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Abstract: Biochar has drawn the scientific community’s attention during the last few years due to
its low production value and unique physicochemical properties, which are helpful for numerous
applications. The development of biotechnological processes for the remediation of heavy metal
environmental pollution is one central research avenue in which biochar application has shown
promising results, due to its positive effect on the bacteria that catalyze these activities. Biochar
stimulates bacterial activity through adsorption, adhesion, electron transport, and ion exchange. How-
ever, before biochar implementation, a complete understanding of its potential effects is necessary,
considering that those interactions between biochar and bacteria may help improve the performance
of biological processes designed for the remediation of environmental pollution by metals, which
has been historically characterized by limitations related to the recalcitrance and toxicity of these
pollutants. In this review, the key biochar–microorganism interactions and properties of unmodified
biochar with the potential to improve metal bioremediation in both solid (mine tailings, polluted
soils) and liquid matrixes (metal-laden wastewaters) are summarized. Knowledge gaps regarding
the mechanisms involved in remediation strategies, the effect of long-term biochar use and the
development of improved biochar technologies and their combination with existent remediation
technologies is summarized. Additionally, an up-to-date summary of the development of biochar-
assisted bioengineered strategies for metal passivation or removal from solid and liquid matrixes is
presented, along with key perspectives for the application of biochar-based biotechnologies at full
scale during the treatment of mining effluents in the real scale.

Keywords: biochar; bioremediation; soil; water treatment; metal removal; metal bioremediation

1. Introduction

Environmental problems regarding toxic metal contamination have encouraged the
development of reclamation strategies for the mitigation of the related negative effects that
these contaminants have on the environment. In recent years, biochar has emerged as a
promising material to be implemented in engineered solutions for metal removal. Biochar
is defined as a fine-grain product rich in organic carbon, which is obtained from the thermal
decomposition of biomass and waste under conditions of limited oxygen (pyrolysis) [1].
The approach of the waste-to-resource process applied to obtain biochar as a by-product can
contribute to environmental sustainability and may help to develop a circular economy [2].
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Initially, biochar was used for promoting carbon sequestration and agricultural gains;
however, the promising results found using this material for pollutant removal as well as
the number of publications of indexed articles has seen exponential growth from 2005 and
onwards [3,4] (Figure 1).
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Figure 1. SCOPUS-based bibliographic analysis of the scientific interest in biochar (BC) and its
relationship with scientific fields related to heavy metals, pollutant remediation, and microbiology.
*The total number of published scientific papers per year was obtained using biochar as the search
keyword (bars). * BC stands out for biochar. The insert displays the number of papers in which BC
and keywords for the different scientific fields relevant for this review are present in the literature.
Search results as of October 2022.

In particular, metal removal by biochar has been successfully demonstrated and it
has been associated with its properties, which are influenced by production parameters
such as the pyrolysis temperature, residence time, and feedstock type, amongst others [3].
Hence, the physicochemical properties of biochar constitute a central aspect of it, since
they are indispensable to promoting specific interactions with microorganisms, which
can be exploited for biotechnological applications. Because of this, ongoing research has
focused on modifying biochar by different methods to improve these material interactions
according to the properties conferred by the production parameters or modifying agents.
However, some methods of activation to produce engineered biochar may imply higher
preparation costs and a detailed study of biochar–microorganism interactions.

A number of studies have been developed with the aim of contributing to the advance
of reclamation strategies in different environmental matrixes affected by metals. However,
biochar use has not achieved practical or large-scale applications, which is mainly because
there is still a need to understand the mechanisms involved, biochar’s long-term role, and
to improve the combination of biochar with other technologies [5].

For these reasons, this review is focused on the interactions and potential applications
of biochar obtained from wastes without modification. Based on the most relevant infor-
mation found in the literature, the direct and indirect synergistic biochar–microorganism
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interactions promoting the development of biotechnologies for heavy metal removal will
be summarized and discussed. The importance of biochar’s physicochemical properties
for its application in bioprocesses, as well as those characterization techniques needed
to elucidate such properties and future research requirements, are addressed. The impli-
cations and perspectives to innovate in microbial-biochar-based solutions are examined,
highlighting the influence of this material in microbial communities. Among the technolo-
gies discussed, special attention is given to constructed wetlands as a nature-based solution
that can incorporate biochar to deal with metal removal. This review aims to provide
crucial aspects of biochar–microorganism utilization for metal remediation strategies in
environmental matrices.

2. Critical Properties of Biochar in Its Interaction with Microorganisms

The performance and efficiency of all biochar-microorganism interactions with the
potential to be exploited for toxic metal remediation will ultimately rely on the physico-
chemical characteristics of the biochar employed, which may be highly variable, depending
on its source and synthesis process (Table 1). As will be discussed later (Section 3), all
biochar–microorganism interactions originate from the capacity of microorganisms (mainly
bacteria) to employ the physicochemical and physical assets of biochar, such as its ad-
sorption capacity, porous surface, and/or electroactive functional groups, to guarantee
their survival and proliferation by running their metabolism. By doing this, microbial
activity reliant on biochar’s presence may result in beneficial changes in the surrounding
environment in which these phenomena take place with the direct or indirect consequence
of affecting the toxic metal speciation and/or redox state, which will result in their passiva-
tion. Due to their vital relevance in the selection of biochar for bioengineered options, the
main physicochemical characteristics of biochar in its interaction with microorganisms are
described (Table 1).

Table 1. Summary of proposed relevant linkages between biochar’s physicochemical characteristics
and the interaction with microorganisms involved in mechanisms for potentially toxic metal(loid)
stabilization/remediation.

