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Abstract: Road safety in primary school areas is a delicate issue due to the vulnerability of children
as road users. They are inexperienced traffic participants and sometimes their behavior in traffic
situations is unpredictable. This paper reports a safety analysis conducted using video processing
of conflict trajectories of vehicles and active transportation users (AT users). The videos were
collected using unmanned aerial vehicles (UAVs) as this technology does not affect the actual
behavior of traffic participants. Due to their airborne position, UAVs can conveniently gather
information about driving behaviors and the exact positions of various participants. The safety
analysis was conducted using surrogate indicators suitable for evaluating the risk of potential
collisions as they incorporate both spatial proximity and speed. Three conflict indicators were used
in the safety analysis: (i) time-to-collision, (ii) post-encroachment time, and (iii) heavy braking.
The methodology was tested in a primary school area in the city of Zagreb. With the applied
methodology, a total of 43 potential conflicts were identified in the school area (14 time-to-collision,
23 post-encroachment time, and 6 heavy braking). Based on the determined potential conflicts,
safety measures were proposed to decrease the number and severity of potential conflicts and to
increase traffic safety near school areas.

Keywords: child traffic safety; school areas; unmanned aerial vehicles; surrogate safety indicators;
road traffic safety analysis

1. Introduction

This paper focuses on one of the busiest mixed-traffic environments: school areas.
The main reason for this focus is the vulnerability of the traffic users in these areas, who
are young children participating in mixed traffic. The main aim of the present paper
was to develop a new methodology for the analysis of child safety in school zones using
unmanned aerial vehicles (UAV) and image detection technology. Child traffic safety was
evaluated using surrogate safety indicators extracted from drone footage. The practical
contribution of this work is reflected in the ability of local communities to analyze traffic
safety near schools, identify priorities, and implement measures to increase traffic safety.

School children are recognized as one of the groups most at risk of involvement in
traffic accidents resulting in death or serious injury [1]. In the developed world, pedestrian
accidents remain one of the greatest causes of injury, disability, and death [2]. In 2018, the
European Transport Safety Council (ETSC) published a report on child deaths on European
roads, showing that one-third of all children killed on European roads were pedestrians [3].
For older child pedestrians, the majority of crashes occur during the daily commute to or
from school and leisure activities [4].

The road safety of school areas is a very topical but sensitive issue. The reasons for
this are twofold: school areas contain many vulnerable youngsters and experience chaotic
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traffic situations. The ETSC pointed out that one reason for this is an increase in the number
of parents driving children to school. Due to safety and security concerns, parents use
their cars more often, which leads to a greater number of dangerous situations involving
pedestrians and motorized vehicles [3]. This danger creates a self-perpetuating cycle. To
break that cycle, proper design is a major factor in ensuring a safe and secure environment
for children.

It should also be noted that children have difficulty understanding and predicting
the behavior of other road users and to adapt their own behavior accordingly. This is
due to their still limited cognitive capacities and skills, as well as perceptual and motor
abilities [4].

To analyze potential conflict situations near school areas, unmanned aerial vehicle
(UAV) technology was used as it can cover much larger areas than human observers or static
video observations can. This UAV footage is capable of presenting an accurate overview
of complex and difficult traffic situations. Because of their airborne position, drones can
gather information on driving behaviors together with the actual positions of a variety of
participants. To have a full overview of all traffic participants is unique in transportation
and traffic research. Multiple traffic participants can be shown in one frame.

Although existing studies provide useful information regarding traffic safety data
collection in school zones, they were carried out using other (older) technology and were
mainly focused on automobiles. In this study, the trajectories of all traffic participants—
including pedestrians and cyclists—were analyzed. However, it is very difficult to trace the
movements of these groups with current measuring tools. To capture all traffic participants,
drone footage can be considered as a very useful tool. Additionally, in contrast to car-
centered research, the emphasis here is placed on active transportation (AT) users, who are
statistically highly vulnerable in traffic. By using new technology to detect and analyze
this traffic group, we can gain insight into these areas. Consequently, it will be possible to
revise infrastructure and take appropriate safety measures.

