable services are provided considering the route,
passenger access method, and dispatch interval in the defined path of the automated vehi-
cles. Nevertheless, the roads where the AVs cannot be operated are excluded even if the
AVM services are required in that route [20]. Current AVM services are implemented by
only determining whether the service can be provided under specific conditions, without
considering the ODDs that make automated driving possible. Therefore, it is impossible
to develop measures to determine (1) what type of services can be provided based on the
road type and (2) what road design modifications are needed to introduce or expand the
automated driving-based mobility services. Hence, the passenger satisfaction for AV-based
services and the efficiency of service providers are, inevitably, low.

The aims of this study are twofold: (i) to analyze the safety performance of AVs on
various road types and geometrical features from the perspective of mobility services and
(ii) to identify mobility requirements for developing new AV technologies. The remainder
of this paper is organized as follows. Section 2 describes the methodology and dataset used
in this research. Section 3 presents the result and analysis. Finally, Section 4 concludes the
paper with additional considerations for further research.

2. Methodology

Figure 1 shows the safety analysis framework for an AVM service. To analyze the
driving conditions for the AVM, services and roads were classified and field tests were used
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to assess each service. The safety-related incidents for AVMs were analyzed using field
test data and correlated with the road geometry. The results were compared with accident
factors for vehicles with a human driver. Automated driving field test data were used to
classify the geometrical features of the dangerous sections for automated driving based on
the classification and regression tree (CART) model. Finally, the dangerous event patterns
of automated vehicles and accident patterns of drivers for each group derived from the
CART model were compared and analyzed.
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Figure 1. Framework of driving safety analysis for automated vehicle-based mobility (AVM) service.

2.1. Driving Suitability Analysis Method
2.1.1. Classifying Roads by AVM Service

Roads are classified into six types depending on the purpose and function [24,25].
For each classified road type, the occurrence trend of dangerous events was analyzed by
performing a field test with the automated vehicle.

Figure 2 shows the road types classified according to use. Expressways enable high-
speed driving and have the smallest longitudinal slopes and curves among the classified
roads. Bus Rapid Transit (BRT) lanes are designed for efficient driving of buses without
mixing with other vehicles. Principal arterial roads handle mass transit traffic between
major areas within cities and counties, or between cities and counties, thus forming the
framework of a city or county. Minor arterial roads connect principal arterial roads with
collector roads or major traffic sources, thus allowing city or county traffic to gather and
scatter and form the outskirts of neighborhood residential areas. Collector roads connect
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the traffic of neighborhood residential areas with minor arterial roads, thus allowing
traffic in neighborhood residential areas to gather and scatter and divide the inside of
the neighborhood residential areas. Local roads divide households (a group of areas
surrounded by roads).
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Figure 2. Types of roads.

Table 1 matches the road type with the AVM service type [26]. It is evident that S1
operates on BRT lanes and expressways; S2 operates on expressways and principal arterial
roads; and S3 operates on expressways, principal arterial roads, and minor arterial roads.
S4 operates on principal arterial and minor arterial roads; S5 operates on principal arterial,
minor arterial, and collector roads; and S6 is operated on collector and local roads. Lastly,
S7 operates on all roads except the BRT lane.

Table 1. Matching road and service types.

Service Type

S1
AV

Fixed-Route
Transit
Service

(Dedicated)

S2
AV

Fixed-Route
Transit

Service (Non-
Dedicated)

S3
AV

On-Demand
Transit
Service
(Group)

S4
AV

On-Demand
Transit
Service

(By-Pass)

S5
AV Paratransit
(On-Demand):

Urban

S6
AV Paratransit
(On-Demand):

(Rural)

S7
AV Taxi

Road
Type

BRT Lane #
Expressway # # # #

Principal
arterial # # # # #

Minor arterial # # # #
Collector # # #

Local # #

2.1.2. Obtaining Dangerous Event Data from Automated Vehicles through Field Tests

The road types were tested for automated driving suitability. The field test driving
area comprised 2977.13 km of expressways, which is 62% of the total length of expressways
in South Korea. The datasets are available at https://github.com/dhleeGDH/Fieldtest_da
taset_for_AV (accessed on: 31 January 2022).