Biochar–Microorganism
Interaction

Mechanism of Metal (Loid)
Stabilization Key Biochar Properties Factors Determining Key

Biochar Properties

Electron-shuttling-mediated
reactions.
Biochar-mediated interspecies
electron transfer.

‚Change in the redox state of
non-toxic metals (i.e., Fe and
Mn).

‚Catalyzing the production of
minerals with high sorption
capacity (i.e., siderite and
toxic metal co-precipitation.

‚Change in the redox state of
toxic metals (acting as an
electron shuttle for
microorganisms).

‚Change in soil/tailing
mineralogy.

‚Amount and type of
redox-active functional
groups.

‚Electron-exchange capacity.
‚Redox potential.

‚Feedstock material.
‚Pyrolysis conditions
(temperature and
atmosphere)

‚Aging process.

Microbial shelter.
Growth stimulation of key
microorganisms catalyzing
metal transformations.

‚Surface area.
‚Porosity, pore size, and pore
distribution.

‚Specific surface area.
‚Labile carbon content.
‚Content of inorganic
nutrients (N, P, etc.).

‚Feedstock material.
‚Pyrolysis conditions
(temperature and
atmosphere).

‚Activation process
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Table 1. Cont.

Biochar–Microorganism
Interaction

Mechanism of Metal (Loid)
Stabilization Key Biochar Properties Factors Determining Key

Biochar Properties

Biofilm development on
biochar’s surface.

Serving as an attachment
surface for the development
of biofilms of key
microorganisms catalyzing
metal transformations.

‚Particle size.
‚Porosity.
‚Absence of toxic organic
compounds formed during
pyrolysis.

‚Hydrophobic/hydrophilic
nature.

‚Feedstock material
‚Pyrolysis temperature

Decrease in heavy metal
toxicity towards
microorganisms.

Facilitation of microbial
growth and metabolic activity
by diminishing
metal/metalloid toxicity.

‚Adsorption capacity.
‚Cation-exchange capacity.
‚Immobilization/buffer
capacity.

‚Feedstock material
‚Pyrolysis temperature
‚Particle size
‚Ash content
‚O-group content

Indirectly improving key
microbial activity by
improving the soil quality.

Facilitation of microbial
growth and metabolic activity
by improving soil quality.

‚Adsorption capacity.
‚Cation-exchange capacity.
Nutrient content.

‚Feedstock material
‚Ash content

2.1. Adsorption Capacity

Toxic metal adsorption by biochar may alleviate metal toxicity towards microorgan-
isms, allowing microorganism–metal interactions that may improve mechanisms by which
metal removal can be achieved. Adsorption mechanisms for the removal of toxic metals by
biochar include ion exchange, surface complexation, electrostatic interactions, precipitation,
and π-π e- donor/acceptor interactions [6]. Key biochar characteristics promoting metal
adsorption are surface area, surface charge, ash content, and oxygen content (O-groups).
The main factors promoting the obtention of biochar with high adsorptive capacities are the
type of feedstock, pyrolysis conditions, and activation/modification of the material. When
used as a feedstock, sewage sludge waste, and manure, the biochar presented a higher
surface area, ash content (mainly Ca, Mg, P, Fe), and oxygen content than most wood-chip-
or agricultural-waste-derived biochar, thus showing superior adsorption capacity towards
heavy metals [7,8]. Due to this, agricultural waste, after an anaerobic digestion process,
has proved to be a more suitable feedstock to produce biochar than undigested waste [9].
Biochar produced at elevated pyrolysis temperatures (>600 ◦C) also tends to have higher
ash content and surface areas; therefore, its adsorption capacity towards heavy metals
surpasses the capacity of those produced at temperatures <500 ◦C [10]. The activation of
biochar, addressed in the previous section, is a common approach to increase the surface
area and oxygen content of the material, both factors having a paramount role in the ad-
sorption of heavy metals; however, ash content has a more important role on the adsorption
capacity. Therefore, most of the modifications (commonly carried out after an activation
process) are aimed at increasing this value by impregnating biochar with different minerals,
such as CaCO3, FexOx, MnOx, and MgO [11–14]. Key analytical tools for verifying the
adsorption capacity of biochar for biotechnological applications focused on metal removal
are adsorption assays at a controlled temperature/pH, aided by adsorption models, such
as the Langmuir, Freundlich Temkin, and Dubinin–Radushkevi models, and sequential
extraction assays to determine the extent of the different adsorption mechanism of biochar.
Qualitative characterizations such as XRD, EDS, and FTIR are also commonly employed to
identify the adsorption of heavy metals onto biochar.

2.2. Surface Area and Porosity

Biochar’s higher surface areas are associated with high porosity. In combination with
a high concentration of redox functional groups, the catalytic effect that such biochar may
have in microbially mediated reactions might be significantly boosted. Metal adsorption
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capacities are also positively affected by high surface areas and high porosity. Multiple
studies have shown that these characteristics are derived from the type of feedstock [15–17]
and the pyrolysis conditions used for biochar production [2,18,19]. The parameters associated
with the pyrolysis process, such as temperature, heating rate, and atmospheric conditions,
have been deemed factors contributing to high surface areas. For instance, temperatures
of up to 500 to 600 ◦C have resulted in biochar with surface areas of up to ~100 m2/g
biochar [15,18,20]. In addition, high heating rates (400 ◦C/min) have been associated with
10 to 15% increases in the microporous characteristic of biochar, which is indispensable for
increased surface areas [16]. Concerning atmospheric conditions during biochar pyrolysis,
using an inert atmosphere, e.g., N2, Ar, or He, results in a material with a lower surface area
compared to the material obtained in an air-limited atmosphere at the same temperature.
In the contrary case, using an air-limited atmosphere leads to a material with a higher
surface area, which is desirable for several aspects in the context of biotechnological
applications [19]. Characterizing the porosity and surface characteristics of biochar by N2
adsorption isotherms at 77 K and the use of the Brunauer-Emmett-Teller method (BET)
for the estimation of the specific surface area is indispensable to developing sustainable
biotechnological processes for metal removal.