In the next chapter a summary of recent and appropriate studies is presented focus-
ing on school areas and unmanned aerial vehicle (UAV) technology. In the third section,
the structure of the methodology (selection of school areas, UAV collection, data process-
ing, data analysis) used during the research is explained. Subsequently, the results and
discussion are presented.

2. Literature Review
2.1. School Areas

Deliberate design and planning of school areas are essential in order to provide a
safe environment. However, street connectivity and traffic exposure vary from school to
school [5], and each situation should be afforded the necessary attention. Unfortunately,
few studies investigate this field of research. One study which investigated engineering
countermeasures to enhance traffic safety in school areas is worth mentioning [6], while
researchers have also provided new insights, with a focus on safe routes to school, and
concluded that further research on the safety of young pedestrians is needed [7]. Informa-
tion on school-specific traffic situations can be valuable for transportation planners and
decision-makers in terms of accident prevention and road engineering.

Connected street networks that provide safe routes to school and an appropriate
school location and street design in school areas play key roles in enhancing road safety [5].
Focus should be placed on the needs of active road users (pedestrians and cyclists), who are
the most vulnerable participants. Designing accessible schools with low traffic exposure,
sufficient sidewalks, and cycle paths can increase road safety.

In addition to design, the behavior of adolescents and children is also an important
factor. The risk-taking behavior of adolescents on roads is demonstrated by a large amount
of research [5–8]. Understanding the behavior of young people is vital in order to enhance
road safety.
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The concept of road safety can be distinguished as “perceived safety” and “substantive
safety”. Dumbaugh and Frank (2007) [7] defined the former as the subjective view of the
likelihood of being involved in a crash, while the latter is a more objective view of the
likelihood of being involved in a crash. Substantive safety can be determined using objective
measuring tools, and the data are directly measurable and indisputable. On the other hand,
perceived safety depends on the feelings people have when participating in traffic. Most
parents are guided by perceived safety and base their decisions about their children’s active
travel mode on this perception [9]. It is the feeling they perceive when asked about road
safety. Both approaches are valuable for traffic research. Even when hard data shows that a
particular traffic situation is safe, the perception can be the complete opposite.

This study focuses on the area surrounding schools, which is dominated by young
pedestrians arriving to and departing from school. The activity of child pedestrians is
highest during the periods before and after school hours, which increases the potential
risk that these vulnerable road users could be involved in a crash [10]. Furthermore,
this group has a higher injury risk as pedestrians than adults. According to European
research, road traffic injuries are the leading cause of death and severe injuries among
children aged 0–14 years, accounting for approximately 34% of injury-related deaths
annually [11]. Meyer et al. (2014) [12] noted that the hazard perception skills of children
are lower than those of adults. Children also have difficulty interpreting the distance
between themselves and a car [13]. Moreover, research shows that they are more tempted
to act impulsively [14].

Studies have shown that street crossings are among the most common road accident
sites for children (Hamed, 2001 [15]; Jäger et al., 2015 [16]; Schwebel et al., 2012 [17]).
This is in line with the surprising conclusion of Poschadel [18] that visible children
crossing the street is one of the most frequent accident situations among children aged
14 years or younger.

2.2. UAV Technology

The collection of data using unmanned aerial vehicles (or the more commonly used
term, drones) is relatively new in the research field of transportation sciences. It is a
technology that uses remotely piloted unmanned aerial vehicles to gather traffic data.

In most studies, data are collected using one of three methods: manual counting, video
observation, or automatic sensor technology. Traditionally, data collection is achieved by
using stationary traffic surveillance devices [19]. Manual counting is a conventional way
of collecting data on pedestrians and is usually carried out in uncluttered areas. Sensor
technology is well developed and is used for evaluation and planning. The most common
method is induction loops to count the number of users, which gives an accurate total
number of people or cars passing by but provides no further information. This automatic
method is more accurate than manual counting because no human errors can occur. One
significant advantage of video observations is the possibility of post-processing analysis,
performed with software or by human observers.

