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Abstract: The permanent magnet synchronous traction motor (PMSTM) is the core equipment of
urban rail transit. If a PMSTM fails, it will cause serious economic losses and casualties. It is essential
to estimate the current health state and predict remaining useful life (RUL) for PMSTMs. Directly
obtaining the internal representation of a PMSTM is known to be difficult, and PMSTMs have long
service lives. In order to address these drawbacks, a combination of SIR and HSMM based state
estimation and RUL prediction method is introduced with the multi-parameter fusion health index
(MFHI) as the performance indicator. The proposed method’s advantages over the conventional
HSMM method were verified through simulation research and examples. The results show that
the proposed state estimation method has small error distribution results, and the RUL prediction
method can obtain accurate results. The findings of this study demonstrate that the proposed method
may serve as a new and effective technique to estimate a PMSTM’s health state and RUL.

Keywords: permanent magnet synchronous traction motor (PMSTM); state estimation; remaining
useful life (RUL) prediction; hidden semi-Markov model (HSMM); sample importance resampling
(SIR); multi-parameter fusion health index (MFHI)

1. Introduction

Urban rail transit (URT) systems have a plethora of advantages, such as large passenger
volume, low pollution emission, fast operation speed and safe and punctual operation.
They constitute key infrastructure components that are able to support urban economic and
social development within societies [1]. URTs serve as main ways for optimizing a city’s
functional layout, meeting people’s travel needs, alleviating urban traffic congestion and
promoting economic and social development [2]. The traction motor is the core equipment
of URT, and its electrical and mechanical properties are directly related to the efficiency
and reliability of the whole system [3]. The permanent magnet synchronous traction motor
(PMSTM) is a feasible option for URT traction motors in light of its small size, high efficiency,
low moment of inertia and fast dynamic influence [4].

A PMSTM can operate for extended durations under harsh working conditions, in-
cluding high speeds, large loads, strong vibrations and severe noise; and its working state
is associated with the safe operation of the entire URT. If the PMSTM fails, it will cause
serious economic losses and casualties. Therefore, estimating the current state of health
during PMSTM operation may guide maintenance operations [5] in order to reduce down-
time, increase utilization and ensure that it operates safely and efficiently under specific
conditions, thereby avoiding catastrophic accidents, extending its service life and reducing
property damage. The RUL of the PMSTM refers to the working time from the current
moment while maintaining a certain output performance [6]. RUL prediction plays a vital
role in condition-based maintenance [7], providing information critical for maintenance
planning and reducing overall lifecycle costs [8]. However, it is still a challenging issue to
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state estimation and RUL predictions for PMSTM due to its coupling failure mechanism,
long life span and complex working environment.

Due to the importance of state estimation and RUL prediction, numerous methods
have been proposed. Current methods mainly encompass both model-based and data-
driven methods. Model-based methods [9] usually start from the failure mechanism of
the product and obtain the physical model of performance degradation via construction
of a relationship between performance degradation amount and stress (high temperature,
high pressure, strong vibration, etc.) in order to analyze the health state and RUL of
the system [10]. In other words, mathematical representations of interactions between
processes and components must be defined, and precise solutions can only be achieved
when precise failure behavior degradations are available [11]. Any PMSTM has strong
nonlinearity and coupling; its internal mechanism is complex, and its environment and
working conditions are diverse. Thus, it is very difficult to establish a complete physical
model of the performance degradation of a PMSTM. In contrast, the use of data-driven
methods has gained traction due to the lack of physical knowledge and the continuous
advancement of modern sensor systems and data storage/analysis techniques [12], which
are more suitable for PMSTMs.

Current mainstream data-driven methods include machine learning and mathematical
statistics. Machine learning methods used for state estimation and RUL prediction mainly
include neural networks and support vector machines (SVMs). The application of neural
networks in the field of state estimation and life prediction is continually expanding, which
has since become one of the important branches of prediction algorithms. Shifat and Zhang
et al. [13,14] proposed RUL prediction methods based on the recurrent neural network
(RNN). Li, Sateesh and Chen et al. [15–17] proposed methods for RUL estimation using
deep convolutional neural networks (DCNNs). Gougam et al. [18] described a neuro-
fuzzy based method for RUL prediction. Moreover, Kewalramani et al. [19] utilized a
feedforward neural network to estimate the RUL of the motor. However, machine learning
requires a large amount of training data, which is not suitable for research objects with
few datasets, such as PMSTM. SVM has obvious advantages in solving small sample
and nonlinear problems of life prediction. In Reference [20], a novel partial discharge
data (PDD)-based SVM model was proposed for the RUL prediction of batteries. García
et al. [21] utilized the particle swarm optimization (PSO) algorithm to optimize the SVM
kernel function. Compared to neural networks, SVM requires fewer learning samples, can
be easily converged to the global optimal solution and has strong generalization ability.
However, selecting kernel functions and model parameters in SVM is difficult, thereby
hampering the improvement of algorithm performance.