Figure 3b shows the driving areas with BRT lanes, principal arterial, minor arterial,
collector, and local roads involving 77 km of roads around Sejong City, South Korea.
The BRT lane, principal arterial roads, and minor arterial roads achieved high driving
performance results because they were constructed recently, whereas the collector and local
roads are typical roads in the old town and suburbs.

https://github.com/dhleeGDH/Fieldtest_dataset_for_AV
https://github.com/dhleeGDH/Fieldtest_dataset_for_AV
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Figure 3. Driving areas for field tests of automated vehicles.

Dangerous driving event is herein defined by AV system malfunctions such as ACC
and lane-centering failures. ACC functions are often turned off by a significant perturbation
induced by the road geometry, such as a sharp slope or curve. Similarly, due to the geo-
metric road design, the lane-centering functions usually fail, resulting in touching the line
and/or going over the line. The details can refer to the on-line datasets described earlier.

2.2. Geometrical Features of the Dangerous Event Occurrence
2.2.1. Preprocessing the Network and Accident Data

The source data, such as geometrical features, required for the risk analysis of auto-
mated vehicles and the correlation analysis of the road geometry were extracted from the
expressway network data from the Korea Expressway Corporation. This data comprised
three primary variables: longitudinal slope, horizontal alignment, and number of lanes.
In addition, the changes in longitudinal slope and curve radius values were generated as
properties of each link and were calculated by subtracting the longitudinal slope/curve
radius values of the current link from the longitudinal slope/curve radius values of the
previous link. These two consecutive links were in the direction of vehicle movement.

The expressway data we used were constructed for building, maintaining, and man-
aging expressways. Hence, the changes in the longitudinal slope and curve radius occur
within a single link. Therefore, the expressway network data were preprocessed before the
correlation analysis, so that a single link had homogeneous properties. Hence, the values
of the horizontal alignment, curve radius, longitudinal slope, and number of lanes for one
link did not change. For example, when a road link changed from a straight to a curved
section, we divided it into two links: a straight road and a curved road.

Driving accident data from 2011 to 2017 from the Korea Expressway Corporation were
used, which included the date of the accident, time, expressway route name, postmile, and
number of accidents [27]. The accident occurrence rate for each link was calculated using
the following equation [22,28]:

Accident occurrence rate f or general vehicles = ∑
(Number o f Accidents)

(Length o f section × AADT)
, (1)
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where the annual average daily traffic (AADT) is the annual traffic volume divided by
365 days for a specific segment [29]. The AADT data were obtained from the expressway
public data portal.

2.2.2. Identifying and Classifying the Dangerous Road Sections

Automated driving dangerous occurrence data were generated based on the driving
image data collected during the field test in Section 2.1.2. To analyze the geometrical
features of dangerous road sections, the automated driving dangerous occurrence data
were matched with the expressway network data preprocessed in Section 2.2.1 based on
the expressway postmile.

The geometrical properties of the dangerous section were analyzed by matching data
using the CART model [30,31]. The CART model was chosen because it can analyze both
nominal and continuous variables [31,32].

The CART model classifies the dataset by minimizing impurities using the Gini index
(G). G is calculated using the following formula [33]:

G = Σ
(

1 − Pk
2
)

, (2)

where P is the proportion of samples belonging to class k, and k represents m classes of the
target variable (k = 1, 2, 3, . . . , m). G ranges between 0 and 1, and the impurity increases
as G approaches 0.5. The CART model branches out the decision tree when the impurity
of G is minimum based on the input variables [31]. The input variables of this model are
the longitudinal slope, horizontal alignment, curve length, curve radius, number of lanes,
change in the longitudinal slope, change in the curve length, and change in the number of
lanes. The output variable is the occurrence of dangerous events with an automated vehicle.

