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Abstract: Electric vehicle charging technology has recently witnessed massive developments due to
its significant role in the ever-growing number of electric vehicles on the market. The integrated on-
board charger technology (IOBC) represents an effective and attractive solution to reduce EV size, cost,
and weight. IOBC technology employs propulsion components, such as the motor and its converter,
in the charging process. The main objective of IOBC is to achieve the maximum charging current with
zero average/pulsating torque so that mechanical interlocking can be dispensed. Recently, some of
the IOBC topologies have adopted machines with six-phase stators to exploit the many advantages of
multiphase-based systems. This paper investigates the effect of the winding design, namely, chorded
or un-chorded designs, as well as the winding configuration, namely, dual three-phase, asymmetrical,
or symmetrical winding configurations, on the current quality of a six-phase-based non-isolated
IOBC. The relation between the winding design and the induced low order harmonics in the charging
current is first clarified. The required current controller structure is then proposed, which ensures
balanced grid line currents with high quality, under either healthy or one-phase fault conditions.
Finally, a comparative study between all available designs with the proposed current controller is
carried out to validate the theoretical findings.

Keywords: six phase; dual three-phase; asymmetrical six-phase; symmetrical six-phase; low order
space harmonics; magneto-motive force; harmonic compensation; PR controller; battery charging;
integrated onboard battery chargers

1. Introduction

A clean, energy-based transportation is now globally required as a major step to hold
back climate change and the greenhouse effect. Electric vehicles (EVs) impose themselves
as a promising alternative to the conventional diesel engine vehicles. Nowadays, extensive
investments are focusing on developing EV-based technologies and their components, such
as electric motor design, converter design, innovative control techniques, batteries, and
battery chargers [1]. However, one of the major challenges that has curbed the use of EVs
widely is the limited range that car can go on one charge [2]. This, in turn, sheds light on
developing different charging technologies of EVs, starting from battery design and ending
up with charger types. In this context, EV chargers are classified into two main categories:
off-board and on-board chargers [3].

Albeit off-board chargers are distinguished by their safety and fast charging compe-
tence, this option entails dedicated resources and infrastructure [4]. On the other hand,
on-board chargers offer a simple charging solution thanks to their capability of charging
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directly from AC plugs. However, the charging time is relatively slow due to onboard
weight, volume, and cost constraints.

Lately, the idea of integrated on-board chargers has emerged as an alternative solution
to overcome the limitations of on-board chargers [5]. IOBCs employ propulsion compo-
nents, namely, the converter and motor, in the charging process. Thus, the power flows
from grid to the battery through the converter, while the motor acts as a smoothing filter.
Examples of some single-phase IOBCs are reviewed in [4]. Due to the limited power range
of single-phase-based IOBCs, the three-phase IOBCs have shown accelerating potentials in
recent literature [6,7]. The main control challenge of this technology is to ensure zero torque
production under charging. From the machine point of view, based on the comprehensive
review of EVs given in [8], the permanent magnet and induction machines are likely the
most common types employed in EVs [9].

Recently, multiphase machines are being favored for EV drivelines over their three-
phase counterparts. The fault-tolerance and reduced converter per-phase current/voltage
ratings are the main merits of multiphase machines [10,11]. Different multiphase-based
IOBC topologies have been proposed in the available literature [10,12,13]. Currently, the
six-phase induction machine (SPIM) has been preferred in recent literature to be a rea-
sonable/compromised alternative for three-phase motors. Moreover, SPIM offers less
complexity, is cost-effective, and is a more reliable solution compared to other phase or-
ders. The SPIM can easily be rewound using the same standard three-phase stator frames
with, theoretically, no practical constraints, besides its capability of being driven using
off-the-shelf three-phase converters [14,15]. In the literature, six-phase machines have been
proposed with three different winding layouts, namely, dual three-phase (D3P), asymmetri-
cal six-phase (A6P), and symmetrical six-phase (S6P) [16]. Another novel winding layout
for six-phase machines, known as pseudo six-phase, has proved to offer a 5% enhancement
in the torque density over conventional six-phase winding [17].

