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Abstract: Research and development (R&D) has long been recognized as an important component
of sustainable development, with a key role in the combatting of climate change. Moreover, R&D
activity is increasingly acknowledged as an important contributing factor to global post-pandemic
economic recovery. However, little is known about the determinants of R&D intensity (the share of
R&D expenditure in GDP) and countries have repeatedly missed their set targets for this indicator.
This article tackles this issue for a global panel consisting of 62 countries over the period 2007–2015
by using a dynamic system-generalized method of moments (SYS-GMM) panel model to uncover
driving factors for R&D intensity. We also perform investigations on two homogenous subpanels
constructed based on the income level of sample countries (High-income, and Middle- and Low-
income subpanels), which contributes to assuring the robustness of results, along with formal model
diagnostics and employment of alternative explanatory variables. We mainly find that the number of
researchers is the most important driving factor for R&D intensity. High-technology exports have a
statistically significant effect on R&D intensity only in middle and low-income countries. Patents are
conducive to R&D intensity only in the high-income panel. Trade-openness is a significant mitigating
factor for R&D investments throughout the panels and model specifications. Policy implications of
results are also discussed.

Keywords: R&D intensity; sustainable development; impact factors; high-technology exports; human
capital; trade openness; renewable energy consumption; patents; dynamic panel data; system-GMM

1. Introduction

The COVID-19 pandemic quickly transformed into the deepest social and economic
crisis since World War II [1], posing major challenges for global innovation systems, as it
endangered key production and innovation capabilities [2]. However, despite foreseen
financial pressures, especially for public R&D expenditures [3], R&D investment is projected
to play a key role for sustainable economic growth in the post-pandemic era (the so-
called “Great Reset” as per [4]), contributing to underpinning private sector growth and
job creation [5]). Moreover, science and innovation are acknowledged as quintessential
factors in the post-COVID recovery period for world economies to tackle the climate
emergency, meet the UN’s Sustainable Development Goals of the 2030 Agenda, spur the
digital transformation and promote more democratic and inclusive societies [2,6].

In fact, the crucial role of innovation for economic development and growth, presumed
by the endogenous growth theory, has been validated by a large body of literature, from
paramount earlier works [7–12] to more recent research [13–18].

Moreover, innovation is a documented mitigating factor for pollution, and spending
on R&D contributes to decreasing carbon emissions in different countries and over different
time periods [19–23] and also to increase energy efficiency by reducing carbon intensity [24]
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The above-documented relationships also emerge from our study sample; Figure 1
reflects that the increasing share of R&D expenditure in GDP is generally positively related
to economic income, and generally negatively related to carbon intensity (implying a
negative relationship with polluting emissions and a positive relationship with energy
efficiency), at world level.

Figure 1. R&D expenditure (% GDP) and GDP per capita (USD), most recent year (Panel A); R&D
expenditure (% GDP) and CO2 intensity (kg per kg of oil equivalent energy use), most recent year
(Panel B). Source of data: World Bank’s Development Indicators (WDI) database.

Moreover, the world’s top 10 investors in innovation reflected in Table 1 are all high-
income countries and include amongst them world leaders in renewable energy, such as
Sweden, Denmark, Germany or the US. The low-carbon technological innovation links,
at the global level, innovative activities with the shift toward sustainable energy sources.
Governments acknowledged the need to significantly increasing the public funding for tech-
nological innovation in low-carbon energy [25]. Moreover, sustainable energy technology
represents around 80% of total public energy R&D spending, which in 2019 increased by 3%
reaching USD 30 billion globally, while corporate energy R&D reached USD 90 billion [26].
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Table 1. World top 10 investors in R&D, most recent year of available data per country (2015).

Country GDP Per Capita (Constant
2010 USD)

R&D Expenditures
(% GDP)

Israel 33,124 4.26

Korea, Rep. 26,064 4.22

Japan 47,103 3.28

Sweden 56,340 3.26

Denmark 60,402 3.05

Austria 47,789 3.05

Germany 45,208 2.91

Finland 45,648 2.89

United States 52,236 2.72

Belgium 45,507 2.46
Source of data: World Bank’s Development Indicators (WDI) database.