3. Results
3.1. Driving Suitability Result and Analysis for AVM Service
3.1.1. Analyzing Dangerous Event Occurrence by Road Type

Figure 4 shows the dangerous occurrences for AVs by road type. Dangerous situations
occurred once every 7.3 km, 1.8 km, and 6.9 km on average on expressways, BRT lanes, and
principal arterial roads, respectively, showing higher safety than other road types. Minor
arterial and collector roads exhibited relatively low safety with one dangerous situation
per 1.1 km and 0.55 km, respectively. Local roads yielded poor performance such that the
test was impossible because lane markings were lost or not clear. The test results indicate
that implementing AVM services on expressways will be the easiest and safest followed by
on principal arterial roads.

Figure 5 shows the frequency of occurrence of two dangerous situations—went over-
the-line and touched-the-line—by road type. On expressways, the automated driving
function worked best because expressway geometry was designed to change smoothly.
Going over-the-line occurred once every 264 km on average, and these events often occurred
in sharp curves and in confluence sections where the geometry changed abruptly. Touched-
the-line occurred once every 8 km on average. It occurred when lanes were drawn in
double, in slightly sharp curves, and in sections with uneven road surfaces. Furthermore,
instability in controlling the vehicle occurred from repetitive touch-line events in sections
with excessively wider lanes than general lanes and grooved surface sections. Overall,
the expressway is the most feasible road type for applying AVM services at the current
technology level of automated driving.



Sustainability 2022, 14, 2336 7 of 13

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 14 
 

Overall, the expressway is the most feasible road type for applying AVM services at the 

current technology level of automated driving. 

 

Figure 4. Dangerous event occurrence by road type. 

 

Figure 5. Dangerous event occurrences for automated driving by road type. 

In BRT lanes, an over-the-line event occurred once every 6 km on average, whereas 

touched-the-line occurred once every 4 km on average. The factors that lower the safety 

of BRT lanes include the narrow lane width compared to the size of the bus, abrupt 

changes in geometry at merging and diverging areas, and sudden slopes at the entry and 

exit of bridges and underpasses. In contrast, principal arterial roads achieved the second-

best driving safety results next to expressways, with one went over-the-line per 27 km on 

average and one touched-the-line per 27 km on average. The dangerous events on princi-

pal arterial roads occurred in sharp curved sections and sections with narrow lane widths, 

similar to those on expressways. However, the driving safety performance on principal 

arterial roads was poorer than on expressways because sharp curves were encountered 

more frequently. 

Minor arterial roads showed driving safety similar to that of BRT lanes, with one 

went over-the-line and one touched-the-line per 5 km and 4 km on average, respectively. 

Minor arterial roads yielded low driving performance due to frequent sharp curves and 

abrupt road width changes. Collector roads showed low driving safety, with one went 

over-the-line per 2 km on average, and one touched-the-line per 1 km on average. This is 

Figure 4. Dangerous event occurrence by road type.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 14 
 

Overall, the expressway is the most feasible road type for applying AVM services at the 

current technology level of automated driving. 

 

Figure 4. Dangerous event occurrence by road type. 

 

Figure 5. Dangerous event occurrences for automated driving by road type. 

In BRT lanes, an over-the-line event occurred once every 6 km on average, whereas 

touched-the-line occurred once every 4 km on average. The factors that lower the safety 

of BRT lanes include the narrow lane width compared to the size of the bus, abrupt 

changes in geometry at merging and diverging areas, and sudden slopes at the entry and 

exit of bridges and underpasses. In contrast, principal arterial roads achieved the second-

best driving safety results next to expressways, with one went over-the-line per 27 km on 

average and one touched-the-line per 27 km on average. The dangerous events on princi-

pal arterial roads occurred in sharp curved sections and sections with narrow lane widths, 

similar to those on expressways. However, the driving safety performance on principal 

arterial roads was poorer than on expressways because sharp curves were encountered 

more frequently. 

Minor arterial roads showed driving safety similar to that of BRT lanes, with one 

went over-the-line and one touched-the-line per 5 km and 4 km on average, respectively. 