2.3. Electron-Exchange Capacity

Oxygenated functional groups (O-groups), for instance, quinone moieties (C=O),
have been shown to correlate with the electron-exchange capacity (EEC) of biochar in
biotechnological applications [21]. Thus, biochar with a high content of O-groups is
desirable for biochar–microorganism applications relying on the catalytic effect of biochar
as an electron acceptor, donor, or shuttle. Pyrolysis temperatures of up to 300 ◦C, rapid
heating rates, and air-limited atmospheres (instead of an inert atmosphere) have been
shown to importantly increase the number of O-groups in biochar [15,22]. A common
practice to increase the content of O-groups in biochar is to submit it to an activation process
that could be either chemical or physical [23–25]. Physical activation consists in using
high temperatures and an oxidizing atmosphere, such as water vapor, O2, or CO2 [23,26].
Meanwhile, chemical activation involves using oxidizing agents such as HNO3, H2SO4,
KOH, NaOH, H3PO4, K2CO3, and H2O2 at low temperatures (50–80 ◦C) [23]. Another
essential factor that determines the O-group content and speciation is the aging of the
biochar, which is a process that can occur naturally in time under different conditions,
such as high temperatures, an oxidizing environment, or the presence of microorganisms.
Generally, more aged biochar shows a higher concentration of O-groups [27,28] due to
the oxidation/degradation of labile or poorly fixed C; because of this, biochar produced
using a higher pyrolysis temperature, shows a higher degree of aromaticity and presents
an increased resistance towards aging [28]. Common techniques to validate the EEC of
carbonaceous materials, to verify their suitability for mediating microbial reactions, are
mediated electrochemical analysis using a three-electrode system and redox mediators for
the direct determination of the EEC, or Boehm titrations for the indirect determination of the
EEC by quinone/hydroquinone quantification. Verifying this redox activity is an essential
part of developing biotechnological approaches for the removal of concerning metals.

3. Biochar-Microorganism Interactions Promoting Heavy Metal Removal
3.1. Biochar-Mediated Microbial Redox Reactions

Analogously to that documented for natural and engineered carbonaceous materi-
als such as redox-active natural organic matter (a.k.a., humic substances) and activated
carbon [29,30], biochar possesses important redox activity due to its richness in electron
transfer moieties. Such moieties may include phenolic species, quinone functional groups,
and polycondensed aromatic structures, amongst others [21,31]. Chemical moieties in
biochar are generated during its production through the pyrolysis of lignin and cellulose.
Depending on its nature, amount, and distribution, these moieties can result in biochar
with variable electrochemical properties, namely cation- and electron-exchange capacities
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(CEC and EEC, respectively) as well as different redox potential values [32,33]. The redox
activity of biochar can be described as the capability of this material to (i) donate electrons
for reduction in more oxidized compounds, (ii) accept electrons from the oxidation of more
reduced compounds, or (iii) act as an electron shuttle by transporting electrons during
redox reactions occurring in the surrounding environment [34–36]. The reactions in which
biochar can intervene, due to its redox activity, can be biological (microbial) or chemical
in nature. Hence, many mechanisms by which biochar could promote the passivation of
potentially toxic metals are possible and will be discussed below (Figure 2).
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Figure 2. Mechanisms of biochar–microorganism interactions with a positive impact on the pas-
sivation or immobilization of potentially toxic metals/metalloids. (A) displays the mechanism of
electron shuttling mediated by biochar resulting in the chemical reduction of toxic and non-toxic
metals and metalloids, (B) displays the mechanism of biochar mediated interspecies electron transfer
for the reduction of metals and metalloids, (C) depicts biochar serving as the shelter for microorgan-
isms growth and biofilm formation, and (D) depicts a reduction in the toxicity of metals towards
microorganisms due to adsorption of metals onto the biochar’s surface.

3.2. Reduction in Non-Toxic Metals Mediated by Biochar

One plausible mechanism by which biochar can facilitate the passivation of toxic
metals is by catalyzing the reduction in non-toxic metals in solid and liquid wastes, such as
mine tailings and polluted waters (Figure 2A). Studies have shown that biochar facilitates
and accelerates the microbial reduction in oxidized metals such as ferric iron oxyhydrox-
ides, producing, e.g., ferrihydrite and hematite [37–39]. Such biochar-catalyzed processes
have been shown to affect the fate of the ferrous iron produced, forming minerals such
as magnetite (FeII

2FeIIIO4), vivianite, (FeII
3(PO4)2·8H2O), and siderite (FeIICO3), thereby

changing the geochemical and mineralogic characteristics of the surrounding environ-
ment [40]. These findings highlight the potential that biochar-mediated electron shuttling
has in influencing Fe-related biological processes with the potential of changing soil and
tailings mineralogy and therefore affect the fate and mobility of nearby heavy metals [41,42].
For instance, it has been widely reported that some toxic metals can co-precipitate with
carbonates [43]; a clear example is that siderite has been proven to function as an adsorbent
for harmful metals such as (III and V), Pb (II), and Cr (VI) [44–46]. Similarly, phosphates can
adsorb and co-precipitate with toxic metals, i.e., vivianite has been reported to incorporate
As (III and V) during the microbial reduction in As-bearing Fe(III)-(oxyhydr)oxides [47,48].
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Cr(VI) has also been reported to bind into vivianite’s surface allowing its removal from
aqueous media [49]. Considering this body of evidence, biochar-facilitated reactions that
provoke the precipitation of inert minerals and could potentially diminish the impact of
toxic metals by transferring them into more stable Fe-bearing mineral phases (e.g., by sorp-
tion) not only in polluted soils and mine tailings but also in metal-laden waters [50,51]. It is
important to stress that the previously described mechanisms of biochar-mediated metal
reduction (Figure 2A) are also likely to occur with other metals, such as Mn(IV) oxides [52].
Therefore, further research must be performed to describe the potential application of
biochar with high EEC to remove or passivate potentially toxic metals by exploiting the
capability of biochar to promote biological reduction in non-toxic metals widely available
in nature (Table 1).