As such, given its established role as a promoter of sustainable economic growth and
contributor to mitigating pollution and tackling climate change at world level, with its
acknowledged increasing importance in the post-pandemic era, our main research goal
is to provide a deeper understanding of the determinants of countries’ R&D investment,
by examining its potential driving factors. Surprisingly, the related literature remains
narrow, with few previous studies concerned with the determinants of R&D funding across
countries, which further motivates our endeavor. Not in the least, it should be mentioned
that countries, recognizing the importance of R&D investment for sustainable economic
growth, have set minimum threshold levels for R&D intensity (i.e., the 3% goal set by the
EU [27] or the 1% objective set by the African Union [28], which have been vastly unmet [6].
Moreover, ref. [29] concluded that countries should even reach R&D intensity levels as
high as approximately 4 or 5% to achieve their INDC targets, numbers that not even world
top investors in innovation reflected in Table 1 have managed to reach. Consequently,
understanding driving factors for R&D intensity is paramount and has important policy
implications at world level. All these factors are important motivators for this study.

Among the few related research, references [30,31] identifies population and GDP per
capita income as key factors of R&D expenditure, whereas ref. [32] confirm that economic
development (GDP per capita) is conducive to R&D investment. Ref. [33] finds that
national culture and patent protection are factors that explain R&D investment, while also
concluding that the degree of openness of an economy is unrelated to R&D intensity. In
contrast, ref. [34] reveals that trade openness has a negative effect on domestic R&D, and
that this effect decreases with an increase in GDP per capita and trade with OECD countries.
Further, refs. [35,36] confirm the positive impact of intellectual property rights (IPRs) on
innovation, whereas ref. [37] concludes that the investment in education quality leads to
higher output of innovation activity.

This study contributes to the thin extant literature by investigating the impact of
high-technology exports, number of researchers, renewable energy consumption, and
trade openness on R&D intensity, defined as the share of R&D expenditure in GDP. Note
that none of the previous studies has introduced this mix of explanatory variables. In
robustness checks, we also use the number of patents as an alternative independent factor.
Furthermore, unlike previous works that often use ordinary least squares (OLS), competing
weighted least squares (WLS) or conventional panel analysis estimators, such as FE (fixed
effects) and RE (random effects) to perform investigations, we rather employ a dynamic
panel data model using the system-generalized method of moments (SYS-GMM) to undergo
our investigation. This approach does not require distributional assumptions, and can
allow for heteroscedasticity of unknown form references [38,39], thus solving serious
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problems encountered in panel data estimations [40] (i.e., the endogeneity of regressors, the
presence of fixed effects and autocorrelation within individuals) and bringing nontrivial
efficiency gains [41]. Moreover, GMM is the method of estimation most suitable for panels
with a small time dimension and a larger number of individuals [42] (as is the case in this
study), allowing control for dynamic panel bias [43] and providing consistent estimates [44].
Consequently, based on the above arguments, we use the most robust method available to
perform estimations.

Additionally, we make a further contribution by also investigating these linkages for
two homogeneous groups of countries, constructed on the basis of the income (GDP per
capita) level of sample countries, and on the basis of data availability: high-income (HI),
and middle- and low-income (MLI) subpanels, respectively. This strategy thus permitted us
to uncover any group specificity in terms of the impact that explanatory factors have on the
dependent variable, represented by the R&D intensity, which in turn helped in identifying
the most effective innovation policies.

Results for the global panel of 62 countries and for the two homogenous income-based
subpanels contribute to the literature by providing empirical evidence for statistically
significant drivers of R&D intensity, listed as follows. The R&D manpower (number
of researchers) emerges as the most important driving factor for R&D intensity in all
three panels, while high-technology exports have a statistically significant effect on R&D
expenditure only for the middle and low-income panel. On the other hand, trade openness
decreases R&D investments in all the panels, while renewable energy consumption does not
significantly impact R&D funding in none of the panels. Feedback effects among variables
and positive externalities are also uncovered in this study. Therefore, we find proof toward
the effectiveness of innovation and economic policies that aim to increase R&D intensity
by increasing the number of researchers involved in R&D activities. Moreover, the study
concludes that less-developed countries should also implement policies that promote
high-technology exports.