Statistical methods include the Wiener process, Gaussian model, hidden Markov
model (HMM), Kalman filter and particle filter. Le et al. [22] combined the Wiener process
with principal component analysis (PCA) to propose a probabilistic method for RUL
prediction. The Wiener process has gained a number of achievements in regard to life
prediction of linear degradation [23]; however, its ability for nonlinear expression requires
further study. Liu et al. [8] proposed a GMM-based RUL estimation method by exploiting
the ability of the Gaussian mixture model (GMM) in terms of learning complex joint
probability density functions from data. HMMs are used to characterize discontinuous
performance degradation processes in life prediction. Gao [24] divided the whole RUL
prediction process into three parts, including offline modeling, online state estimating
and online life predicting. In the offline modeling part, HMM and proportional hazard
model (PHM) were built to map the whole degradation path. However, the time-invariant
geometric distribution of one-step transition probabilities and durations resulted in HMMs
being unable to match the real degradation process well. Hidden semi-Markov models
(HSMMs) incorporate self-transition probabilities into the distribution of state durations
and are widely used in health monitoring [25]. In reference [26–28], the dependence of
the duration of adjacent degraded states in the HSMM has been described and modeled,
resulting in more efficient and accurate online estimation of degraded states and the distribution
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of RUL. References [29–31] used different styles of Kalman filters to estimate the RULs of
devices, such as motors and bearings. Jouin et al. [32] described a physics-based model
that utilized particle filters, representing the posterior distribution as the number of particles.
The different combinations used in previous works included data size, allowable noise and
bias in data, actual loading conditions and the complexity of degradation that identifies the
deteriorated behavior for predicting future health. In reference [33], a model-based method
for predicting the RUL of PMSMs using phase current and vibration signals was proposed.
The proposed method included feature selection and RUL prediction based on a particle
filter with a degradation model. Unfortunately, Kalman and particle filters always require
assigning an analytical form to state and observation equations [25], making both methods less
convenient than the HSMM. However, the HSMM must return from the current moment to
the initial moment, whereas the PMSTM has a long lifespan, thereby making RUL estimation
both cumbersome and computationally expensive. The sample importance resampling (SIR)
filter algorithm, a type of particle filter, is able to solve this problem and directly recurse
the observation sequence of the hidden state from the previous state. Therefore, this paper
combines SIR and the HSMM to propose a PMSTM’s performance state recognition and RUL
prediction method, and replaces the backtracking process when the traditional HSMM takes
the optimal hidden state sequence by recurrence estimation.

In a data-driven approach, state estimation and RUL prediction correspond to multi-
source condition monitoring data. Therefore, it is important to extract key parameters
characterizing the system degradation state from monitoring data [6]. In order to monitor
the state of the system, numerous sensors must be adopted to collect data. Since the data
are multi-dimensional and different sensor data show different patterns, in order to better
evaluate the degradation of the system and estimate the RUL, the dimensionality of the
data should be reduced [34] to generate a health index (HI), which may be achieved in
various ways. For example, Hu et al. [35] used isometric mapping (ISOMAP) as a feature
reduction method to generate one-dimensional HI. However, this method loses too much
information during the feature reduction process. Liu et al. [36] proposed a composite HI
by weighted summation based on multiple degraded sensor data, in which the weights are
determined by optimizing a quadratic programming problem. Yang et al. [11] proposed a
general HI dynamic smoothing algorithm and implemented the prediction framework with
exponential HI degradation as an example. Ahmad et al. [37] inferred a bearing’s health
through a dimensionless HI. The HI measures the instantaneous vibration level of the
bearing with respect to a normal baseline value. By the amount of redundant information
between multiple sets of feature parameters, the difficulty of building a performance
degradation prediction model is greatly increased. In addition, the PMSTM’s feature
parameters are nonlinear, making it necessary to investigate a new form of HI construction.
Hence, we consider the objective weight evaluation of each feature index and reduce the
correlation, thereby integrating the MFHI.