3.3. Reduction in Toxic Metals Mediated by Biochar

Accumulating evidence shows that reduced biochar can effectively catalyze the re-
duction in potentially toxic metals by acting as an abiotic electron donor [53,54]. For
instance, a reduction in Cr(VI) and As(V) by biochar has been recently reported and low-
temperature biochar overperformed high-temperature biochar to function as a reductant
for metalloids [55]. Considering that many of these metal(oid)s are less mobile and toxic
in their lower valence state (e.g., Cr (III)) [56,57], the biochar-driven reduction in toxic
metals and metalloids constitutes a highly feasible strategy to eliminate the toxic effects
of such contaminants. Interestingly, this remediation strategy could be potentialized if
exoelectrogenic microorganisms (with the capacity to employ extracellular electron accep-
tors, i.e., solid-electron accepting materials), such as biochar-respiring bacteria, reduce
the redox-active moieties in biochar over subsequent cycles [58]. This can be possible
if suitable organic substrates are available to function as electron donors, which is the
case for agricultural soils and certain wastewaters [59,60]. However, in the case of heavy
metal and metalloid-polluted matrices, such as mine tailings or mining-derived waters,
which are organic-poor, strategies such as amendment with biochar rich in labile organic
carbonaceous compounds or the addition of extrinsic organic matter can be employed as
an option to promote biological redox reactions mediated by biochar, which can result in
the passivation of certain metallic pollutants [61,62]. It is worth mentioning that metalloids
such as and Sb have shown to be released after the application of biochar under reducing
conditions, which increases their mobility and toxicity; thus, special considerations must
be made before implementing strategies exploiting the synergies between microorganisms
and biochar if they are to be applied in multi-metal contaminated systems including As
and Sb [63].

3.4. Biochar-Mediated Interspecies Electron Transfer

Recent research has unveiled a novel role for biochar, which takes advantage of its
electron-exchange capacity to make possible syntrophy between different microbial taxa,
which otherwise could not interact due to physiological and metabolic limitations (Chen
et al., 2014a). Such a phenomenon, called biochar-mediated interspecies electron transfer
(B-IET), has been shown to link microorganisms’ metabolisms to accomplish oxidation and
reduction in compounds that are impossible to degrade for each of the microorganisms
alone [29,64]. Although the development of B-IET-based processes has gained attention
to improve processes only involving organic substrates [65,66], to the best of our knowl-
edge, the implementation of this mechanism in metal-remediation strategies has not been
evaluated. Despite this, the B-IET mechanism has the potential to allow or improve the
electron flow between microorganisms, for instance, by forming bacteria–biochar–bacteria
conductive networks, with the ultimate consequence of changing the oxidation state of
metallic pollutants, which can result in their detoxification or passivation (Figure 2B). As
well as for the two previously described mechanisms (reduction in non-toxic and toxic
metals), the application of bioremediation strategies based on B-IET mechanisms would
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be benefitted by using biochar with high electron-exchange capacities, and suitable redox
potentials would ensure rapid microbial kinetics and metal-reduction rates (Table 1).

3.5. Biochar as a Microbial Shelter and Biofilm Carrier

One crucial function of biochar with excellent potential for improving microbial heavy
metal remediation is its capacity to serve as shelter for microbial growth (Figure 2C) and its
suitability for nourishing biofilm development [67,68]. Such ability partially originates from
some physical characteristics of biochar, such as its high porosity and large specific surface
area, which provides microorganisms with plenty of multi-size pores to attach, colonize,
and obtain protection from external stressors such as toxic compounds [42,69]. Additional
characteristics of biochar, such as its sorption and cation-exchange capacities, help boost
microbial growth due to pH buffering and the sorption of inhibiting organic and inorganic
compounds, thus promoting microbial growth [70,71] (Figure 2D). Further studies have
shown that biochar can provide microorganisms with several nutrients, such as N, P, K, and
Mg, but also with organic C, which not only improves the growth of microorganisms on its
surface but also in the surrounding location (the so-called “charosphere”) [71,72]. Examples
of the successful application of biochar for the development of biofilms in metal-removal
systems include the successful elimination of Cd and Pb from wastewater employing
food-waste-based biochar [73] and the simultaneous immobilization of Fe, Al, and As and
the removal of organic contaminants from water originating from mining processes [74].
Several parameters during pyrolysis (i.e., the pyrolysis atmosphere, heating rates, and use
of oxidizing agents), as well as distinct stock sources for biochar production, have been
identified as creating biochar with high surface areas and porosities (Table 1).

4. Applications for Solid Matrixes Treatment
4.1. Mine Tailing Bioremediation/Metal-Containing Solid Waste

Metal-containing solid waste originates as a by-product of industrial activities as the
result of metal utilization in processes, such as tailings, slags, and sludges [75]. However,
there are also other wastes that can be contaminated with metals, for example, municipal
solid waste, electronic waste, and used batteries [76,77]. Because of the presence of toxic
metals, these wastes are hazardous and represent environmental problems [75]. Moreover,
there is a large amount of them; as an example, global estimates of tailings production
by 2000 were hundreds of thousands per tonnes per day [77], while the total worldwide
amount of e-waste reached 41.8 million tons in 2015, and it was projected to increase by
21% to 50 million tons by 2018 [78].