Minor arterial roads yielded low driving performance due to frequent sharp curves and 

abrupt road width changes. Collector roads showed low driving safety, with one went 

over-the-line per 2 km on average, and one touched-the-line per 1 km on average. This is 
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In BRT lanes, an over-the-line event occurred once every 6 km on average, whereas
touched-the-line occurred once every 4 km on average. The factors that lower the safety of
BRT lanes include the narrow lane width compared to the size of the bus, abrupt changes
in geometry at merging and diverging areas, and sudden slopes at the entry and exit of
bridges and underpasses. In contrast, principal arterial roads achieved the second-best
driving safety results next to expressways, with one went over-the-line per 27 km on
average and one touched-the-line per 27 km on average. The dangerous events on principal
arterial roads occurred in sharp curved sections and sections with narrow lane widths,
similar to those on expressways. However, the driving safety performance on principal
arterial roads was poorer than on expressways because sharp curves were encountered
more frequently.

Minor arterial roads showed driving safety similar to that of BRT lanes, with one went
over-the-line and one touched-the-line per 5 km and 4 km on average, respectively. Minor
arterial roads yielded low driving performance due to frequent sharp curves and abrupt
road width changes. Collector roads showed low driving safety, with one went over-the-
line per 2 km on average, and one touched-the-line per 1 km on average. This is due to the
poor lane marking and road conditions. Lastly, local roads were almost impossible to drive
on because there were no lanes. Thus, many technological improvements are required to
introduce automated driving-based services.



Sustainability 2022, 14, 2336 8 of 13

3.1.2. Proposing a Strategy for Introducing the AVM Service

Considering the driving performance of automated vehicles by service type it is crucial
to establish strategies for implementing each type of service. In the case of S1, the AV service
could be introduced sooner if some sections are improved particularly those with abrupt
changes in road geometry due to topographical limitations. The S2 service can be promptly
applied if the existing cooperative intelligent transport systems (C-ITS) infrastructure or
low-level precision maps to automate route setting and stopping at stations are used. The
current geometries of expressways and principal arterial roads are highly suitable for
automated driving. For S3 and S4 services, new C-ITS infrastructure and high-precision
maps should be used. The results of the field test show that introducing these services
on minor arterial roads is limited under the current automated driving technology due
to abrupt changes in road geometries, uneven road widths, high traffic density, and steep
longitudinal slope sections. In addition to the improvement of the physical infrastructure,
the introduction of S3 and S4 services on minor arterial roads requires the construction of a
digital infrastructure and the provision of active safety support services.

S5 services can be implemented even on arterial and collector roads with low auto-
mated driving suitability. Particularly, on arterial and collector roads, AVM services could
be introduced only if limiting factors such as poor lane conditions, illegal parking, sharp
curves in narrow road widths, obstacles and pedestrians, and speed bumps are mitigated.
Technologies that enhance safety, such as dynamic maps and C-ITS, must be adopted.
In addition, to provide demand-response services, it is also crucial to improve customer
convenience by exploiting cloud computing and urban integrated information technology.

For S6 services, automated driving is almost impossible on the current roads. There-
fore, instead of providing public transport services to all underserved areas, it will be
more advantageous for rapid commercialization to set major routes for S6 services and
construct digital infrastructure based on these major routes. Since underserved areas will
remain, where the cost of building the digital infrastructure for AVM offsets the benefits of
operating an AVM service, it will be necessary to first construct major service routes and
then gradually expand the services strategically. Finally, S7 service appears to be the most
challenging as it aims to operate on all roads. Consequently, to quickly introduce S7 service,
it will be advantageous to establish major routes and secure profitability and safety before
gradually expanding the application areas.