Drone technology can be used to obtain data via video observation and is more
advanced than stationary traffic surveillance devices. One of the main advantages of
drones compared with conventional methods is the extent of the area covered [20]. The
altitude of the video camera provides footage that is impossible to capture with conven-
tional technology and tools (e.g., static cameras, sensors, human observers, etc.) [21].
Some researchers [21,22] claim that the abundance of data collected using this technology
makes it a cost-efficient alternative. Implementing drone technology can reduce human
effort, and a whole traffic situation can be visualized in a short period of time. Because
of the airborne position, this technology does not affect the actual behaviors of traffic
participants [23]. Most conventional measurement and observation tools are at ground
level and are visible to traffic participants, which can affect their behavior [24]. Drone
technology can overcome this shortcoming, with little or no impact on people’s behavior.
Despite its unique features and advantages, this technology also has some limitations.
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The flight duration remains an important issue, ranging from 20 to 30 min [22]. Another
key factor is the weather conditions during the flight, which can influence the quality of
the footage [21]. Additionally, technical, safety, privacy, and security issues need to be
taken into consideration. Table 1 shows an overview of the strengths and limitations of
drone technology in traffic data collection.

Some researchers have reported on the use of drone data in terms of calibration
methodology [25], analysis of interchange merging areas [26], and examination of round-
abouts [24]. These studies form a good foundation for the implementation of the technology;
however, they were are all car-centered studies, and little research has been devoted to
pedestrians as traffic participants.

Table 1. Overview: strengths and limitations of using UAV technology.

Strengths Limitations

• No influence on travel/driving
behavior [19–22]

• High accuracy of data
information [23]

• Collection of complex
information [23]

• Cost-efficient alternative [19,20]
• Vertical take-off and landing [19]
• Hovering aerial position [17,20,23]
• Large area coverage [20,22,24]

• Legal aspects (e.g., flight zones,
certification [27], privacy [21])

• Limited flight time [27]: 20 to
30 min [17,20]

• High-resolution camera is
required [23]

• Weather conditions, e.g., wind [17,19]
• Post-data processing effort [21]
• Camera calibration and image

distortion correction algorithms are
essential [20,26]

• GDPR [22]

As outlined in [21], the volume of current data on pedestrians and cyclists is very
limited. One of the main reasons is that collecting reliable pedestrian data is often labor-
intensive and time-consuming [28]. Vehicular tracking is a more mature application [29].
The majority of research on drone data collection has been focused on vehicle trajectories,
traffic evaluation, and driving behavior [24]. Nevertheless, its unique features make
this technology a promising alternative tool for mapping the trajectories of pedestrians
and cyclists. It can also be used to detect conflicts between these two groups. Airborne
cameras can capture complex traffic situations, including pedestrians and cyclists.

Much research on data acquisition using drones emphasizes the accuracy of the sys-
tem [23]. Because of their size, pedestrians and cyclists are more difficult to capture on
drone footage. Therefore, an important requirement is a high-resolution camera, which pro-
vides accurate footage and, consequently, a greater depth of analysis [22]. Furthermore, the
trajectories of pedestrians and cyclists are less constrained than those of cars [30]. Because
of these groups’ constant changes in orientation and appearance, detecting and tracking
them is a difficult task [31]. Zaki and Sayed (2014) [28] stated that the “particularities of
pedestrians, such as varying appearance, deformation, and occlusion, impose detection
and tracking challenges compared with those of vehicles.” Most conventional methods fall
short in detecting and tracking this group. The airborne position of the drone can offset
these shortcomings.

Drone technology was described in [32] as one of the most attractive methods for
performing difficult tasks and providing more precise traffic parameters than other obser-
vation techniques. Nevertheless, data processing remains a difficult procedure, such that
it would not be possible to run a full analysis on the data obtained from drones. Use of
this technology requires post-data processing, commonly performed with either image
detection technologies or human observers [21]. Previous studies have investigated data
processing methods for footage calibration [25] as well as a procedure to detect cars in
drone footage [23].
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Drone footage can be used to detect conflicts (also termed near-collisions) between
traffic participants [21]. Conflict analysis for safety diagnosis is gaining acceptance as a
surrogate for collision data [30] and can contribute to reliable road safety measures [30] as
traffic conflicts occur more often than collisions. Studying these near-collisions could help
road designers, traffic planners, and transport researchers to improve road safety.