Some solid wastes need to be managed by stabilization, which refers to the immobi-
lization of the hazardous materials or reductions in their solubility through appropriate
reactions [79]. Other metal-containing solid wastes can be considered as a source of valuable
metals for recovery [80] and leaching is the method required. Hence, it is crucial to under-
stand biochar’s properties and interactions as well as its interactions with microorganisms
to obtain the desired results and to avoid undesirable effects.

4.2. Tailing Stabilization

Regarding remediation, the use of biochar as a carrier for functional microorganisms
promotes physicochemical and microbial reactions, and this can be an integral approach
and serve as a bio-augmentation method [81] which can be useful for mine-tailing remedia-
tion. Even more detailed studies are needed to understand the response of microorganisms;
some studies have confirmed that biochar application and the coexistence of indigenous mi-
croorganisms can effectively reduce the bioavailability of heavy metals [82]. Another study
observed that inoculated seedlings of native plant species and biochar synergistically im-
prove the establishment of mycorrhizal fungi in mine tailings [83]. Moreover, the combined
use of organic amendments and biochar is suggested because of their complementarity;
results showed that the mix better supports a more diverse microbial population, which
may favor the resilience of the system against environmental stressors [84]. In addition,
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the protection of bacteria from metals by biochar has also been confirmed; for instance,
P-abundant biochar provided a P source (the most common limiting nutrient) to support
microbial growth while bacteria (Enterobacter sp.) secrete more organic acids to drive P
release [85]. Studies have also reported beneficial changes driven by biochar such as pH,
nutrient retention, and water-holding capacity, which would favor its use on mine wastes
to help the establishment of a green cover [86].

Nevertheless, particular attention to oxyanionic metalloids has to be paid since some
results have suggested biochar’s inability to immobilize As and Sb [87]. This issue could
be addressed by immobilizing resistant bacteria onto biochar in a similar way as has been
undertaken with activated carbon [88]. However, further studies need to be developed
to find the adequate conditions to achieve immobilization and better understand the
long-term effect of biochar on the microbial community. Other strategies such as sulfate-
reduction combined with long-term submergence for the disposal of mine tailings could be
enhanced [89] by the addition of biochar and this requires further studies.

4.3. Leaching from Metal-Containing Solid Waste

Biochar’s use as an exogenous mediator to regulate the redox reactions of bioleaching
has been found to enhance efficiency. For instance, Fe-mediated bioleaching was signif-
icantly promoted by biochar, facilitating redox action between Fe(II) and Fe(III), which
resulted in effective leaching of Cu from printed circuit boards using aerobic activated
sludge as an inoculum. Two dominant functional species, identified as Alicyclobacillus
spp. and Sulfobacillus spp., were suggested to cooperate in the Fe-mediated bioleaching
system [90]. Besides this, copper and nickel bioleaching from spent mobile-phone printed
circuit boards by A. thiooxidans was improved by adding biochar as a catalyst, obtaining
98% of copper and 82% of nickel by indirect bioleaching. The better performance in the
presence of biochar was explained as due to both galvanic interactions between biochar
and solid waste [91].

Additionally, an enhanced effect of biochar on the bioleaching of stone-coal tailings by
Thiobacillus ferrooxidans has been studied and the authors refer to two main aspects: (i) The
store of nutrients and microenvironment for inhabitation by free microorganisms due to
the porous structure of biochar; and (ii) The promotion of electron transfer by biochar,
improving the oxidation ability of T. ferrooxidans on Fe2+ [92].

For practical application, the study of the operating conditions is necessary to assess
the appropriate dosage and ratios as well as understanding and promoting the role of
biochar as a mediator, facilitating the electron transfer in solution and to bacteria that may
lead to bacterial growth and process enhancement.

4.4. Polluted Soil Bioremediation

Regarding soil treatment, phytoremediation is an approach in which biochar–microorganism
interactions can be exploited to achieve improved remediation efficiencies. For instance,
during the 2010s, numerous investigations demonstrated the potential of plant-growth-
promoting bacteria (PGPB) to enhance the effectiveness of phytoremediation. In the late
2010s, research was specific to heavy-metal-resistant plant-growth-promoting bacteria (HM-
RPGPB), which had statistically superior heavy-metal-removal efficiencies than non-metal
tolerant PGPB [93]. However, medium-term and large-scale experiments showed a nutrient
deficit due to the rapid assimilation of nutrients by HMRPGPB, coupled with adverse
habitat conditions. Eventually, both bacteria and plants were damaged and thus unable to
continue removing metals, and these metals could be released back into the soil [94]. In
these cases, the combination of biochar with HMRPGPB becomes relevant. As mentioned
before, biochar improves the retention of organic matter and nutrients such as nitrogen and
phosphorus. Additionally, biochar amendment improves the phytoremediation of heavy
metals by reducing bioavailability and phytotoxicity, increasing phytostabilization.
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The use of biochar as a carrier or shelter of microbial strains has gained attention in the
last years. The capability of biochar to retain nutrients and provide an enhanced habitat for mi-
croorganisms and biofilm development is crucial for improving phytoremediation strategies.