The remainder of this paper is organized as follows: Section 2 presents the data,
offers an exploratory analysis of data, and explains the method and the overall conceptual
framework of the investigation; Section 3 presents the estimation results together with a
discussion of findings, and performs tests of results’ robustness; finally, Section 4 contains
the conclusions and policy implications of the study.

2. Materials and Methods
2.1. Data

Data for all variables employed in estimations were collected for the period 2007–2015
from the Word Bank’s World Development Indicators (WDI). Depending on individual
country/year data availability for the variables of interest (as per Table 2), we constructed
an unbalanced panel covering a maximum period of 9 years for 62 countries. Thus, the
resulting data panel emerged on the basis of data availability, where all countries with
available data for the variables of interest for at least 3 years have been included.

Table 2 presents the variables employed in the empirical investigations, including
abbreviations, WDI codes and variables’ description.
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Table 2. Variable description.

Variable
Abbreviation

Variable Code (World Bank
WDI Database) Variable Description

R&D Intensity GB.XPD.RSDV.GD.ZS Research and development expenditure (% of GDP)

HTEXP TX.VAL.TECH.MF.ZS High-technology exports * (% of manufactured exports)

NoR SP.POP.SCIE.RD.P6 Number of Researchers in R&D (per million people)

REC EG.FEC.RNEW.ZS Renewable energy consumption (% of total final energy consumption)

TradeOpen NE.TRD.GNFS.ZS Trade openness is the sum of exports and imports of goods and services
measured as a share of gross domestic product (% of GDP)

* According to the World’s Bank definition, high-technology exports are “products with high R&D intensity, such
as in aerospace, computers, pharmaceuticals, scientific instruments, and electrical machinery”.

Our main variable of interest, R&D intensity, is represented by gross domestic expendi-
ture on R&D, expressed as a percentage of GDP. According to the World’s Bank definition,
R&D expenditures include both capital and current expenditures in the four main sectors:
business enterprise, government, higher education and private nonprofit, while covering
basic research, applied research and experimental development. The rationale to select
these factors is based on the main consideration that post-COVID policies will be influenced
by the United Nations (UN) sustainability agenda. As such, both the dependent variable
and potential explanatory factors for R&D intensity were mainly extracted from current pol-
icy position papers. Moreover, in establishing the mix of independent variables, we make
the assumption that incorporating proxies of innovation inputs (i.e., number of researchers
involved in R&D activities) and proxies of outputs (i.e., high-technology exports, renewable
energy consumption) provides a much better understanding of the dependent variable
by uncovering a potential process of incentivizing innovation through positive feedback,
that is, a positive innovation impact of outputs would create an inventive to increase R&D
intensity, which further contributes to increased R&D outlays. In robustness checks, we
also employed another output of innovative activities in an economy, i.e., the number of
patents as an alternative explanatory variable. Finally, trade openness was included in
estimations not only for its use as a standard control variable in growth models ([45], but
more importantly because in the context of technological innovation it can act as a carrier
of knowledge spillovers by operating as a technology transfer channel [46–48]).

Further, the entire study sample is divided into two sub-samples of countries by
income levels, which allows for the examination of potential asymmetric effects of drivers
for R&D intensity according to different economic development stages. Thus: (1) the high-
income (HI) group includes 38 countries with GDP per capita above USD 12500 (Australia,
Austria, Belgium, Canada, Chile, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Israel, Italy, Japan, Korea, Rep., Latvia,
Lithuania, Luxembourg, Malta, Netherlands, New Zeeland, Norway, Poland, Portugal,
Singapore, Slovak Republic, Slovenia, Spain, Sweden, Turkey, United Kingdom, United
States, Uruguay); (2) the middle and low-income (ML) group includes 30 countries with a
GDP per capita below USD 12,500 per capita (Armenia, Azerbaijan, Bosnia, Brazil, Bulgaria,
Chile, China, Colombia, Costa Rica, Ecuador, Egypt, Arab Rep., Guatemala, Kazakhstan,
Kyrgyz Republic, Latvia, Lithuania, Malaysia, Mexico, Moldova, North Macedonia, Peru,
Poland, Romania, Russian Federation, South Africa, Thailand, Tunisia, Turkey, Ukraine,
Uruguay). We should mention that some countries belong to more than one category over
the whole sample period (i.e., Latvia, Lithuania, Poland, Uruguay, etc.), which is why the
total number of unique countries included in the analysis (N = 62) is smaller than the sum
of the two sub-samples lengths. We should also note that, due to data unavailability, a
distinct low-income group of countries, similar to the World Bank’s classification (with
a GDP per capita below the threshold of USD 1000) could not be constructed with the
study sample.