Therefore, this paper uses the multi-parameter fusion health index (MFHI) as an
indicator and combines the HSMM with SIR to propose a state estimation and RUL predic-
tion method for PMSTM. The flow chart is shown in Figure 1, including four parts: state
monitoring data preprocessing and MFHI construction; observation sequence acquisition;
HSMM training; current health state recursive estimation and RUL prediction. The main
research points are summarized as follows. In order to realize the prioritization of the
state-characteristic parameters, this study adopts the entropy weight method to objectively
determine the weights of multiple indicators. Moreover, PCA is used to reduce the correla-
tion between the selected performance parameters. Then, according to the corresponding
weight assignments, fusion is performed to construct a MFHI that represents the health
state of PMSTM. After the MFHI is low-pass filtered, the state is then divided to obtain the
observation sequence. HSMM is subsequently used to describe the relationship between the
internal state and the observation sequence of PMSTM, after which the overall performance
degradation model is established. Furthermore, the observation sequence of the hidden
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state is directly recursive from the previous state through SIR to attain the recursive optimal
estimation of the health state and prediction of RUL.

Figure 1. The flow diagram of state estimation and RUL prediction.

The remainder of this paper is organized according to the following outline. The MFHI is
constructed in Section 2. Section 3 clarifies the state estimation and RUL prediction methods for
combining SIR with HSMM. Section 4 summarizes the proposed method. Section 5 analyzes
the proposed method’s results with a corresponding discussion. Finally, Section 6 provides the
conclusions and future work ascertained from the findings of this study.

2. MFHI Construction

It is vital to find suitable feature parameters for state estimation and RUL predic-
tion of an PMSTM. Multiple sets of performance parameters can more comprehensively
characterize the health state. Therefore, the entropy weight method is used in this study
to determine the weight of multiple indexes, and the correlation between the selected
performance parameters is then reduced by PCA. Finally, the corresponding weight is
assigned and fused to construct the MFHI.
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2.1. Wavelet Denoising

PMSTMs operate in complex environments and working conditions. It is inevitable
to incur noise during data acquisition. Excessive noise will affect the accuracy of the
subsequent feature extraction analysis results. Therefore, noise reduction processing should
be initially performed for the collected sensor signals. The wavelet denoising method is
adopted in this paper. The original condition monitoring data are a signal sequence S(t)
whose length is G, which is superimposed with noise:

S(t) = z(t) + e(t) (1)

where z(t) is the actual signal, e(t) is the noise and t is the sampling interval point.
Orthogonal wavelet decomposition using the Mallat algorithm:{

Sp,k = ∑G Sp−1,G · lG−2k
Dp,k = ∑G Sp−1,G · oG−2k

(2)

where Sp,k represents the scale coefficient, Dp,k represents the wavelet coefficient, lG−2k and
oG−2k are a pair of orthogonal mirror filter banks and p is the number of decomposition layers.

Here, S is decomposed into different frequency bands, and a fixed threshold is then
selected to process the noisy signal at each layer. Inverse wavelet transformation is then
performed on the denoised wavelet coefficients to obtain the reconstructed signal S(1):

S(1) = ∑
G

Sp,G · lG−2k + ∑
G

Dp,G · oG−2k (3)

2.2. Filter Data with Entropy Weight Method

Assuming that the evaluation index of the target consists of φ, namely,
S(1) = (S(1)

1 , S(1)
2 , · · · , S(1)

φ ), the decision matrix is

S(1) =


S(1)

11 · · · S(1)
1φ

...
. . .

...
S(1)

G1 · · · S(1)
Gφ

 (4)

S(1)
gu (g = 1, 2, · · · , G; u = 1, 2, · · · , φ) in the matrix is the gth value of the index u.

In order to eliminate the issue in which the final results are unable to be compared
due to different index quantities, the initial decision matrix must be dimensionless—that is,
normalized data processing. A Z-score-standardized decision matrix S(2) = (S(2)

gu )G×φ is
then constructed.