3. Methodology

In this section, the methodology for determining traffic safety near school areas is
presented through several steps: (i) selection of school areas, (ii) UAV data collection, (iii)
data processing, (iv) data analysis, and (v) surrogate safety indicators.

3.1. Selection of School Areas

The selection of primary school areas was made based on five main criteria: the
presence of traffic flows, field-observed increased vehicle speeds, visibility, the availability
of an appropriate landing and take-off location, and the presence of pedestrian crossings.
The selection procedure was as follows:

• Presence of traffic: Vehicle traffic volume is required in the vicinity of the school. These
roads need to be used by traffic participants before, during, and after school hours.
Schools in isolated areas with no traffic are not good examples for testing. It is difficult
to determine the exact number of vehicles passing by school areas needed for testing,
as even one speeding vehicle can be fatal. School areas with adjacent connecting roads
and heavy traffic are more desirable.

• Field-observed increased vehicle speeds: Although vehicle speeds will be determined
from drone footage, direct field observations can determine schools near which drivers
achieve higher speed values, making them riskier in terms of safety.

• Visibility: Availability of an area with few visual obstructions (e.g., trees covering the
road infrastructure). A clear aerial overview of the school area and adjacent roads is
crucial for drone research. The most prevalent obstruction objects are trees and tall
buildings. In this study, several schools were excluded because of the presence of
these obstructions as they hindered the view of the traffic in the surrounding area.
Weather conditions are also an essential factor for the visibility of the school area. In
a densely built-up area, mutual visibility has an influential role in the occurrence of
accidents and should also be considered. In proposing countermeasures to improve
traffic safety, acceptable visibility must be ensured.

• Landing and take-off position: Availability of an appropriate location near the intended
airborne position for landing and take-off (anonymous, open space). The use of drone
technology necessitates some practical requirements, like all other data collection
methods. In the search for an appropriate research area, a landing and take-off zone
is essential. The zone needs to be close to the airborne position of the investigated
area because of the limited flight time. The drone needs to be in its aerial position as
quickly as possible.

• Presence of pedestrian crossings: Availability of an area near the school building with
pedestrian crossings. In this research, emphasis was placed on pedestrians’ crossing
behavior. Therefore, the presence of pedestrian crossings was a crucial element during
the selection procedure.

3.2. UAV Data Collection

An important step in researching road safety in school areas is data collection. Using
this new methodology, a school area in Zagreb was investigated. The drone flight was
performed during the morning rush hour on Tuesday, 24 November 2020, when busy
traffic flows arose around the school building. After analyzing several schools in the city
of Zagreb, the primary school Jure Kaštelan was chosen as it fulfilled all of the previously
defined criteria. Traffic volume in the morning peak hour on adjacent roads was almost
1000 vehicles/h. Later analyses of drone footage revealed that, on roads adjacent to the
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school entrance: 28.57% of drivers were speeding (40 km/h is the speed limit); 91.67% were
driving above 30 km/h; and 100% were driving above 20 km/h. The criteria of a clear
aerial overview of the school area and adjacent roads was met and there were numerous
options for landing and take-off areas where the drone pilot could be hidden from traffic
users. There were five pedestrian crossings in the surrounding area.

Soon after the date of video recording, schools were closed due to the COVID-19
pandemic and further video recording was not possible. Furthermore, due to the impact
of the COVID-19 pandemic and the lack of face-to-face teaching in schools, it was not
possible to conduct research in multiple schools. However, this was not the goal of this
study, which was to demonstrate through the example of one school how it is possible to
evaluate traffic safety in school zones with the proposed methodology based on UAV, video
data processing, and surrogate safety indicators. The defined methodology is applicable to
any school that meets the previously established criteria.

In contrast to previous drone research, this study aimed to track and investigate
all participants, including pedestrians. Before school started, the traffic situation was
recorded for 15 min—from 7:45 to 8:00 a.m.—providing a unique general overview of
traffic flows. Detailed flight planning began a week before the flight, when it was necessary
to request a flight permit from Croatian air control while observing the weather forecast
and determining a safe place for the drone to take-off and land. The drone hovered and
maintained a constant altitude of 120 m with the camera set at 45◦ to detect pedestrians
and cyclists and capture all road approaches successfully. The flight was conducted using
a DJI Mini 2, with a 4K camera and a max battery life of 31 min to provide stable and
high-resolution footage.