3.2. Geometrical Features of Dangerous AV Driving Event Occurrence
3.2.1. Analyzing the AV Dangerous Driving Events

Figure 6 shows the relationship between the occurrence of dangerous events and road
geometry based on the CART model. The input variables were the longitudinal slope,
horizontal alignment, curve length, curve radius, number of lanes, change in longitudinal
slope, change in curve length, and change in the number of lanes. The target variable was
the occurrence of dangerous events in the road test results. Based on the CART analysis,
15 groups were classified by the Gini index as described in Equation (2). Among the straight
roads, Group 1 included the most downhill roads whereas Group 2 included the most
uphill roads. Downhill roads were found to be slightly more dangerous than uphill roads.
Curved roads were classified into Groups 3–15. Generally, the smaller the curve radius and
the longer the curve are, the higher the incidence of dangerous situations. Group 3 had a
very small curve radius but a low probability of dangerous events because the curve was
very short. This indicates that even in sharp-curved sections, automated vehicles can drive
safely if the length of the curve is not long. Groups 4 to 9 include geometries characterized
by many small sharp curved sections with a small curve radius. The results verified that
safe automated driving is possible with the tested AV technology, even in sharp curved
sections, unless it is a steep uphill road. Groups 10 to 15 include geometries with a gentle
longitudinal slope area and large curve radius. Group 14, whose probability of dangerous
events occurring is 0.444, includes a sharp uphill section with a longitudinal slope of 2.591%
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grade (approximately 1.484◦) or higher. Group 8, which includes a sharp uphill section,
also has a high probability of dangerous events occurring.

The overall trend shows that more dangerous events occurred in sections that are
characterized by a curved part with a small curve radius and an uphill slope (Groups 14, 10,
4, 8, and 6). Fewer dangerous events occurred in sections characterized by nearly straight
or downhill curved parts (Groups 5, 7, 12, 3, and 15).
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Figure 6. Automated driving dangerous event probability for each road network cluster based on the
classification and regression tree (CART) model.

3.2.2. Comparing Dangerous AV Driving Events with Driver Accident Events

Based on the combinations of geometrical features, we filter the historical dataset, as
described in the Section 2.2.1 earlier, and calculate the AADTs and accident rates of each
Group. Figure 7 shows the probability of driver accidents for each group classified by the
danger probability of automated vehicles. Groups 4, 5, and 14 had the highest probabilities
of accidents. Groups 4 and 5 include downhill sections with a sharp curve radius that can
limit the driver’s vision. Thus, their accident rates were high [34]. Group 14 is a gently
curved road with a sharp uphill section. In particular, this section includes a curved section
that is longer than 1 km. This indicates that a curved uphill section with a long curve has a
high accident rate due to a delay in recognizing front objects [35].

Based on Figures 6 and 7, the results in AV and human-driven vehicles are summarized
in Table 2. As shown in Table 2, the driving accident rate was relatively high in Groups 4
and 14, where the automated vehicle was considered to be dangerous. Group 5 showed
a low probability of dangerous events occurring for AV but with a high human driver
accident rate. Group 5 is a downhill road with sharp curved sections, but the direction of
the slope change is opposite to that of Group 4. In the case of drivers, accidents often occur
because of limited visibility going uphill on sharp curved sections. Nevertheless, AVs can
drive more safely on a road where the longitudinal slope shifts significantly from uphill to
downhill [36]. Since the height of the vision sensor from the ground is normally greater
than that of driver’s eye, AVs are usually able to prevent dangerous events.

Similarly, in the case of Group 11, when the curve suddenly changed from gentle to
sharp, human-driven vehicles show a high accident rate due to visual perception errors,
whereas AVs can identify the road environment and steer the vehicle more accurately. On
the other hand, as shown in the result of Group 8, which indicates a three-lane uphill road
with a sharp curved section, there is a relatively low human driver accident rate; whereas,
the AV shows a high probability of dangerous events due to the limited sight distance in
the crest vertical curve.
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Figure 7. Accident rate of general vehicles for each road network cluster based on the classification
and regression tree (CART) model.

Table 2. Summary of results in AV and human-driven vehicles.

AV
(Prob. of Dangerous Event)

Human-Driven Vehicle
(Rate of Accidents)

Group 1 0.058 0.556
Group 2 0.024 0.444
Group 3 0.014 0.513
Group 4 0.245 0.763
Group 5 0 0.959
Group 6 0.097 0.616
Group 7 0 0.312
Group 8 0.182 0.232
Group 9 0.080 0.365
Group 10 0.353 0.482
Group 11 0.053 0.534
Group 12 0.013 0.352
Group 13 0.038 0.252
Group 14 0.444 0.681
Group 15 0.019 0.417

3.3. Discussion

The research findings in the present study agree with the previous studies [37,38],
which have focused on exploring the relationship between geometric road design and
potential collision risk, particularly in road geometry with a crest vertical curve. With
the pre-determined risk factors related to road geometry, mobility service providers shall
comprehensively make the decision for providing the AVM service based on the spatial
distribution of road safety classification. The following shows the details of the application
to the road safety classification.