Under the definition of φ evaluation indicators, the entropy values of the evaluation
indicators can be then determined:

Hu =
∑G

g=1 fgu ln
(

fgu
)

− ln(G)

fgu = S(2)
gu /

G

∑
g=1

S(2)
gu

(5)

The difference between the entropy value of the index and one is used as the degree of
information availability of the index. A larger entropy indicates less information availability,
and vice versa. The entropy weight of each indicator is finally obtained as:

ωu =
1− Hu

φ−∑
φ
u=1 Hu

,
φ

∑
u=1

ωu = 1 (6)
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S(2) = (S(2)
1 , S(2)

2 , ..., S(2)
φ ) is filtered to σ performance parameters according to the

weights, which is reordered to get S(3) = (S(3)
1 , S(3)

2 , · · · , S(3)
σ ).

2.3. PCA Reduces the Correlation of the Data

Through the entropy weight method, the parameters most related to the performance
degradation of PMSTM can be screened out from many monitoring parameters, but a
certain level of correlation may exist between the parameters. Therefore, reducing the
correlation between the filtered performance parameters by PCA is necessary. The specific
steps of the PCA algorithm pertaining to the extraction of principal components of the
screened σ-dimensional monitoring parameters are as follows:

1. Calculate the covariance matrix COV of S(3)

COV =
1

σ− 1

(
S(3)

)T
· S(3) (7)

2. Calculate the eigenvalues of COV , sorting from largest to smallest to get ϕ1, ϕ2, · · · , ϕσ,
and obtain the corresponding eigenvector κ1, κ2, · · · , κσ.

3. Obtain the principal components, where s = 1, 2, · · · , σ

Ks = S(3) · κs (8)

4. Sort the principal components to get the cumulative contribution rate CON:

CON(s) =
s

∑
ι=1

ϕι/
σ

∑
ι=1

ϕι (9)

When the cumulative contribution rate exceeds a certain value, the corresponding
first ζ principal components should be adopted, where ζ is less than the total number of
principal components and ζ < σ, thereby obtaining S(4) = (S(4)

1 , S(4)
2 , · · · , S(4)

ζ ).

2.4. Parameters Fusion

In order to reduce the influence of the performance parameter range, it is necessary to
normalize the performance parameters through dispersion standardization while fusing
multiple performance parameters into a single performance index via parameter fusion.
The index is MFHI, H I = (HI1, HI2, · · · , HIG), and has the following formula:

H I0 = S(4)
ζ

∑
z=1

ρz

ρz = ϕz/
ζ

∑
z=1

ϕz

H I =
H I0 − HI0

min
HI0

max − HI0
min

(10)

where ρz is the weight value of ζ performance parameters after dimensionality reduction;
HI0

min and HI0
max are the maximum and minimum values in the data, respectively.

3. State Estimation and RUL Prediction Combining SIR and HSMM
3.1. Observation Sequence Acquisition

The description of the performance of a component is usually divided into its nor-
mal state, mild degradation state, moderate degradation state and severe degradation
state. After a device reaches a state of severe degradation, it will fail over a period of
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time. Accordingly, it is represented by dividing the MFHI into five categories, denoted as
{{H I}c}, c = 1, 2, · · · , 5.

HI(t) is smoothed with a Butterworth low-pass filter, for which the amplitude square
function and performance index are:

|Ja(jΩ)|2 =
1

1 +
(

Ω
Ωc

)2C

Ap = 10 lg
(

1 + ε2
p

)
, As = 10 lg

(
1 + ε2

s

) (11)

where C is the order of the filter, Ω is the frequency domain center, Ωc is the cutoff frequency,
εp is the passband attenuation and εs is the stopband attenuation.

The transfer function can be expressed as

J(t) =
∑E

f=0 v f HI(t− f )

∑F
f=1 c f HIF(t− f )

(12)

Then, the filtering result is

HIF(t) =
∞

∑
f=0

J( f )HI(t− f ) = −
F

∑
f=1

c f HIF(t− f ) +
E

∑
f=0

v f HI(t− f ) (13)

The second derivative is found and divided into five states according to its threshold.
HIF(t) of different stages and their corresponding states are labeled (Table 1) to obtain the
observation sequence Y(t) = {y1, y2, · · · , yG}.

Table 1. State label.