3.3. Data Processing

Given that video processing of pedestrian movement is still demanding, the
collected data were processed using the DataFromSky (DFS) platform [33]. Instead
of manual counting, DFS uses artificial intelligence (AI). During this procedure, the
software detects all participants (i.e., cars, pedestrians, and cyclists), calibrates the
footage, and connects information to each participant (i.e., their speed, trajectory,
acceleration, and location). The higher the resolution of the camera, the better the
processed footage and the greater the probability of calculating precise values of traffic
parameters. Figure 1 presents the trajectories of all traffic participants after data
processing using DataFromSky software. It can be seen that the majority of pedestrians
used pedestrians crossings and minor deviations are visible due to illegal crossings by
cyclists and pedestrians.
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Figure 1. Trajectories of all traffic participants.

3.4. Data Analysis

Not many studies have focused on conflicts between AT users and cars. The majority of
research addresses the results of car–car conflicts. However, AT users are more vulnerable,
and the impact of collisions is more severe. Using drone data, this research gap can be filled.
The software used for data analysis provides tools to detect near-crash events and traffic
conflicts that statistically occur more frequently than real traffic accidents. This analysis
can shed light on the occurrence of such conflicts. Furthermore, it is possible to identify the
situation and the exact location.

The DataFromSky Viewer software offers three traffic conflict types: time-to-collision,
post-encroachment time, and heavy braking. These all represent some form of dangerous
behavior between two traffic participants [33]. Subsequent analysis took a closer look at
the conflicts between car drivers and AT users (pedestrians and cyclists). The obtained
database was analyzed using SAS and R statistical tools.

3.5. Surrogate Safety Indicators

In most studies, data from traffic accidents are used to analyze road safety. These
data are often detailed, but usually scarce. Moreover, such accident data are insufficient to
investigate pedestrian–vehicle interactions because the quantity and quality are too limited.

Automated methods for surrogate safety analysis are experiencing increasing inter-
est in the literature [32–34] as they provide insight into the failure mechanisms that can
lead to collisions. Surrogate indicators are suitable for evaluating the risk of rear-end
collisions as they incorporate both spatial proximity and speed [35]. Researchers argue
that surrogate indicators, on one hand, indicate the possible causality of a collision. On
the other hand, they can be considered as proactive tools for assessing safety before an
actual accident occurs.

Automated analyses can detect conflicts and accurately calculate various objective
conflict indicators, such as time-to-collision (TTC), post-encroachment time (PET), and
heavy braking. These indicators can reflect the severity of a traffic conflict objectively and
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quantitatively [6]. The DataFromSky Viewer offers these three traffic conflict indicators,
which describe dangerous behaviors between two road users [33]. TTC calculates in how
many seconds the vehicles would collide if they continued to move at a constant speed
and in a constant direction. Time-to-collision can be calculated with Equation (1) presented
below [36].

TTCi =
Xi−1(t) − Xi(t) − li

.
Xi(t) −

.
Xi−1(t)

∀
.

Xi(t) >
.

Xi−1(t) (1)

where
.

X denotes the speed, X the position, and l the vehicle length [36]. From Equation (1),
TTCi is only valid when the speed of the following vehicle is greater than that of the leading
vehicle [36].

Post-encroachment time is defined as the time between one vehicle leaving and another
vehicle entering a collision zone (see Figure 2). PET is considered a suitable safety indicator
for predicting potential collisions at pedestrian crossings [37]. Post-encroachment time can
be calculated by [38]:

PET = last entrance time− f irst exit time (seconds) (2)
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Heavy braking is defined as the detection of rapid deceleration and is used to detect
collisions or dangerous situations. Heavy braking can be calculated by:

→
a = aT

→
T + aN

→
N (3)

where aT and aN are the tangential and normal components of deceleration, and
→
T and

→
N

are the unit tangent and unit normal for the position function, respectively [39].
The scheme of the proposed methodology for evaluating child traffic safety near

primary school areas using UAVs is presented in Figure 3.
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4. Results