R software was used to implement the method and carry out estimations.
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2.2. Exploratory Data Analysis

Some relevant exploratory tools of the data sample are the histograms of variables,
shown in Figure 2, reflecting that all variables present right-skewed distributions, as most
values cluster on the left. Interestingly, we notice that the distribution of R&D intensity is
similar to the distribution of renewable energy consumption, which could be explained
through the energy technological innovation channel that has been previously discussed.

Figure 2. Histograms for the variables of interest.

Next, Table 3 presents the descriptive statistics for the full sample and the two sub-
samples (high-, and middle- and low-income countries, respectively). We observed wide
variations across subgroups. On average, high-income countries registered higher levels
for all variables, and especially show much higher R&D intensity, and a significantly higher
number of researchers. The renewable energy consumption is the only variable with small
variations between the income samples.

Finally, Figure 3 reflects that there is a high heterogeneity across countries in what their
investment in R&D is concerned, which should be taken into account for robust estimations.
However, the global R&D expenditure in GDP remained stagnant through the analysis
period, with only a slight increase in R&D funding registered in 2015.
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Table 3. Descriptive statistics.

Variable Mean Standard Deviation Min Max

Global panel

R&D Intensity 1.37 1.06 0.02 4.43

HTEXP 15.43 11.70 0.53 60.71

NoR 2840.45 2038.51 17.38 7925.98

REC 18.73 15.91 0.20 77.12

TradeOpen 98.53 68.47 22.11 437.33

High-income panel

R&D Intensity 1.87 1.01 0.33 4.43

HTEXP 17.57 10.69 3.28 60.71

NoR 3808.10 1781.42 318.83 7925.98

REC 18.75 16.51 0.20 77.12

TradeOpen 111.50 80.43 24.49 437.33

Low- and Middle-income panel

R&D Intensity 0.55 0.40 0.02 2.03

HTEXP 11.88 12.45 0.53 50.87

NoR 925.75 759.65 17.38 3274.16

REC 18.69 14.91 1.16 67.44

TradeOpen 77.03 31.83 22.11 162.56
Source: Estimation results.

Figure 3. The mean level of R&D intensity by country, including the confidence intervals (Panel A).
The evolution of mean R&D intensity at world level, with confidence intervals (Panel B). Source of
data: World Bank’s Development Indicators (WDI) database.
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2.3. Method

The main relationship of interest that is based on the above discussion, and will be
further investigated through a dynamic system-GMM panel model, is as follows:

R&D intensity ~ HTEXP + NoR + REC + TradeOpen (1)

where, as per Table 2, R&D intensity represents R&D expenditure (% of GDP) and it
is a function of four variables including high-technology exports (HTEXP), number of
researchers (NoR), renewable energy consumption (REC) and trade openness (TradeOpen).

Given the previous exploratory data analysis, in a manner similar to ref. [49], all the
variables were converted to natural logarithm form before conducting estimations, which
helps to smooth the data and produce more consistent results. Thus, Equation (1) can be
rewritten in a log-linear form applied on panel data as follows:

LnR&D Intensityit = β0 + β1LnHTEXPit + β2LnNoRit + β3LnRECit + β4LnTradeOpenit + εit (2)

where β0 designates the constant term; β1, β2, β3 and β4 are elasticities that represent the
impacts of high-technology exports (HTEXP), number of researchers (NoR), renewable
energy consumption (REC) and trade openness (TradeOpen) on R&D intensity; ε denotes
the error terms; the subscript i (i = 1, . . . , N) denotes the country i in the data sample,
N = 62, and t (t = 1, . . . , T) indicates the time period, with T = 9.