Although HMRPGPB are usually isolated from contaminated sites, either directly from
soils or from the rhizosphere of metal-accumulating plants, taxonomic studies have revealed
that the most abundant genera are Pseudomonas, Bacillus, Rhizobium, and Klebsiella, which
are widely available for biotechnological purposes. These bacterial genera are nitrogen
fixers and thus provide nitrogen to the rhizosphere so plants can use it for its cellular
structures, alleviating nitrogen depletion in sites with the presence of heavy metals. In
addition, when HMRPGPB are combined with biochar, they can reduce soil N2O emission,
which also increases nitrogen retention in the soil [95].

The presence of heavy metals generates changes in pH and oxidation-reduction po-
tentials in soils, which raises the content of insoluble phosphate species unavailable to
plants. Some HMRPGPB species solubilize phosphates through phosphatase enzymes to
monobasic and dibasic phosphates (HPO4

2− and H2PO4
−), which are the most accessible

forms for plants [96,97]. More precisely, the bacteria involved in such solubilization are
metal tolerant, and the degree of phosphate solubilization is correlated with bacterial
abundance. The use of biochar increases the surface area for a greater establishment of
bacterial colonies, in this case, HMRPGPBs. Thus, biochar can promote greater assimilation
of phosphorus by plants.

The presence of heavy metals also has adverse effects on potassium availability. For in-
stance, pH and redox conditions may lead to a non-exchangeable forms of phosphorus [98].
Acidic soils (pH < 5.0) with oxidizing conditions (>250 mV) favor the solubilization of heavy
metals and make nutrients non-exchangeable [99]. In addition, heavy metals substitute
potassium from the stomata in dissolved phases, which is an initial mechanism during
metal poisoning, mainly occurring with lead and cadmium [100]. The addition of biochar
makes the potassium contained in the substrate more exchangeable [101]. In addition,
heavy metals competing with potassium for the stomata in plants can be adsorbed onto
biochar. Coupling these effects of biochar with the presence of HMRPGPB, potassium
solubility could be enhanced.

In a previous paper by [102], strain SNB6 was isolated from a highly cadmium-
contaminated soil and immobilized on biochar, and added to Chrysopogon zizanioides L.
Results revealed that a micro-ecology system was formed. The findings were very encour-
aging, as the consortium resulted in a higher bacterial cell count and higher enzyme activity
near the rhizosphere was responsible for stabilizing heavy metals [102]. The trends indicate
that the synergism between biochar and HMRPGPB should be studied in detail, as it is a
promising green approach to remediate and recover heavy metals from contaminated soils.

Aspects such as the type of raw material, temperature and pyrolysis time, and propor-
tions added to soils are crucial. Zhou et al., (2021) investigated the community succession
of heavy-metal-resistant bacteria and bacterial activity in composting poultry manure. The
results indicated that adding 5–7% biochar increases the abundance of bacterial communi-
ties; the immobilization of heavy metals was higher and even the composting efficiency
was improved [103].

Once the benefits of combining biochar with heavy-metal-tolerant bacteria have been
identified, further studies will be required to optimize results and understand limitations
or effects in the long term.

4.5. Biochar Application in Composting/Vermicomposting Processes

During the last years, the application of biochar during the stabilization of the com-
posting of biological wastes has drawn considerable attention from the scientific commu-
nity [104] (Figure 1). To take advantage of the physicochemical properties of biochar, which
confer a high affinity for metals [82], this material has been added to the processes of
composting and vermicomposting, in which it reduces the mobility of metals, such as Ni,
Pb, Zn, and Cu [105]. It has been proposed that via mechanisms involving precipitation,



Sustainability 2022, 14, 17049 11 of 20

ion exchange, increase in pH, and electrostatic interactions, biochar possess the capability
to reduce the bioavailability of toxic metals during the composting/vermicomposting
process [106]. In this way, biochar reduces the toxicity of these metals to the microorgan-
isms and to the worms involved in the vermicomposting process [107]. Therefore, the
application of biochar results in beneficial effects to the vermicomposting process such as a
higher degradation of organic matter and a reduced concentration of heavy metals in the
resulting compost [108].

5. Applications for Liquid Matrixes Treatment
5.1. Bioreactors

The implementation of technologies that combine biochar and microorganisms in
synergy for metal removal in water is still to be exploited. For instance, water can be
treated by biochar–microorganism interactions in different configurations of bioreactors,
constructed wetlands, hybrid processes, and permeable reactive barriers (Figure 3).
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Figure 3. Metal removal by microbial-biochar/modified biochar-based solutions for solid and liquid
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BSS-CW (biochar-filled subsurface-flow constructed wetland), BS-CW (biochar-filled surface-flow
constructed wetland).

The use of biochar and microorganisms in bioreactors can include two approaches:
(i) Using biochar as support for microorganisms, involving the prior growing of bacterial
consortium onto biochar, which would increase density of bacteria and accelerating re-
moval; or (ii) Adding biochar to interact with bacteria over time. So far, all research has
been carried out at laboratory scale and mostly in batch systems.

For instance, in [103], batch reactors of bacterial cells immobilized on biochar were
implemented. This treatment showed higher cell density and significantly higher cadmium
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removal compared to reactors without biochar. On the other hand, a plug flow reactor
inoculated with Stenotrophomonas maltophilia, and immobilized on corn-stalk biochar, for
the removal of Cu(II), demonstrated that the number of microorganisms loaded on biochar
decreases as the pyrolysis temperature increases, while the removal of metal increased with
the reduction in biochar particle size [104].