State Normal Mild Degradation Moderate Degradation Severe Degradation Failure
Label 1 2 3 4 5

3.2. HSMM Training

The observation sequence of the full life period is used to solve HSMM λ = (Π, A0, B, Θ),
in which the definitions of the parameters are:

1. The initial state probability distribution:

Π = {πi}, πi = P(x0 = c), 1 ≤ c ≤ 5 (14)

where x0 is the health state of the PMSTM at the initial moment.
2. The state transition probability matrix, which represents the probability of transition

between states during the operation of PMSTM:

A0 =
{

aij
}

, aij = P(xt+1 = j | xt = i), 1 ≤ i < j ≤ 5 (15)

where aij represents the probability that the PMSTM transitions from state i to state j
during the running process.

3. The observed state probability matrix:

B =
{

bcq
}

, bcq = P
(
yq | xt = c

)
, 1 ≤ q ≤ Q (16)

where Q is the number of observable states of PMSTM, and bcq represents the proba-
bility of observing the qth observable state when the health state is xt = c.

4. The dwell time distribution for each state:

Θ = {θc} (17)
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where θc =
(
µxc , δ2

t (c)
)

is the parameter of the probability density function. µdc is the
mean value and δt(c) represents the proportion of different states.

Assuming that the likelihood function of HSMM is P(Y | λ), HSMM training involves
obtaining the parameter that maximizes P(Y | λ) from the observation sequence sample Y .
By employing the Baum–Welch algorithm, the parameters of the model can be solved. The
training process is described below.

1. Through the current model parameters λ̄, the expectation of P(Y , X | λ) under
condition P(X | Y , λ̄) is obtained by combining the Viterbi algorithm, the forward
algorithm and the backward algorithm.

• According to the current observation sequence, the most likely hidden state
sequence is obtained by the Viterbi algorithm.
Calculate the local state at the initial moment:

δ1(i) = πibi(y1)

Ψ1(i) = 0
(18)

and recurse
δt(j) = max

1≤i≤5

[
δt−1(i)aij(xt−1)

]
bj(yt)

Ψt(j) = arg max
1≤i≤5

[
δt−1(i)aij(xt−1)

]
.

(19)

The maximum δt(i) at time t is the probability of the most likely hidden state.
The auxiliary variable Ψt(j) is used to store the optimal state of PMSTM at time
t− 1 under the condition that time t is in state j. Thus:

x∗t = arg max
1≤j≤5

[δt(j)] (20)

Backtracking to get the sequence of hidden states:

x∗t−1 = Ψt(x∗t ) (21)

so the dwell time can be obtained:

dt(j) = x∗t (j) · x∗t−1(j) · dt−1(j) + 1 (22)

• Calculate variables using forward and backward algorithms.
Calculate the forward probability of each hidden state at the initial moment:

α1(i) = πibi(y1)

Ax1 = P(x1) + (X − P(x1)) · A0
(23)

get forward variable αt+1(i)

αt+1(j) =

[
5

∑
i=1

αt(i)aij(xt)

]
bj(yt+1)

Axt+1 = P(xt+1) + (X − P(xt+1)) · A0

(24)

Calculate variables βt(i) using the backward algorithm

βT(i) = 1

βt(i) =

[
5

∑
i=1

aij(xt)bj(yt+1)

]
βt+1(j)

(25)
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and get the expectation of P(Y , X | λ̄) under the condition of P(X | Y , λ̄)

L(λ, λ̄) = ∑
X

P(X | Y , λ̄) log P(Y , X | λ) (26)

2. The parameters of the model can be updated by maximizing the expected value

λ̄ = arg max
λ

∑
X

P(X | Y , λ̄) log P(Y , X | λ) (27)

The equation for updating the model parameters can then be obtained:

π̄i = γ1(i) (28)

ā0
ij =

(
∑T−1

t=1 ξt(i, j)
)
� G(

∑T−1
t=1 γt(i)

)
� G

(29)

ξt(i, j) = P(xt = i, xt+1 = j | Y , λ) =
αt(i)aij(xt)bj(yt+1)βt+1(j)

∑5
i=1 ∑5

j=1 αt(i)aij(xt)bj(yt+1)βt+1(j)
(30)

γt(i) =
αt(i)

∑5
5 αt(i)

(31)

µi,d =
∑T−1

t=1 αt=1(i)
(

∑5
j=1,j 6=i aij(xt(i))bj(yt+1)βt+1(j)

)
dt(i)