Most of the up-to-date literature has emphasized controlling the SPIM under propul-
sion mode. However, considering SPIM in an IOBC system raises more challenges when
standard current controllers are to be preserved. The control technique of a SPIM-based
IOBC system should control the machine phase currents in a manner that ensures zero
torque production during charging mode. To this end, literature has suggested different
solutions to ensure zero torque production. For instance, the concept of phase transfor-
mation represents one of the proposed solutions that has been applied to symmetrical
and asymmetrical SPIM-based IOBCs to nullify the torque production during battery
pack charging [13,18]. In this latter technique, the machine stator is connected to the gird
using a two-secondary winding transformer, while the converter is controlled in such a
way as to ensure zero fundamental (αβ) current components using conventional PI con-
trollers. In [18], an alternative topology has been proposed and applied to either A6P or
S6P machines, which enables fast-charging up to 100% of the traction power rating. The
so-called vector PI resonant controller has been employed to control the system under
either propulsion or charging modes. Another non-isolated IOBC topology that achieves
100% charging/propulsion power ratio has been proposed in [19]. Even though this latter
topology can successfully cancel out the average torque production, a notable pulsating
torque component still exists. An attempt to reduce the converter complexity was suggested
in [20] by employing a nine-switch converter to drive a symmetrical SPIM in both charging
and traction with a simple hardware reconfiguration.

Although most of the conducted research related to multiphase-based IOBC has been
done under healthy conditions, [10] has taken the initiative to control a nine-phase machine-
based IOBC under postfault cases. The same objective has also been introduced in [21] for
a SPIM-based IOBC under postfault operation. However, this technique has only been able
to cancel out the average torque production with a significant torque component due to the
generated pulsating fundamental flux component.

Some recent studies have compared the symmetrical and asymmetrical winding con-
figurations under both healthy as well as fault conditions [22,23]. A thorough comparative
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study between the three variations of six-phase winding configurations by investigating
their air gap flux distributions under different excitations is provided by [24]. The study
showed that the D3P and S6P connections are very similar, whereas the equivalent reac-
tance of an A6P connected winding is slightly higher due to the effect of leakage mutual
inductance of a double layer winding design [24]. The effect of stator winding connection
on the harmonic mapping was also investigated by plotting the MMF distributions and
their harmonic spectra under different excitations [24].

To the best of the authors’ knowledge, literature has not investigated the effect of
stator winding design as well as winding configuration of a SPIM-based non-isolated
IOBC system on the induced low order harmonic currents and the line current quality
under charging mode. All available literature has regarded the machine as a pure series
inductance, while it has completely ignored the possible induced back emf harmonic
voltage components due to phase-belt low order space harmonics. To this end, this paper
investigates a SPIM-based IOBC with the three available winding configurations, namely,
D3P, ASP, and S6P, under both healthy case (HC) and single open phase fault (1OPF) case.
The effect of winding chording on the induced low order MMF space harmonics is first
investigated to clarify the possible sources of these harmonic current components under
charging. Hence, a general current controller structure with harmonic compensation (HC)
for a general six-phase-based winding topology is then proposed for both healthy and
postfault operation.

The paper is organized as follows. Section 2 discusses the proposed winding connec-
tion with the grid. Section 3 depicts the MMF harmonic spectra due to different sequence
current excitations related to each winding layout. The required optimum set of phase
currents under both healthy and 1OPF case are derived in Section 4 for the three possible
connections. The proposed controller structure that ensures the main objectives while
respecting the imposed constraints under charging is then introduced in Section 5. The
experimental validation is discussed in Section 6. Finally, the paper is summarized in
Section 7.