A beneficial aspect in reactors where the organic load is a key design parameter is the
effect of bacterial protection from metal stress by biochar. The results obtained by [105]
using biochar with a P content of 1.32% (obtained from rice-husk and pig-manure mixture
70–30%) and added to Enterobacter sp. for the removal of Cd2+ revealed positive feedback
between P-enriched biochar, which provides a P source to support microbial growth, and
Enterobacter sp., which secretes more organic acids to drive P release. Finally, this allowed
the organic load to remain constant. Similarly, a batch reactor with composites of Bacillus
subtilis and biochar was tested for the removal of Cd(II) in water and demonstrated that
corn-stalk-, peanut-shell-, and pine-wood-derived biochar pyrolyzed at 500 ◦C alleviated
Cd toxicity for B. subtilis to a certain extent, with constant organic and hydraulic loads [106].

Different reactor configurations, such as up-flow anaerobic blanket (UASB) or column
batch, may be used, although the increase in bacterial density would modify some design
and operating parameters. For example, in up-flow systems, it is necessary to consider the
increase in the weight of the fluidized biomass. However, this can be overcome by applying
the established design equations for these types of reactors. In addition, variables such as
organic load could have more desirable values; therefore, lower hydraulic residence times
could be required.

In situ remediation of surface and groundwater can be accomplished by innovat-
ing in permeable reactive barriers filled with biochar (B-PRB) or immobilized bacteria-
biochar [109,110]. In this application the biochar can be mixed with slow-release nutrient
particles to facilitate microbial activity [109]. Biochar as a filling material can remove metals
by adsorption, and biomass can be supported on biochar to accelerate remediation.

5.2. Constructed Wetlands

An additional technology for metal removal from waters that takes advantage of the
interaction between biochar and microorganisms are constructed wetlands (CWs). In CWs,
biochar is used as packing material or as support media. Different configurations have been
explored for the implementation of CWs for metal removal. For instance, CWs can be used
as a first stage or pre-treatment unit or as a final stage or post-treatment unit. As a first stage
unit, biochar would help to increase the pH and diminish certain metal concentrations.
This design would avoid microbial inhibition, plant damage, or clogging of the CW. The
advantages provided by biochar can result in improving the water treatment of acid mine
drainage or heavily polluted industrial waters. As a final stage unit, the use of biochar in
CWs allows one to achieve high-quality treated waters. Furthermore, the use of biochar
as substrate/supporting media in CWs promotes biochar–microorganism interactions, as
explained in the following sub-sections.

5.2.1. Use of Biochar in Constructed Wetlands for Metal Removal

Biochar implementation as part of treatment systems for metal removal in rural areas
and/or with minimum energetical and operational costs are promising. Constructed
wetlands (CWs) are nature-based solutions that can be used for the treatment of different
wastewaters. This technology is accepted as a secondary treatment alternative to activated
sludge, anaerobic reactors, trickling filters, and stirred reactors, among others. CWs are
characterized by biotic (i.e., microbial consortium and macrophyte plants) and abiotic (i.e.,
packing media) components but mainly by their interactions. For instance, the packing
media are responsible for contaminant adsorption and the presence of bacteria promotes
biosorption, which increases the removal of contaminants. Vegetation also interacts with
microorganisms in the rhizosphere through oxygen, carbon dioxide, nutrients, enzymes
and organic-exudate exchange [111].
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Metal removal in CWs involves mechanisms depending on packing-material–microorg
anism–vegetation interactions. The main processes are cationic exchange, adsorption to
particulate matter, carbonate precipitation, direct plant assimilation, metal complexation,
biosorption, reduction, and precipitation [112]. Additionally, biofilm development on
packing media and the rhizosphere enhance the tolerance mechanisms of microorgan-
isms towards metals through vacuolar transport, sulfur gene regulation (metabolism-
detoxification) [89,113], etc. Hence, the implementation of biochar as packing media in CW
systems offers advantages for metal removal.

Moreover, some authors have reported a beneficial effect on vegetation promoted
by biochar. The authors of [114] reported a twofold increase in biomass vegetation by
biochar addition, as compared to a control without biochar: 0.6 kg/m2 and 0.3 kg/m2,
respectively. Thus, phytoremediation (a mechanism occurring in CWs) for metal removal
can be stimulated by biochar and applied in scenarios as an acid mine drainage treatment.
Nevertheless, few studies on the use of biochar in CWs for the treatment of metal-containing
wastewaters are available. In this context, [115] studied the removal routes of heavy metals
from mining-impacted water by biochar-filled CWs. Their results indicated that the biochar
system exhibited higher levels of metal retention as compared to the control system (without
biochar), 280 mg/L Cu-400 mg/L Cr and 160 mg/L Cu-75 mg/L Cr, respectively. Although
the study demonstrated that the role of macrophytes was insignificant, an increase in the
plant biomass growth was observed, which also suggests that under specific operational
conditions, the phytoextraction of metals could be favored.

The design parameters for CWs filled with biochar for metal removal are not stan-
dardized, but there is literature with the fundamentals for this purpose (Pat-Espadas et al.,
2018; Yu et al., 2021) and different practical applications at laboratory and field level are
reported [116]. All this available information can be incorporated into the CW design
parameters that are mainly based on flow concepts in porous media.

Thus, based on the information available, data from different studies were analyzed
to obtain the range values for different parameters for selected metals shown in Table 2.
Criteria for packing material and vegetation selection were ascertained according to the
recommendations by [117,118]. Hence, information analysis was limited to CWs applied for
metal removal filled with gravel, volcanic rock, or river stone and the vegetation considered
was Typha latifolia, Phragmites australis, or Juncus effusus. For biochar parameters presented
in the data analysis, different feedstock and pyrolysis temperatures for biochar production
were included but modified biochar were not considered.

Table 2. Theoretical comparison of heavy metal removal in CWs filled with biochar and traditional
packing media based on hydraulic calculations and adsorption capacity.