∑T−1
t=1 αt=1(i)

(
∑5

j=1,j 6=i aij(xt(i))bj(yt+1)βt+1(j)
) (32)

δ2
i,d =

∑T−1
t=1 αt=1(i)

(
∑5

j=1,j 6=i aij(dt(i))bj(yt+1)βt+1(j)
)
(dt(i)− µi,d)

2

∑T−1
t=1 αt=1(i)

(
∑5

j=1,j 6=i aij(dt(i))bj(yt+1)βt+1(j)
) (33)

bj(l) =
∑T

t=1,yt=Yl
γt(j)

∑T
t=1 γt(j)

(34)

Thus, the parameters of the HSMM can be determined. The iterative update procedure
of the model parameters is summarized in Algorithm 1.

Algorithm 1 HSMM training procedure.

1. Input Observation sequence Y(t) = {y1, y2, · · · , yG} and initial model parameters λ̄.
2. Calculate the sequence of hidden states and the dwell time based on Equations (21)

and (22).
3. Calculate forward variable αt+1(i) and backward variable βt(i) using the forward

and backward algorithms, see Equations (23)–(25).
4. Calculate the expectation of P(Y , X | λ̄) under the condition of P(X | Y , λ̄) based on

Equation (26).
5. Update the model parameters by maximizing the expectation value based on Equa-

tion (27).
6. Determine whether the model parameters converge, if not, turn to step 2, and if they

converge, the equation for updating the model parameters is obtained to determine
the model parameters.

3.3. Recurrent Estimation of Current Health State

According to the MFHI and observation sequence Y(t) = {y1, y2, · · · , yG} of the
PMSTM, the observation sequence of the hidden state can be directly found by recursion
from the previous state through SIR, and the recursive optimal estimation of the health
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state of the PMSTM is then realized. The state estimation process is shown in Figure 2. The
specific steps taken are as follows.

Figure 2. The process of recursive estimation of health status.

1. Generate an initial particle set
{

x(r)0

}
, 1 ≤ r ≤ R according to the state probability

distribution Π at the initial moment.
2. State transition (prediction): According to the particle set

{
x(r)t−1

}
obtained at time

t− 1, the particle set
{

x(r)t

}
of the state at time t is obtained through the state transition

probability matrix At−1:

x(r)t : P
(

x(r)t | x(r)t−1

)
∈ At−1 (35)

3. Calculate particle weights (update): According to the observed value yt at time t

and the observed state probability matrix B, the weight value w(r)
t of each predicted

particle is obtained:
w(r)

t = P
(

yt | x(r)t

)
∈ B (36)

4. Normalize the calculated weight value of each particle:

ŵ(r)
t =

w(r)
t

∑R
r=1 w(r)

t

(37)

5. State estimation: Calculate the estimated value of the current health state according to

the particle set at time t and the weight,
{

x(r)t , ŵ(r)
t

}
, of each particle:

x̂t =
R

∑
r=1

ŵ(r)
t · x

(r)
t (38)

6. Resampling: Calculate the number of effective particles according to the normalized

weight ŵ(r)
t of each particle, and resample and update the particle set as the particle

set for state estimation at the next moment. The effective particle number Re f f can be
calculated as:

Re f f =
R

∑R
r=1 ŵ(r)

t

(39)
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7. State transition probability matrix update: Calculate a new state transition probability
matrix At according to the residence time dt of each healthy state of the PMSTM:

At = P(xt) + (X − P(xt)) · A0 (40)

where
dt = x̂t · x̂t−1 · dt−1 + 1 (41)

By following the above process, recursive estimation of the current health state of the
PMSTM can be achieved.

3.4. RUL Prediction

The RUL of the PMSTM is determined according to the remaining time of the current
health state and the dwell time of each health state after the current health state. After
determining the current health state x̂t of the PMSTM, the RUL calculation can be divided
into the following two parts:

1. Calculate the remaining time of the current state.

d(xt) =
5

∑
i=1

(
µdi
− dt(i)

)
� δt(i) (42)

An estimate of the remaining time of the PMSTM in this state can be obtained by
weighted summation.