Based on the three safety indicators extracted from the DataFromSky Viewer program,
a detailed analysis of potential conflicts around the primary school was made. The trajec-
tories of passenger cars and AT users were extracted, and conflicts were identified. Near
collisions between vehicles and pedestrians in DataFromSky were detected using TTC in
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case vehicles were moving at a constant speed and in a constant direction at the moment of
analysis. A limit for time-to-collision of 2 s from the potential collision was established. PET
was defined as the time difference between when a pedestrian leaves the conflict zone and a
vehicle enters it. This threshold was set at 1.5 s. Heavy braking was defined as deceleration
greater than −2.5 ms−2. All of the DataFromSky data were collected in a database which
was further analyzed using statistical tools. Based on the three safety indicators, and by
reviewing the footage, a total of 43 potential conflicts were identified (14 time-to-collision,
6 heavy braking, and 23 post-encroachment time). Based on a literature review and a
review of videos, the threshold values of these safety indicators were determined and are
described in the following sections. All determined potential conflicts from DataFromSky
Viewer were observed and analyzed from drone footage following the time steps and
their location on the network. All potential conflicts marked by three surrogate safety
indicators were confirmed as risky via video observation. Figure 4 shows the setup of the
investigated school area with the locations of all potential conflicts. Almost all potential
conflicts were identified as having occurred on pedestrian crossings. This indicates that
most AT users respect traffic rules and use appropriate pedestrian crossings. Four potential
conflicts occurred outside of pedestrian crossing areas: three time-to-collision and one post-
encroachment time. On the far left TTC point (indicated by the number 1), a pedestrian was
crossing the road illegally. The TTC point (indicated by 2) denotes a car–bicycle potential
conflict, where the car driver parked at a bus station. The TTC conflict point (marked with
3) denotes a pedestrian–bicycle conflict in front of the school entrance and on the pedestrian
sidewalk. The pedestrian density was high, and the cyclist passed them at high-speed. The
PET conflict on the pavement (marked with 4) was a car–pedestrian conflict, where the
pedestrian was crossing a road outside of the pedestrian crossing area.
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4.1. Time-to-Collision

Time-to-collision was the most observed safety indicator in the literature. A value of
1500 milliseconds is most often used when analyzing conflicts between vehicles but, based
on the slightly slower vehicle and pedestrian speeds and the video review, a value of 2 s
(2000 ms) was applied in this study. The lower the TTC value, the higher the probability
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of an accident. A total of 14 potential conflicts were identified (Table 2). Figure 5 shows a
statistical analysis of time-to-collision (ms). It can be seen that most values are scattered,
and only two potential conflicts had a constant value during TTC progression (ConflictID
13 and 23). Rhombus in boxplots represents mean and horizontal lines represents median.
Additionally, if the potential conflict has a greater number of observations (ConflictID 12,
15, and 20) then the risk exposure lasts longer and the situation is even more dangerous.
TTC conflicts were widely scattered across the studied area, and the majority were located
at pedestrian crossings. One can conclude that cars stop too close to pedestrian crossings,
which could lead to potentially severe consequences—especially as many children walk on
pedestrian crossings near primary schools.

Table 2. Summary statistics of TTC conflicts.

ConflictID Num Obs Mean Std Dev Minimum Maximum Median Variance Skewness Kurtosis