2. Six-Phase-Based IOBC Connection with Grid

This section discusses the required connection of the stator winding to integrate a
general SPIM-based non-isolated IOBC with the grid. When non-isolated IOBC topologies
are employed, the machine acts as a single neutral (1N) SPIM; therefore, the nonavoidable
circulating i0+ ,0− current component should be properly controlled to ensure high-quality
phase currents. The IOBC connection will be evaluated for the three winding layouts (D3P,
A6P, and S6P) with and without winding chording employed.

For the three winding configurations of a SPIM, namely, D3P, A6P and S6P, the
corresponding arbitrary spatial phase-shift angle δ between the two three-phase winding
sets are 0◦, 30◦, and 60◦, respectively. The six-phase machine has three main subspaces,
namely, the fundamental subspace (αβ), secondary subspace (xy), and zero subspace (0+0−).
The vector space decomposition (VSD) [24] matrix that correlates the sequence components
(i.e., αβ, xy, and 0+0−) and the phase quantity components (current or voltage) with a
general arbitrary angle, δ, is given by (1).
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 iαβ
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ixy
s

i0+0−
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6×1

= TVSD

[
ia1→c1
s

ia2→c2
s

]
6×1

(2)

Under propulsion mode, the fundamental subspace current components, iαβ
s , are

exclusively utilized for torque production, while other sequence currents are controlled to
zero to ensure a ripple-free torque production with high quality phase currents. On the
other hand, the charging mode utilizes the secondary subspace current components, ixy

s ,
only, while other sequence currents are controlled to zero. Under propulsion mode, and by
setting the iαβ

s current components to I∠0 and I∠− 90, the resultant phase currents from
the inverse of (2) will yield a phase shift angle between the three-phase sets of 0◦, 30◦, and
for the D3P, A6P, and S6P machines, respectively, as clarified in Figure 1. Meanwhile, under
charging mode, setting the ixy

s current components to I∠0 and I∠90 results in set of phase
currents with a phase shift angle between the two three-phase sets of 180◦, 210◦, and 240◦

for the D3P, A6P, and S6P machines, respectively, as shown in Figure 1.
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Figure 1. 
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Figure 1. Phase and line currents of SPIM for all three types of SPIM (a) D3P, (b) A6P, and (c) S6P,
under propulsion mode (upper plots) and charging mode (lower plots).

Based on the current phasors under charging given in Figure 1, the suggested external
connection of the three available configurations to integrate the six-phase machine with
the grid are shown in Figure 2. This connection maximizes the charging line current while
nullifying the torque production inside the machine. By looking at the current phasor
diagram under xy excitation shown in Figure 1, adding (ia1

s and ib2
s ), (ib1

s and ic2
s ), and (ic1

s
and ia2

s ) together result in a line current magnitude equal to 2 cos 30◦, 2 cos 15◦, and 2 cos 0◦

times the phase current for the three connections, respectively. Therefore, connecting the
end terminals (a1 and b2), (b1 and c2), and (c1 and a2) of the six-phase stator together with the
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grid lines (ag, bg, and cg), while exciting the xy subspace only, will maximize the charging
line currents and ensure zero torque production.
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Figure 2. Proposed connection for SPIM based IOBC.

3. MMF Spectra of Different Winding Layouts

In AC winding, coil chording is usually employed to obtain a high-quality flux distri-
bution under fundamental αβ excitation. In all available literature, the flux distributions
under non-fundamental subspace excitations (i.e., xy and 0+, 0−) were ideally assumed to
be zero. This assumption was recently found to be rather ideal, especially when winding
chording is applied to improve the fundamental flux [24]. In this section, the effect of
winding chording on the stator MMF spectra is investigated and compared with fully
pitched stators for the three available configurations. Since the IOBC control algorithm
utilizes only the xy subspace in the charging process, the focus will be directed to the MMF
spectra under xy excitation. A 24-slot, 4-pole stator is employed for this comparison. It
has been shown in [24] that a 24-slot with 12 phases can be used to construct any of the
3 6-phase winding layouts by externally connecting certain pairs of phases in such a way
as to produce 6 terminals only. In the available literature, a 5/6 coil pitch is commonly
employed in practical six-phase induction machines [24], which will also be used for the
chorded winding case in this study.