2. Calculate the remaining time of the subsequent state.
Calculate the next state according to the initial state transition probability matrix A0
until the failure state. The probability that the next state of the PMSTM may appear is
defined as:

δnext =
[
δt+d̃(i)

]
1≤i≤5 = (A0)

T · δt(i) (43)

The highest probability is the state that may appear at the next moment:

xnext = xt+d̃ = arg max
1≤i≤5

δt+d̃(i) (44)

If xt+d̃ reaches a failure state, the PMSTM will fail when the dwell time is reached in
that state. Calculate the remaining time in each state:

d
(
xt+d̃

)
=

5

∑
i=1

µdi
� δt+d̃(i) (45)

Iteratively calculate this in view of the above process, after which the RUL prediction
value of PMSTM can be obtained:

RUL = ∑ d (46)

4. Proposed Method

In this study, we propose a fusion method of HI and a combination of SIR and HSMM
to estimate the state and predict the RUL of PMSTM. Figure 3 illustrates the proposed
method. The sensor signal S(t) of the PMSTM is denoised by wavelet transformation to
obtain S(1)(t). After Z-score normalization of the noise reduction data, we can get S(2)(t).
The entropy weight method is used to determine the weights of multiple indicators and
filter the indicators S(3)(t) with larger weights. The correlations between the selected
indicators are then reduced by PCA to obtain S(4)(t), and the corresponding weight is
assigned and fused to obtain the MFHI HI(t). The MFHI is subjected to low-pass filtering
and state partitioning to obtain the observation sequence Y(t). HSMM training is then
performed to establish an overall performance degradation model λ = (Π, A0, B, Θ).
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Further, the PMSTM state estimation and RUL prediction are achieved through recursion
of the sequence of observations corresponding to the hidden state by SIR.

Figure 3. State estimation and RUL prediction method for PMSTMs based on a combination of SIR
and HSMM.

5. Experimental Details and Analysis of Results

The original signal represents the full-life data that were collected from eight sensors
(current, voltage, two temperatures, two vibrations, torque and rotational speed) during
PMSTM operation. In order to validate the proposed state estimation and RUL prediction
method, 70% of the MFHI extracted from the state monitoring data were used as training
samples, and the remaining 30% were used as test samples.

Experiments were carried out in MATLAB. Db4 was used as the wavelet base function
with a hierarchy of three; and the hard threshold, soft threshold and fixed threshold were
selected so as to denoise the original signal. The noise reduction results of the rotational
speed signal of PMSTM were shown in Figure 4.

Figure 4. Before and after noise reduction of signal.
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The signal-to-noise ratio (SNR) and root mean square error (RMSE) after noise reduc-
tion for all signals are shown in Table 2. The use of wavelet transformation to eliminate
noise of the signal is shown to greatly improve SNR and reduce RMSE. The RMSE are
quite different due to the magnitude and units of the different signals being different. The
SNR and RMSE treated with the three threshold treatments are not much different, but it
was more advantageous to choose the fixed threshold for filtering. Moreover, combined
with Figure 4 for comparison, it was decided to choose the fixed threshold for signal noise
reduction.

Table 2. SNR and RMSE for signal denoising.

Signal The Hard Threshold The Soft Threshold The Fixed Threshold
Number SNR (dB) RMSE SNR (dB) RMSE SNR (dB) RMSE

1 22.6290 1.7373 22.6290 1.7373 22.6290 1.7373
2 17.7301 72.3660 17.7301 72.3660 17.9301 72.3662
3 18.7183 5.4896 18.7183 5.4896 18.7183 5.4899
4 28.8169 295.2581 28.9579 290.4806 28.9879 289.4699
5 58.7933 2.7439 58.7933 2.7439 58.7933 2.7437
6 17.5773 69.3978 17.5773 69.3978 17.5773 69.3973
7 21.9337 3.1351 21.9337 3.1351 21.9335 3.1351
8 17.7781 181.0096 18.5190 166.2539 18.8581 159.9033

The entropy weight method was used to prioritize the state feature parameters after
signal denoising, as shown in Figure 5a. Moreover, the top five parameters closely related
to the performance degradation of PMSTM were screened out.

(a) Entropy weight prioritization (b) The contribution rate of each principal component

Figure 5. Data filtering.

PCA transformation was then performed on the reserved performance parameters,
of which the contribution rate of each principal component is shown in Figure 5b. Here,
the contribution rate of the first principal component was shown to reach 96.5%, which
was much higher than the contribution rates of the other principal components. However,
in order to reduce the data’s dimensions to the greatest extent, the data characteristics of
the original data should be retained as much as possible. Accordingly, the cumulative
contribution rate was set to 97%, and the first two principal components were kept.