We estimated our dynamic panel data model using the generalized method of mo-
ments (GMM), which included the lagged level of R&D intensity. Moreover, in order to
overcome the dynamic panel bias produced after the introduction of the lag of the depen-
dent variable as an independent factor, we adopted the System GMM estimator, proposed
by reference [50,51], which uses a set of instrumental variables that makes it robust in the
presence of potential endogeneity of regressors [52,53] and/or heteroscedasticity and auto-
correlation within individuals [42]. Thus, the System GMM estimator has been repeatedly
validated as a strong estimator in numerous studies [43,53].

There are two types of GMM estimators (difference and system), which can both be
employed either in a one-step or a two-step version. The set of instruments employed
in estimations differentiates between the two estimators as follows: while the system-
GMM estimator, which is employed in this research, also includes the lagged values
of the dependent variable, the difference-GMM estimator solely takes into account all
the available lags in difference of the endogenous and the strictly exogenous variables.
Consequently, the system-GMM is superior as it permits dealing with neglected dynamics
in static panel data models, resulting from ignoring the impact of lagged values of the
dependent variable [40,54]. More details on the system GMM estimation and its advantages
are found in ref. [55].

Consequently, the empirical model to be estimated will take the final form:

LnR&D Intensityit = β0 + β1Ln(R&D Intensity)it−1 + β2LnHTEXPit + β3LnNoRit + β4LnRECit

+β5LnTradeOpenit + µi + φt + εit

i = 1, ..., 62 and t = 2007, ..., 2015.

(3)

where the dependent variable representing R&D intensity is explained by its own lagged
value and the four other explanatory variables included in Equation (3), respectively high-
technology exports (HTEXP), number of researchers (NoR), renewable energy consumption
(REC) and trade openness (TradeOpen), while µi stand for fixed country specific effects, φt
represent time-effects and εit is an error term with zero mean.

Given the structure of our panel data, which has a small time dimension (T = 9), we
expected nonstationarity of variables to not be a concern, in particular as we estimated a
dynamic model. However, panel unit root tests are helpful in identifying the right form in
which the variables should be included in the empirical model, respectively their level or
their growth form ref. [40].
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Hence, the stationarity of series has been investigated with the CADF panel unit
root test (Cross-Sectionally Augmented Dickey–Fuller) proposed by ref. [56], a second-
generation unit root test that considers cross-sections dependence, which, as expected,
rejected the null hypothesis of unit root and confirmed the stationarity of all variables in
their levels (results are shown in Table 4).

Table 4. Results of CADF panel unit root tests.

Variable CADF Panel Unit Root Test

R&D Intensity −6.2778 ***

HTEXP −6.2644 ***

NoR −4.978 ***

REC −5.6731 ***

TradeOpen −5.5304 ***
*** Indicates significance at 1% level.

In order to ensure the consistency of the System GMM estimations, model diagnostics
are further provided ([57]: firstly, the J-test of over-identifying restrictions of refs. [58,59]
was calculated and reported, along with its p-values for the null hypothesis of instrument
validity; secondly, we estimated the tests of ref. [60] for the first and the second-order serial
correlations in the idiosyncratic remainder components or residuals [61]).

Figure 4 reflects the sequential steps taken for conducting this research, offering a clear
overview of the implemented method.

Figure 4. The sequential research steps.
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3. Results and Discussion