Figure 3 shows the MMF spectra under αβ excitation (propulsion mode). It is clear
that chording the stator winding with one slot is essential under D3P and S6P to minimize
the 5th and 7th low order space harmonics; however, it affects the fundamental component,
when compared with the A6P case.

On the other hand, Figure 4 illustrates the MMF spectra under xy excitation (charging
mode). It is obvious that both D3P and S6P have the same MMF spectra under chorded
winding with clear, even harmonic components, indicating asymmetrical flux distribution
under this excitation profile. Although these space harmonics will increase the leakage
inductance of the xy subspace [24], which will improve current quality under charging,
they are also expected to induce undesirable harmonics in the phase currents. On the other
hand, the two winding layouts (D3P and S6P) correspond to zero magnetizing flux when
fully pitch winding is employed. Figure 4 also shows the MMF spectra of an A6P stator,
where the 5th and 7th harmonics represent the dominate harmonics in both chorded and
un-chorded windings. Clearly, the magnitude of these two harmonics are larger under un-
chorded winding, and thus, the xy inductance is expected to be larger for the un-chorded
A6P machine [24].
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In the available literature [19], harmonic current compensation was proposed to
suppress the induced harmonic current due to grid distortion. However, to the best of the
authors’ knowledge, literature has discarded the effect of the stator phase-belt harmonics
on the current quality of the IOBC-based systems, which represents the main contribution
of this study. It is expected that harmonic current compensation will be essential when
even space harmonics are presenting in the stator airgap, which is the case for both D3P
and S6P with chorded winding. Since no even harmonics are likely to present in the A6P
stator, harmonics current compensation is not essential.

Under healthy operation, the 0+ 0− sequence components are controlled to zero, hence,
their effect may be discarded. However, under postfault operation with one phase open,
i0+0− components are used to ensure balanced, three-phase line currents, as shown in the
next section. Under this latter case, the produced space harmonics due to this subspace
should be taken into consideration. Figure 5 shows the MMF spectra under 0+, 0− sequence
excitation. Under this excitation profile, the spectra of the three winding layouts seem to be
the same for both chorded/un-chorded machines.
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The well-established VSD transformation [24] has been introduced to elaborate the
relation between electrical and mechanical quantities and to introduce a simple method to
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s , where f ∈ {v, i} , v: voltage, and i: current, are decomposed into
orthogonal stationary frames as given by (2). In this section, the optimal current derivation
under both healthy and 1OPF under charging mode is introduced.
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Under xy excitation, the phase current vector is given by (4).

ia1
s

ib1
s

ic1
s

ia2
s

ib2
s

ic2
s


= TVSD

−1

 iαβ
s

ixy
s

i0+0−
s


6×1

= TVSD
−1



0
0

I∠0◦

I∠90◦

0
0

 (4)

From Figure 2, the grid current ia
g is the summation of phase currents ia1

s and ib1
s . Hence,

the relation between the resultant grid line current magnitude and machine phase current
can be written as in (5). ∣∣∣ia

g

∣∣∣ = 2
∣∣ia1

s
∣∣ cos(ϕ/2) (5)

where ϕ is the phase angle between each pair of phase currents, which equals 60◦, 30◦, and
0◦ for D3P, A6P, and S6P configurations, respectively.

From (3) and (4), the following conclusions could be made:

• The charging current flows through the machine at zero torque production, which, in
turn, eliminates the need for interlocking mechanisms during the charging process.
Besides, the xy subspace currents can be considered as the exclusive charging current
components, which, when controlled according to (3), balanced grid currents are
obtained, assuming that there is no asymmetry in the machine windings. According to
the battery specifications, the reference current is predefined, and hence, the charging
grid currents are determined.