ID10 51 803.3 613.6 33.0 1963.0 724.0 376,514.0 0.3 −1.2
ID11 50 719.0 538.7 33.0 1960.0 661.5 290,241.7 0.5 −0.8
ID12 87 443.9 533.5 33.0 1699.0 66.0 284,617.5 1.0 −0.5
ID13 11 33.0 0.0 33.0 33.0 33.0 0.0 - -
ID14 47 367.1 344.4 33.0 1041.0 276.0 118,641.8 0.6 −1.1
ID15 92 656.8 647.2 33.0 1968.0 482.5 418,891.3 0.6 −1.1
ID16 20 1490.4 264.6 1119.0 1973.0 1461.5 70,018.0 0.3 −1.1
ID17 14 1677.9 157.4 1458.0 1962.0 1660.5 24,782.1 0.3 −1.0
ID18 52 1690.6 161.3 1497.0 1989.0 1645.5 26,005.7 0.5 −1.2
ID19 25 1731.2 140.9 1566.0 1999.0 1699.0 19,863.6 0.7 −0.9
ID20 71 1755.4 116.8 1586.0 1998.0 1746.0 13,638.6 0.4 −0.9
ID21 48 1785.4 88.6 1666.0 1986.0 1763.5 7858.5 0.6 −0.7
ID22 32 1889.3 53.3 1833.0 1991.0 1878.0 2844.8 0.6 −0.9
ID23 2 1999.0 0.0 1999.0 1999.0 1999.0 0.0 - -
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Table 2 shows the summary statistics (mean, standard deviation, minimum, maximum,
median, variance, skewness, and kurtosis) values of individual potential conflicts. The
data are scattered, and all potential conflicts have positive skewness and negative kurtosis.
Figure 6 presents an example of one potential time-to-collision conflict point at a pedestrian
crossing, as determined by the DataFromSky Viewer.
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Figure 6. Example of a time-to-collision potential conflict.

Figure 7 presents the progression of each time-to-collision conflict over time. If the
value of time-to-collision decreases sharply, it can be concluded that the situation was
extremely dangerous because the distance between the traffic participants decreased and
a vehicle was forced to brake suddenly (ID 10, 11, 12, 14, 15, and 16). On the other hand,
if the progression is accompanied by a slight or moderate decrease in the value, it can
be concluded that the situation was moderately dangerous (ID 18, 19, 20, 21, 22, and 23).
Conflict 13 has a constant and very low value, and as such this situation was classified as
very dangerous.

Based on a safety analysis of the time-to-collision indicator, six additional conflicts
were classified as very dangerous: ID 10, 11, 12, 14, 15, and 16.

4.2. Post-Enchroachment Time

Small values of PET (ms) indicate a greater probability of a collision occurring. In
this study, based on the literature review [40] and considering potential AT–car conflicts, a
threshold value of 1500 ms was identified as appropriate. A total of 23 potential conflicts
were identified (Table 3). The values of 13 potential PET conflicts were smaller than 1000 ms
(56.5% of the total), which means that these conflicts were seriously dangerous. From the
locations of all post-encroachment time conflicts (Figure 4), we can conclude that most PET
conflicts occur on pedestrian crossings, which indicates that drivers are aggressive and do
not wait long enough for pedestrians to leave the crossing. This is a potentially dangerous
situation because pedestrians can turn abruptly and return via the same crossing.
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Table 3. Post-encroachment time.

ConflictID ID24 ID25 ID26 ID27 ID28 ID29 ID30 ID31 ID32 ID33 ID34 ID35

Post-Encroachment Time (ms) 233.0 333.0 366.0 366.0 566.0 599.0 633.0 733.0 733.0 799.0 833.0 899.0

ConflictID ID36 ID37 ID38 ID39 ID40 ID41 ID42 ID43 ID44 ID45 ID46

Post-Encroachment Time (ms) 966.0 1099.0 1133.0 1133.0 1199.0 1233.0 1266.0 1333.0 1333.0 1399.0 1433.0

4.3. Heavy Braking

Heavy braking (HB) is used as an indication of rapid deceleration and to detect
collisions or dangerous situations. Based on the literature review [41], a threshold value
of −2.5 ms−2 was identified as applicable to the analysis in this study, meaning that
values greater than −2.5 ms−2 were considered heavy braking, and were consequently
considered to be potential conflicts. A total of six potential HB conflicts were identified. The
progression of longitudinal acceleration is shown in Figure 8. Conflict ID26 had the highest
deceleration values. Additionally, a sharp decrease can be seen for ID26—this conflict was
classified as the most hazardous in the HB group.