Parameter Biochar
Constructed Wetland Constructed

Wetland Filled with
Biochar (10% v/v)

Observations and
ReferencesWhole System Package Media

Porosity 0.8–0.11 0.3–0.55 0.27–0.39
n = 10

[52,61,75,85,89,91,
110,111,119,120]

Hydraulic
conductivity,

mm3/(mm2 d)
0.9–5.7 38–87 2.6–43

n = 10
[52,61,75,85,89,91,
110,111,119,120]

Pb removal 2.4–12.5 mg/g 44.2–68% 47–52%
1.2–5.4 mg/g 67–76%

n = 6
Biochar < 500 ◦C

[10,11,21,29,52,61]

Pb removal 6.1–42.5 mg/g 26–52% 12–21%
1.2–5.4 mg/g 56–71%

n = 6
Biochar > 500 ◦C

[10,11,21,29,52,75]
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Table 2. Cont.

Parameter Biochar
Constructed Wetland Constructed

Wetland Filled with
Biochar (10% v/v)

Observations and
ReferencesWhole System Package Media

Cr removal 3–27 mg/g 35–55.8% 14–19%
1.9–6 mg/g 41–65% n = 8

[46,55–59,61,107]

Cu removal 0.5–14 mg/g 8–36% 5–28%
0.7–10.3 mg/g 22–45%

n = 7
[27,61,75,85,91,104,

110]

Hg removal 0.5–2.3 mg/g 5–75% 0.5–53%
0.2–1.3 mg/g 12–83% n = 3

[110,111,120]

Cd removal 0.6–40 mg/g 35–67% 18.6–57.6%
0.5–11.5 mg/g 45–76%

n = 9
[14,20,72,101,105,

106,119,120]

Zn removal 4.5–38 mg/g 57–100% 1.2–63%
4.2–13 mg/g 67–100% n = 4

[52,75,110,119]

As removal 1.8–3.2 mg/g 75–99% 1.4–43%
0.2–1.7 mg/g 79–99% n = 4

[55,57,110,119]

The calculations for biochar-filled CW efficiency were performed considering metal
removal by the material (g metal/g material), by mass balance, and considering the volume
and the phytoextraction reported for the vegetation. Additionally, the following considera-
tions were applied: (i) The biochar is 10% v/v of the total packing media; (ii) Porosity-value
criteria to be considered for practical implementation are 0.35, since system clogging
is not recommendable; (iii) Pre-treatment of the influent was not considered; (iv) Data
for the wastewater from mining tailings and synthetic water (pH below 6.0 and sulfate
concentration of at least 200 mg/L) were considered.

According to the calculations as shown in Table 2, heavy metal removal in CW systems
can be improved by the addition of biochar as packing media. However, it is important
to consider the synergistic effect of microorganisms, vegetation, and packing media, as
explained in the following section.

5.2.2. Scenario of Beneficial Microorganism—Biochar Interactions in Constructed Wetlands

Microorganisms’ capacity for metal removal includes biosorption, bio-accumulation,
and metal reduction. Moreover, some genera such as Klebsiella, Actinoplanes, Agrobacterium,
Pseudomonas, or Rhizobium are plant-growth-promoting rhizobacteria, providing molecules
of interest to the roots, and generating hormones for plants that reduce the toxicity of
pollutants such as heavy metals [121].

Furthermore, the use of biochar and bacteria has been proved to increase metal
removal. For instance, [122] reported that cadmium removal by composites of Bacillus
subtilis and biochar was higher than only biochar: 62% and 33%, respectively. Moreover,
bacteria accounted for only 25% removal in control experiments without the addition of
biochar. Another study demonstrated that viable Bacillus cereus RC-1 immobilized on
biochar derived from rice straw, chicken manure, and sewage sludge for Cd2+ removal was
improved by bacteria contribution, while different removal mechanisms were obtained
depending on the biochar feedstock—mainly ion-exchange and complexation [123].

More studies on the interactions of CW components and the effect of using metal-
tolerant microorganisms are needed for biochar-filled CWs, with appropriate experimental
designs to document the synergic effect. For instance, [124,125] demonstrated that the
presence of metal-resistant bacteria in CW systems enhanced the removal and decreased
the metal toxicity (by changing metal speciation).

Another interesting phenomenon to study is the biofilm formation on biochar (influ-
enced by the porosity and pore size) and the role of extracellular polymeric substances.
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For example, exopolysaccharides from cyanobacteria have been added to wastewater-
treatment systems to efficiently remove Cd, Pb, and Cu [126]. Hence, areas of opportunity
are available to upgrade CW systems using biochar.

6. Perspectives and Conclusions

The studies regarding biochar applications involving microorganisms are in develop-
ment, and it is crucial to document biochar properties that stimulate microbial processes.
This understanding is necessary for the future development of large-scale applications.
Some of the challenging aspects for which to generalize results are, for example, the variety
of biochar feedstocks and the temperature of pyrolysis. As the use of biochar is increasing,
modified or engineered materials are being explored; however, some of the methods are still
too expensive to be considered for practical applications. Hence, it is promising to explore
methods and options, such as the biological and green synthesis of nanoparticles, which
could facilitate the implementation or use of modified biochar at lower costs, especially for
target and concerning metals.

In the literature review of the mechanisms of biochar during the removal of heavy
metals, chemical reactions and the sorption of heavy metals were identified and suggest
that biochar can function as a pretreatment or post-treatment of constructed wetlands to
maximize removal efficiencies.

Further studies focused on long-term applications are necessary, as the potential
applications of these technologies are promising, but an integral approach is needed.
Moreover, studies including the complex but real environmental conditions and factors
(such as greenhouse gas emissions, microbial activity, biochar, and nutrients’ fate) are
necessary to evaluate the effects, either positive or negative, of the addition of biochar.
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