• For a six-phase system, there is a total of five degrees of freedom. There are four

reserved degrees of freedom (DOF) under charging mode (iαβ
s and ixy

s ) to nullify the
average torque, while maintaining balanced grid currents. Hence, an extra degree of
freedom (i+0 = −i−0 ) is still available, which can be used to maintain the same control
objectives under 1OPF condition.

4.2. Postfault Optimal Current Derivation under 1OPF

Under 1OPF, one degree of freedom will be lost. The single remaining degree of
freedom under healthy case can, therefore, be used to ensure the same control objectives.

Assuming phase-a1 is the faulty phase (ia1
s = 0), from the inverse of (2), one can write:

ia1
s = iα

s + ix
s + i0

+

s = 0 (6)

Hence, the only condition that ensures same sequence current constraints of the
healthy case is to have

i0
−

s = −i0
+

s = −ix
s (7)

The corresponding optimal currents under 1OPF can be obtained based on (8).

ia1
s

ib1
s

ic1
s

ia2
s

ib2
s

ic2
s


= TVSD

−1

 iαβ
s

ixy
s

i0+0−
s


6×1

= TVSD
−1



0
0

I∠0◦

I∠90◦

I∠180◦

0

 (8)

Hence, the optimal currents for the three cases, assuming same pre-fault conditions,
are given in Table 1. Under fault conditions, some phases will exceed their rated value
in case a same rated charging current is required. Hence, a suitable derating should be
applied based on the phase current having maximum phase magnitude (written in bold in
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Table 1). The percentage derating to limit the phase having maximum current to 1 pu is
also given in the same table.

Table 1. Optimal currents and derating percentages of different SPIM connections under 1OPF.

Connection D3P A6P S6P

Optimal currents



ia1
s

ib1
s

ic1
s

ia2
s

ib2
s

ic2
s




0

1.7321∠150◦

1.7321∠−150◦

0
1.7321∠−30◦

1.7321∠30◦




0

1.7321∠150◦

1.7321∠−150◦

0.5176∠−75◦

1.9319∠−15◦

1.4142∠45◦




0

1.7321∠150◦

1.7321∠−150◦

1∠−60◦

2∠0◦

1∠60◦


Percentage derating (%) 42.3 48.2 50

5. Proposed General Current Proportional Resonant-Based Controller

In most available literature, conventional PR or synchronous PI controllers are shown
to be suitable in grid connection and drive applications [25,26]. The same current controller
structure can be preserved under both propulsion and charging modes through exciting the
proper subspace according to the desired mode of operation. Hence, a PR current controller
will be employed in this study.

Figure 6 shows the block diagram of the proposed PR-based general current controller.
Although the control algorithm is the same for all the three configurations, the harmonic
compensating (HC) voltage terms depend on the machine winding layout. The proposed
controller consists of three main stages. In the first stage, the reference sequence current
components are derived based on the reference dq grid current components, where the
reference i∗d component controls the charging level, while i∗q is set to zero to ensure unity

power factor. The corresponding reference αβ grid currents, iαβ∗
g , are then obtained using

the inverse Park’s transformation, while synchronization with the grid is simply done
using a phase-locked loop. The stator xy reference currents are set equal to the αβ grid
currents, iαβ∗

g . It is noteworthy from Figure 1 that any grid line current is leading the
corresponding phase current of the first three-phase set by an angle ϕ/2. Therefore, in
order to achieve a unity power factor charging, iαβ∗

g should be aligned with the grid voltage
by rotating the machine reference i∗xy current components by the same angle, ϕ/2. The
fundamental subspace sequence currents, iαβ, of the SPIM are set to zero to ensure zero
torque production. Finally, i0+0− components are set to zero under healthy conditions,
whereas the reference values of this subspace are derived based on (7) under 1OPF.
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The second stage represents the PR-based current controllers, where a pair of PR
controllers are used to control each subspace. Since i0+ = −i0− , a single PR controller
is used to derive the 0+ 0− sequence voltage components (v0+ = −v0− ). In both the xy
and 0+ 0− subspaces, additional pairs of PR controllers are also used to compensate for
the dominant low order harmonic current component induced in these subspaces. The
harmonic compensation is enabled via HC switches shown in Figure 6. According to
experimentation, the 5th and 3rd harmonics are the dominant harmonics in the xy and
0+ 0− subspaces, respectively.