The System GMM regression results from estimating Equation (3) over the period
2007–2015, for the global panel and the two sub-panels corresponding to the two income-
groups of countries are reported in Table 5. We also checked the robustness of our results
against alternative measures of R&D output (i.e., the number of patents), and these results
are reported in Table 6. As the two-step GMM estimators can be seriously biased down-
wards in finite samples [51], similar to ref. [62] we preferred to employ the one-step version
of the system GMM estimation for all panels and model specifications. Additionally, as
mentioned earlier, the robustness of the System GMM estimators depends both on the as-
sumption that the error term does not have a serial correlation problem and on the validity
of instruments. Consequently, these assumptions were verified through the Arellano–Bond
test for no serial correlation in the error terms and the Hansen/Sargan test for the validity
of the instruments, which are reported in the bottom rows of Tables 5 and 6, respectively.
According to ref. [60], the GMM estimator requires that there is no second-order serial
correlation (AR2 test) in the differenced residuals. In all estimations in this study, these
diagnostics support the validity of the model specifications. Note also that, in all specifica-
tions, the Hansen/Sargan test does not reject the null hypothesis of instrument validity,
consistently indicating a high chance of a type one error if the null is rejected (for exam-
ple, ref. [63] stated that even a p-value as high as 0.25 “should be viewed with concern”;
our results indicate p-values of at least 0.6, which allows for a high degree of confidence
in the validity of instruments). All diagnostic tests thus confirm that all System GMM
equations are properly specified; thus, we can proceed with presenting and discussing the
estimations’ results.

The findings for all three panels confirm our a priori assumption, namely, that higher
R&D intensity in the previous period contributes to higher R&D intensity in the current
period. At a global level, a 1% increase in the lagged R&D intensity advanced the investment
in R&D in the current period by about 0.40%, while the results for the income-based sub-
panels show similar levels.

Table 5. Effect of explanatory variables on R&D intensity: one-step system-GMM dynamic panel
estimation regression results for the global, high-income and low- and middle-income panels.

Global High-Income (HI) Low- and Middle-Income (LMI)

Dependent variable: R&D intensity

Independent variables Estimate

R&D Intensity (−1) 0.400225 *** 0.357990 *** 0.3843145 ***

TradeOpen −0.256184 *** −0.139277 *** −0.4507593 ***

NoR 0.467285 *** 0.589239 *** 0.3931260 ***

HTEXP 0.050262 0.063533 0.0923286 **

REC −0.019476 −0.028049 0.0037797

Hansen/Sargan J-test (p-value) 0.8642 0.6387 0.7231

AR2 test (p-value) 0.74768 0.53016 0.45671

** Indicates significance at 5% level. *** Indicates significance at 1% level.
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Table 6. Robustness checks: Effect of alternative explanatory variables on R&D intensity: one-step
system-GMM dynamic panel estimation regression results for the global, high-income and low- and
middle-income panels.

Global High-Income (HI) Low- and Middle-Income (LMI)

Dependent variable: R&D intensity

Independent variables Estimate

R&D Intensity (−1) 0.3282568 *** 0.262483 *** 0.376961 ***

TradeOpen −0.2634110 *** 0.116984 −0.297510 **

NoR 0.4977531 *** 0.552330 *** 0.338678 ***

Patent 0.0097895 0.080565 *** 0.043666

REC −0.0202989 0.041230 0.033483

Hansen/Sargan J-test (p-value) 0.7634 0.5946 0.6675

AR2 test (p-value) 0.7397 0.99914 0.4782

** Indicates significance at 5% level. *** Indicates significance at 1% level.

Furthermore, another significant (negative) impact, which is present throughout the
panels, is found for the trade openness variable, such that a 1% increase in the trade
openness decreases R&D expenditures worldwide by 0.25%, but the impact is significantly
higher for low and middle-income countries (i.e., −0.45%) than for rich countries, where
a 1% increase in openness decreases the investment in R&D by −0.14%. As such, it
can be extracted that a greater trade openness, which permits the rapid transmission of
knowledge and innovation, could be a good policy for beneficiating from innovation
transfer, and consequently affects domestic R&D investment decisions. In this respect,
our findings support previous studies [64] that concluded that technology spills across
countries through the channel of trade flows. Moreover, the low- and middle-income
countries seem to beneficiate more from knowledge and innovation spillover than their
developed counterparts. Thus, our results confirm that openness is an important channel
for promoting technological progress, supporting the findings of refs. [34,65]. The negative
relationship between trade openness and R&D intensity also implies that innovation
spillovers through the trade channel and R&D investment act as substitutes, rather than
complements, for the sample of countries in this study. However, it should be noted that, in
robustness checks (Table 6) innovation stops spilling through the trade channel in the case
of high-income countries, when patents are introduced as explanatory variables. This is
explained by the stronger intellectual property rights (IPRs) in this group of countries and
further confirms the findings of ref. [66], which show that patent rights have a significant
positive impact on the motivation to innovate in wealthy nations, while this effect is
statistically insignificant in developing countries.