Figure 8 shows the mapping results of dangerous sections in South Korean express-
ways. The red, yellow, and green sections in the figure represent the expressway sections
where both AVs and drivers, only drivers, and only AVs were found to be dangerous,
respectively; the blue sections represent roads where both drivers and AVs were found
to be safe. Figure 8a shows the north- and west-bound expressways, which have a total
length of 4821.2 km. The total length of the red sections, corresponding to Groups 4 and 14,
was 219.2 km or 4.5% of the network. The total length of the yellow sections was 9.1 km or
0.2% of the network. The total length of the green sections was 1483.1 km or 30.6% of the
network. Figure 8b shows the south- and east-bound roads, which have a total length of
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4705 km. In the south- and east-bound roads, the total length of the sections for which both
AVs and drivers, only drivers, and only AVs were found to be dangerous were 128.7 km
(2.7%), 6.4 km (0.1%), and 1058.7 km (22.5%), respectively.
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These results suggest that current AVs have a higher probability to be exposed to
vulnerable sections compared to human-driven vehicles. In other words, decision makers
can prioritize the spatial area for the AVM service to avoid nullifying the positive effects of
AV functions.

4. Conclusions

The main objective of this study was to analyze the safety performance of AV on road
geometrical feature given type of mobility service. To achieve the research objective, the
mobility service was classified by a combination of six road types, including expressway,
BRT lane, principal arterial road, minor arterial road, collector road, and local load. The
combinations of road types were considered to indirectly reflect the characteristics of the
given mobility service.

With that assumption, we explored the relationship between automated driving safety
and given road type based on field test dataset. The result showed that expressways, BRT
lanes, and principal arterial roads were very safe for AVs. In contrast, the minor arterial and
collector roads limited the safe driving of AVs due to abrupt changes in road geometries and
infrequent road maintenance. Local roads were poorly suited to AVs; thus, it is necessary
to improve the road geometries and actively utilize the digital infrastructure to introduce
automated driving safely and efficiently.

Furthermore, the relationship between the road geometry and the probability of
dangerous events occurring for AVs on expressways was analyzed and compared with
the driving accident rates. The results showed that automated driving had a higher
probability of dangerous incidents in curved sections than in straight sections. These
consequences were due to various combinations of the geometries, such as the curve radius
and longitudinal slope. The probability of dangerous events occurring for AVs revealed
similar trends to human driving accident rates in general. On the other hand, an AV was
much safer than a human-driven vehicle, particularly on uphill slopes since drivers were
relatively more vulnerable to visual errors induced by such conditions. These research
findings suggest that it can be utilized for primary data to facilitate the physical and digital
infrastructure, which will uprate the safety performance of AVM service in the near future.

This study determined the automated driving suitability and the characteristics of
dangerous road sections, but the following matters need to be considered for further
research. First, additional static road risk factors that influence automated driving on
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various roads need to be investigated. The present study derived the characteristics of
automated driving dangerous sections merely for expressways. To this end, other static
road environment factors present in other road types such as intersections, crosswalks, and
narrow lanes should be investigated. Second, the automated driving risk factors analysis
should also include dynamic environmental conditions, such as weather, vehicle traffic,
and illuminance. We experienced a situation where the automated vehicle continuously
deviated from the lanes due to heavy rain in the dark on a straight road during a field test.
This shows that automated driving functions are also significantly affected by dynamic
environmental conditions. We plan to include dynamic conditions in our analysis through
simulations or field tests in a controlled environment in future studies. Furthermore,
additional analysis on the driving safety of AVs will be conducted with other available
datasets for containing heterogeneity types of vehicles in further research. Other types
of eco-friendly mobility services, such as electric vehicles [39], can also be considered in
future studies.
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