In the third controller stage, the output voltage components of the PR controllers
are transformed to their phase quantities using the inverse transformation given by (1).
Conventional SPWM is then used to derive the six-phase inverter.

Under postfault operation, the same controller structure is used, which represents the
main advantage of the proposed PR current controller. Referring to the analysis given in
Section 4, only the reference value of the 0+0− subspace is changed to be −i∗x instead of
zero under healthy case.

6. Experimental Evaluation
6.1. Experimental Setup

The proposed SPIM-based IOBC with different winding layouts has experimentally
been validated using the test-rig shown in Figure 7. Two identical 24-slot, 4-pole off-the-
shelf three-phase IMs have been rewound into chorded and un-chorded twelve-phase
machines with the same rated current, as proposed in [24]. These two twelve-phase
machines have been designed to be externally configured as a six-phase machine with
the three possible winding configurations, namely D3P, A6P, or S6P. The first machine is
wound as a double layer winding with a 5/6 coil span, while fully pitched coils are used
with the second machine. The ratings of both machines are given in Table 2. Meanwhile,
the measured machine parameters of both machines, which have been estimated using
the technique introduced in [24], are given in Table 3. The power converter is built using
a two-level six-phase inverter fed from a 300V programmable DC supply. Conventional
SPWM at 5 kHz is used to derive the power converter. The controller was developed using
the MATLAB/Simulink platform and deployed using Embedded Coder of Simulink into
Texas Instruments F28379D Launchpad. The current feedback was carried out using six
LEM LTS-25np hall effect sensors.
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Table 2. Machine Ratings.

Parameter Value

Rated RMS phase Voltage (V) 110 V
Rated Power (kW) 1.1

Rated RMS phase current (A) 2.8
Rated frequency (Hz) 50

No. of poles 4
Rated speed (RPM) 1400

Table 3. Machine Parameters.

Parameter
Chorded Un-Chorded

D3P A6P S6P D3P A6P S6P

Stator resistance 4.18 Ω 4.18 Ω 4.18 Ω 5 Ω 5 Ω 5 Ω
Rotor resistance 3.46 Ω 3.67 Ω 3.46 Ω 2.9 Ω 3.1 Ω 2.9 Ω

αβ stator leakage inductance 9.1 mH 12 mH 9.1 mH 10 mH 9.6 mH 10 mH
αβ rotor leakage inductance 19.1 mH 16.7 mH 19.1 mH 21 mH 22.5 mH 21 mH
αβ magnetizing inductance 254 mH 247 mH 260 mH 270 mH 304 mH 284 mH
xy stator leakage inductance 11.8 mH 7.5 mH 11.8 mH 4.44 mH 25.5 mH 4.52 mH

Zero sequence resistance 5.5 Ω 13.7 Ω 5.6 Ω 5.6 Ω 6.7 Ω 6.86 Ω
Zero sequence inductance 18.2 mH 23.5 mH 26.2 mH 4.74 mH 26.46 mH 4.78 mH

6.2. Experimental Results

In this section, the experimental results of the SPIM-based IOBC are investigated
under both healthy and fault conditions. In all cases, the same reference charging current is
set according to (5) to the rated machine phase current (4A peak). The effect of harmonic
compensation on the quality of the line currents is also assessed. In the following, all
currents are given in per-unit values based on machine ratings given in Table 2.

6.2.1. Healthy Case

In this case, the effect of the 0+ 0− subspace can be discarded since its reference current
components are i∗0+ 0− = 0. The need for harmonic compensation is decided based on the
obtained current waveforms along with the MMF spectra given in Figures 3–5.