Furthermore, results indicate that the number of researchers involved in R&D is
the main factor that increases R&D intensity in the investigated countries, worldwide
and across the income-groups of countries. However, the relationship is stronger for high-
income countries, where a 1% increase in the number of researchers increases R&D intensity
by 0.58%, whereas for low and middle-income countries the impact is lower (i.e., 0.39%).
Additionally, these results remain robust across different model specifications. Our findings
are in line with those of ref. [67] that shows that the scientific researchers in a country are
robust determinants for R&D intensity and confirm that highly skilled human resources
are crucial for a country’s research and innovation capacity and competitiveness [68]. The
findings also validate the endogenous growth model proposed by ref. [69], whereby human
capital is a key input factor in the R&D sector that generate new designs, which at their turn
generate new investment opportunities and complement those of ref. [70] that conclude
that human capital is the most significant driving factor for innovation, as proxied by
current patent applications per capita.



Sustainability 2022, 14, 1854 12 of 16

Moreover, a disaggregation occurs between high-income and low- and middle-income
countries whereby the factor representing high-technology exports has a significant positive
effect on R&D intensity in the low and middle-income countries, while it has no significant
impact on R&D intensity in the high-income countries. In fact, for countries included in the
LMI panel, the increase in high-technology exports by 1% results in an increase in R&D
intensity of 0.09%, whereas this propensity is not found in the case of other countries. We
should recall that the UN’s 2030 Agenda encourages technical advancement, particularly in
developing countries, through research and innovation [71]. Additionally, the share of high-
technology exports in total manufactured exports is one relevant indicator that reflects the
progress made toward achieving that goal. The greater the proportion of exports in higher
technological complexity categories, the more evidence that the economy’s structural
transformation has advanced. Moreover, as ref. [72] showed, R&D intensity enhances
downstream commercialization and diffusion activities, such as increasing high-technology
exports. Thus, our findings confirm that R&D and innovation are critical to this shift in
the case of low and middle-income countries because they lay the groundwork for the
adoption of new, more efficient technologies, which lead to increased high-technology
exports that in turn are conducive to increased R&D funding. Consequently, we find proof
of positive feedback between high-technology exports and R&D intensity, reflecting that
developing countries are in the right track toward the achievement of the 9th sustainable
development goal (SDG) of the 2030 Agenda. This effect is not present for high-income
countries, attesting previous findings [3] that the gap between developing and developed
countries has narrowed as developing economies have been catching up in the structural
transformation of manufactured export. On the contrary, when we redid our estimations
by using an alternative measure of R&D output (i.e., the number of patents instead of
high-technology exports), the findings in Table 6 show that patents are conducive to R&D
intensity only in developed countries, whereas this impact is not present for low- and
middle-income economies. This further implies that a positive feedback effect between
patents and R&D funding exists only in high-income countries, whereby an increase in
innovation output (i.e., number of patents) determines higher R&D funding, which in turn
stimulates innovative activities and the creation of more innovations. Furthermore, these
data imply that the patent gap between developing and developed countries remains wide,
whereas it has shrunk in terms of structural change of manufactured exports.

Finally, results show no statistically significant relationship between renewable energy
consumption and R&D intensity for all three panels of countries, and thus find that, globally,
an increase in renewable energy consumption is not conducive to increased investments
in R&D. On the other hand, a reverse effect has been previously encountered for rich
countries, whereas increased R&D funding has been showed to spur the consumption of
renewable energy [73]. Thus, the world’s top investors in innovation include amongst them
world leaders in renewable energy [74,75]. However, we did not encounter a feedback
effect between REC and R&D intensity. There may be several reasons for such a finding.
One explanation for this result is that, although currently the cost of renewable energy
registered dramatic falls [76,77], this was not the case over the analysis period in this
study [78] and as such, over 2007-2015, countries did incur economic costs in their path
toward carbon neutrality, which would have consequently eliminated the propensity to
undertake new R&D investments. Additionally, this relationship could be explained by the
fact that countries generally rely on innovation diffusion through the trade flow channel to
increase their consumption of sustainable energy [40].