Based on the three safety indicators, a traffic safety analysis of the primary school area
was conducted. A total of 43 potential conflicts were identified. Based on the analysis, the
locations of all potential conflicts were determined. Most potential conflicts were identified
at pedestrian crossings around the primary school. Accordingly, measures to increase traffic
safety need to be implemented to increase the safety of the most vulnerable road users,
especially children.
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5. Discussion

Unlike previous studies which focused on car–car potential conflicts, this study aimed
to determine potential conflicts between car and AT users. Safety analysis around the
primary school was conducted using three safety indicators: time-to-collision (TTC), post-
encroachment time (PET), and heavy braking (HB). A total of 43 potential conflicts were
identified (14 TTC, 23 PET, and 6 HB). The most common conflicts (53.49%) were post-
encroachment time conflicts, followed by time-to-collision (32.56%), and heavy braking
(13.95%). Most potential conflicts were identified at pedestrian crossings, which indicates
that most AT users respect traffic rules and use appropriate pedestrian crossings. However,
several conflicts were recognized on pavements where road users performed illegal actions.
One potential pedestrian–bicycle conflict was determined on a sidewalk. The pedestrian
density was high, and the cyclist passed close to them at high speeds. After identifying
43 potential conflicts via surrogate safety analysis, a drone video review was performed to
ensure the proposed methodology’s validity and reliability and ensure that all 43 potential
conflict points were indeed dangerous in the real traffic situation. This methodology can be
applied to strategically assess and increase traffic safety near school areas at the city level
and beyond. Based on the determined number of potential conflict points, schools can be
prioritized to implement safety measures.

Compared with conventional methods for traffic data collection, one of the main
advantages of using UAV in this methodology is the geographic extent of the footage
obtained. The altitude of the video camera provides footage that is impossible to capture
with conventional technology and tools (e.g., static cameras, sensors, human observers,
etc.). Implementing drone technology can reduce human effort, and in a short period
of time a whole traffic situation can be visualized. Importantly, compared with other
technologies, UAVs do not affect the actual behavior of traffic participants owing to their
airborne position.

As a proposal for future research, data should be collected over several days and in
several schools to gather as much data as possible on the behavior of all traffic participants.
Additionally, data should be collected before the start and after the end of classes to compare
the behavior of drivers and pedestrians and the traffic safety situation at these different
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times of increased activity. With the development of UAVs and the increasing resolution of
video cameras, it is possible to capture pedestrian activity with sufficiently high accuracy to
determine whether they turned their heads and checked the traffic situation before entering
a pedestrian crossing.

6. Conclusions

This study aimed to develop a methodology for evaluating traffic safety near primary
school areas using UAV technology and surrogate safety indicators. The methodology
included several steps: (i) selection of school areas, (ii) UAV data collection, (iii) data
processing, (iv) data analysis, and (v) surrogate safety indicators. So as to not influence
driver or AT behavior and collect the trajectories of each road user (passenger cars and AT
users), the data were collected using an unmanned aerial vehicle (UAV) and the videos were
processed using artificial intelligence and the DataFromSky Viewer computer program.
The proposed methodology for determining traffic safety using UAVs and safety indicators
is applicable to most primary and secondary schools. Traffic safety near school areas can be
determined in a simple, efficient, and reliable manner, and the most vulnerable road users
can be protected. After implementing the proposed methodology and evaluating traffic
safety, practical measures can be implemented. Several measures can be proposed according
to traffic safety studies for each school area to calm traffic or lower speeds near school areas.
Measures can be divided into infrastructure and regulation or educational and enforcement
activities. Infrastructure and regulation measures include: curb extensions, signalized
pedestrian crossings, overpasses and underpasses, speed monitoring displays, chicanes,
speed humps, 20 km/h speed zones, textured and colored pavement, raised pedestrian
crossings, etc. Educational measures concentrate on the improvement of children’s walking
and cycling skills, and discussions in the classroom about safe routes from home to school.
Enforcement measures are used to decrease speeding, failing to yield to pedestrians, and
illegal U-turns and parking.

In this concrete example of an analyzed school, the number and severity of TTC,
PET, and HB could be reduced with all of the suggested measures to reduce speeds near
school areas. The installation of signalized pedestrian crossings can additionally reduce
PET conflicts. Other measures should include the deployment of cycling paths, Kiss and
Go zones (to provide a safe place for parents to drop off and pick up their children), and
the installation of traffic poles between traffic lanes to exclude illegal turns in front of
school entrances.

Future studies will concentrate on implementing this methodology to evaluate traffic
safety near school zones in Croatian cities.
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