Chorded Winding Layout

Under healthy case, the chorded winding of the SPIM-based IOBC has successfully
achieved balanced three-phase gird currents with unity power factor for the three config-
urations, as shown in Figure 8. As previously mentioned in Section 2, the grid current
magnitudes are 2 cos 30◦, 2 cos 15◦, and 2 cos 0◦ times the phase current magnitude under
D3P, A6P, and S6P winding layout, respectively, as shown in Figure 9.

Clearly, both D3P and S6P machines correspond to a notable distortion in the current
waveforms because of the even order space harmonics under xy excitation. Fourier analysis
shows a dominant 5th harmonic component in the current spectra. On the other hand, the
current quality of the A6P is much better. Therefore, a harmonic compensation technique
has been applied to both D3P and S6P machines to enhance the current quality, as shown
in Figure 10. The THD values and the magnitude of the 5th harmonic of both phase and
line currents of each configuration with and without harmonic compensation are tabulated
in Table 4.
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Figure 10. The grid line currents of chorded SPIM-based IOBC under healthy case with harmonic
compensation. (a) D3P. (b) S6P.

Table 4. THD values of chorded SPIM-based IOBC under healthy operation.

THD
Without Harmonic Compensation With Harmonic Compensation

D3P A6P S6P D3P S6P

THD Line current 5.01% 3.07% 5.05% 4.07% 3.93%
5th Har Mag. 3.89% 0.23% 3.71% 0.15% 0.25%

THD Phase current 6.24% 4.6% 5.6% 5% 5.17%
5th Har Mag. 3.87% 1.25% 3.48% 2% 0.38%

Un-Chorded Winding Layout

The same control technique has been applied to the un-chorded machine with its three
possible configurations. The controller works efficiently and ensures balanced grid line
currents with the same line-to-phase current magnitude ratios as in the chorded case, as
shown in Figures 11 and 12. Unlike the chorded machine case with either D3P or S6P
connections, Figure 11 shows that the current quality of the un-chorded machine is much
better since the corresponding MMF spectra have no even harmonics. On the other hand,
the ripple content in the current waveform is much higher because the corresponding
inductance of the xy subspace will be much lower than the chorded machine, as is clear
from the machine parameters given in Table 3. The THD values of the phase and line
currents as well as the magnitude of the 5th harmonic given in Table 5 also ensure that the
current quality of the un-chorded machines is better. Increasing the switching frequency can
significantly decrease the magnitude of current ripples. On the other hand, the A6P phase
and line currents have the best quality in the un-chorded machine since it corresponds to
higher xy leakage inductance.

Table 5. THD values of un-chorded SPIM-based IOBC under healthy operation.

THD
Without Harmonic Compensation

D3P A6P S6P

THD Line current 7.69% 2.30% 7.26%
5th Har. Mag. 0.38% 0.26% 0.63%

THD Phase current 8.42% 3.25% 9.97%
5th Har. Mag. 0.29% 0.36% 0.36%
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6.2.2. Post Fault Case

When a single open phase fault is detected and cleared, the postfault algorithm is
initiated. The results shown in this subsection are given under postfault operation. The max-
imum allowable reference charging current will differ based on winding configuration to
ensure that the stator currents shall not exceed the rated currents, which is 2.8 A(rms) = 1 p.u.
The required percentage derating for each configuration is obtained based on Table 1.

Chorded Winding Layout

Figure 13 shows the grid line current of the three configurations under 1OPF. Figure 14
shows the uncompensated phase currents ia1

s and ib2
s with the corresponding grid line

current ia
g for the three configurations. From Figure 5, the 0+ 0− sequence component

under 1OPF adds to phase current distortion due to the induced third harmonic current
component. For this fault case, the third harmonic compensation is necessarily applied to
the A6P and S6P to improve the current quality, while it is not needed for the D3P case, as
shown in Figure 15. The THD values and the magnitude of the 5th and 3rd harmonics of the
chorded machine under 1OPF of each configuration with/without harmonic compensation
are shown in Table 6. It worth mentioning that the high THD of the A6P machine is due to
the small leakage inductance of the xy subspace and, hence, the ripple current content is
higher than D3P and S6P machines.
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Table 6. THD values of chorded SPIM-based IOBC under postfault operation (1OPF).