4. Conclusions

Governments and international agencies have long recognized that R&D and innova-
tion contribute to sustainable economic development and play a key role in combatting
climate change. Consequently, countries have set goals for minimum investment in R&D in
proportion to GDP (i.e., R&D intensity), which have been vastly unmet. This incongruence
between policy and reality is particularly worrisome, as R&D intensity has been acknowl-
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edged as a crucial factor for the “Great Reset” in the aftermath of the COVID-19 pandemic.
Consequently, understanding the driving factors for R&D intensity is a timely research
topic, with important policy implications.

This study develops a dynamic panel data model by employing the generalized
method of moments (System GMM) to estimate the impact of high-technology exports,
number of researchers, renewable energy consumption and trade openness on R&D inten-
sity, defined as the share of research and development expenditure in GDP. We assured the
robustness of results by extracting the empirical evidence from a global unbalanced panel
consisting of 62 countries, as well as from two income-based subpanels (high-income and
middle- and low-income, respectively), from performing two models of diagnostic tests (i.e.,
the Arellano–Bond test for no serial correlation in the error terms and the Hansen/Sargan
test for the validity of the instruments), and also through re-estimating the models for
all three panels by employing an alternative measure of R&D outlays (i.e., the number
of patents).

The main results over the period 2007–2015 indicate that: (i) human capital (R&D
manpower) is the most important driving factor for R&D intensity in all the panels we con-
sidered, and it holds statistical significance in all model specifications; (ii) high-technology
exports have a statistically significant effect on the research & development expenditure
only for the middle- and low-income panel, confirming that developing economies have
made progress in the structural transformation of manufactured exports; (iii) patents are a
determinant of R&D intensity only in the high-income panel; (iv) trade openness mitigates
R&D investments for all the panels, implying that innovation is disseminated through
the trade openness channel; and (v). renewable energy consumption is not conducive to
R&D intensity in none of the three panels of countries we consider, indicating that green
technology innovation disseminates through the trade channel, rather than increasing
through R&D investment.

These results have important policy implications. Policy makers must consider that
a feedback effect is at work: human capital increases R&D intensity, which in turn spurs
investment in innovative activities, and the latter bring forward the need for more R&D
manpower. Moreover, it should be acknowledged that positive externalities also emerge,
as R&D human capital promotes R&D intensity and the latter enhances economic develop-
ment and growth. All these effects must be taken into account for the design of effective and
efficient policy. Additionally, the issuers of policy, especially in the less-developed coun-
tries, should consider another feedback effect: high-technology exports are conducive to
increased R&D funding, and the latter drives the adoption of new, more efficient technolo-
gies, which in turn lead to increased high-technology exports. For high-income countries,
a similar feedback effect between the number of patents and R&D intensity should also
be considered.

However, the pandemic-induced crisis has compelled world governments to direct
significant resources to other priority areas. Consequently, as [79] warns, government
financing for R&D is declining at a time when global concerns such as climate change and
aging demographics deserve responses. The stakes are higher for low-income countries that
currently have to juggle limited financial resources, pressure to answer current pandemic
challenges that are absorbing a growing share of public resources and pressure to increase
R&D funding.

Thus, we argue that countries should make use of post-pandemic stimulus and re-
covery packages to protect and enhance their innovation systems through implementing
policies extracted from the main relationships that emerge from this study. Complemen-
tarily, middle- and low-income countries should also consider that trade openness is an
important channel for promoting technological progress that acts as a substitute for R&D
investments. As a result, this group of countries should take advantage of research find-
ings suggesting that greater trade openness, which allows for the rapid transmission of
knowledge and innovation, could be a good policy for benefiting from innovation transfer
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and, as a result, reduce financial pressures caused by R&D funding in the aftermath of the
global pandemic.
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