THD
Without Harmonic Compensation With Harmonic Compensation

D3P A6P S6P D3P A6P S6P

THD Line current 5.64% 10.67% 5.27% 5.95% 8.8% 5.14%
5th Har. Mag. 4.44% 0.21% 3.02% 0.82% 0.31% 0.14%
3rd Har Mag. 1.56% 2.84% 2.14% 1.56% 1.1% 1.56%

THD Phase current 6.13% 9.59% 8.33% 5.95% 8.98% 5.17%
5th Har Mag. 3.12% 1.33% 4.69% 0.82% 0.31% 0.38%
3rd Har Mag. 1.56% 3.39% 3.62% 1.56% 2.03% 0.3%

Un-Chorded Winding Layout

Similar to the chorded machine under 1OPF, the optimal currents are achieved through
the excitation of both xy and 0+ 0− subspaces with optimal reference currents. Figure 16
shows the line charging currents of the un-chorded SPIM-based IOBC. The experimental
results of the uncompensated case are similar to the chorded case, as shown in Figure 17.
When third harmonic compensation is applied, the current waveforms are given in Figure 18,
while the THD values for all cases are given in Table 7.
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Figure 18. The phase and line currents of un-chorded SPIM-based IOBC under 1OPF case with
harmonic compensation. (a) D3P. (b) A6P. (c) S6P.
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Table 7. THD values of un-chorded SPIM based IOBC under postfault operation (1OPF).

THD
Without Harmonic Compensation With Harmonic Compensation

D3P A6P S6P D3P A6P S6P

THD Line current 11.13% 4.95% 11.86% 7.13% 2.91% 7.57%
5th Har Mag. 0.63% 0.95% 0.36% 0.63% 0.95% 0.36%
3rd Har Mag. 1.89% 0.7% 1.90% 1.89% 0.7% 1.90%

THD Phase current 7.64% 5.64% 10.01% 7.64% 3.23% 8.68%
5th Har Mag. 0.18% 1.64% 0.36% 0.18% 1.64% 0.36%
3rd Har Mag. 1.89% 6.5% 5.98% 1.89% 1.13% 1.20%

7. Conclusions

This paper investigated the effect of winding configuration on the performance of
a SPIM-based non-isolated IOBC. The required stator connections to the grid were also
suggested, which ensure minimum winding reconfigurations, maximum possible line
to phase current magnitude ratio, and zero torque production. The maximum charging
power percentages were therefore 86.6%, 96.5%, and 100% of the rated machine power
for the D3P, A6P, and S6P configurations, respectively. The effect of the winding design
(chorded or un-chorded designs) on the induced space harmonics was also clarified. Upon
which, the required general current controller was derived that ensures high quality current
waveforms. In the case of the chorded six-phase machine, the even low order space
harmonics cause a notable current distortion and induce a notable 5th order harmonic
current with the D3P and S6P cases. Whereas, although employing fully pitched coils
cancels out all even order MMF space harmonics, the correspondent inductance of the
xy subspace is significantly reduced, which increases the ripple content in the current
waveform for the same switching frequency. The MMF spectrum of the A6P machine
showed that in the case of either chorded or un-chorded six-phase machines, there is odd
low order space harmonics which does not affect the machine current quality. The optimal
phase currents and the required percentage derating under 1OPF has also been derived for
the three possible connections. Under post-fault operation, 3rd harmonic compensation
was needed in the A6P and S6P cases due to circulating i0+ 0− components. A comparative
case study has been carried out based on experiments to validate the theoretical findings.
Furthermore, the low order harmonic current compensation has been introduced using
additional pairs of PR controllers for each harmonic component (3rd and 5th). In conclusion,
the results showed that the S6P configuration with un-chorded winding represents the best
compromise in terms of line current magnitude and quality.
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