The MFHI that was obtained following parameter fusion is shown in Figure 6a. Ac-
cording to the division of the number of internal health states and the description of the
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transition process between the states (Figure 6), the observed state was divided into five
states.

Figure 6. The process of performance-status classification.

The performance of the system’s output is related to the internal state, where the
internal state determines the observed state. Each theoretical observed state corresponded
to a hidden state, as shown in Figure 7.

Figure 7. The division of health state and observation state.

The MFHIs were labeled at different stages with their corresponding states. The
observation sequence that was obtained after labeling is shown in Figure 8.

HSMM training was then performed. The model parameters were initialized, and
they were solved iteratively according to the model parameter solution. The performance
degradation model parameters of PMSTM were obtained as

Π = [1, 0, 0, 0, 0] (47)

A0 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

 (48)
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B =


1 0 0 0 0

0.0444 0.9556 0 0 0
0 0.0741 0.9259 0 0
0 0 0.3571 0.6429 0
0 0 0 0.2222 0.7778

 (49)

Θ = {θ1 = [16; 0.4], θ2 = [90; 14.64], θ3 = [54; 10.80], θ4 = [14; 11.93], θ4 = [27; 8.20]} (50)

Figure 8. Observation sequence.

Six groups of sample data were selected. The state sequence recursive estimations that
were obtained by the combination of SIR and HSMM are shown in Figure 9. Here, the blue
solid lines represent the actual hidden state sequences, and the pink solid lines are the most
likely hidden state sequences estimated by the combination of SIR and HSMM.

The recursive estimation error was then obtained, as shown in Figure 10. The estima-
tion yielded with this method has a smaller error distribution. Although the estimation
error may increase over time, it was still within an acceptable range. Hence, this method
is able to estimate the sequence of hidden states through the recursion of the state at the
previous moment and the observation at the current moment.

According to the estimation results of the current state, the RUL predictions of six
groups of examples were further obtained. At the early stage under all six cases, the
proposed method was able to estimate RUL values close to a constant at an early stage.
Afterward, the estimates decreased almost linearly with time until the end of the available
test samples, as shown in Figure 11. In addition, we also performed RUL prediction with
conventional HSMM for comparative analysis, and the prediction results can also be seen
in Figure 11. Evidently, the RUL values predicted by the method of this paper are closer to
the actual value compared to the prediction results of the conventional HSMM.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 9. Health-state recursive-estimation results.
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Two metrics were used to evaluate the RUL estimations: (1) Lifetime prediction
performance (LPP), which can be measured by the percentage of RUL estimates within
+/−20% of the true RUL [38] and (2) RMSE, which is widely used [39,40] to measure the
accuracy of predictions and is the most commonly used regression metric [11]. Given
the predicted RUL(RULm) and true RUL(RUL∗m) under the time index m, the metric was
then defined:

RMSE =

√
1
m

m

∑
t=1

(RULt − RUL∗t )
2 (51)

The results are shown in Table 3, which clearly illustrate that the proposed RUL
prediction method was able to attain good prediction performance, achieving a very low
RMSE. Moreover, the LPP reached over 90.00%, and the RMSE was noted to be lower than
4.9477. Each set of examples predicted better than the conventional HSMM. Thus, the RUL
of PMSTM can be estimated accurately via combination of SIR and HSMM.

Table 3. Evaluation of RUL estimation results.

Method Index 1 2 3 4 5 6

HSMM+SIR LPP 95.16% 93.33% 90.00% 96.95% 95.16% 96.48%
RMSE 3.2484 2.7805 4.9477 1.8166 4.9333 2.6907

HSMM LPP 95.00% 92.33% 90.00% 95.86% 95.16% 91.79%
RMSE 3.7523 3.7951 5.5617 2.2050 4.1889 3.1714

Figure 10. Health-state recursive-estimation error.
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(a)Example 1 (b)Example 2

(c)Example 3 (d)Example 4

(e)Example 5 (f)Example 6

Figure 11. RUL estimation results.
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6. Conclusions

This paper proposed a state estimation and RUL prediction method that combined SIR
and HSMM with MFHI as the performance indicator for URT’s PMSTMs. According to the
proposed method, the signal is denoised by a wavelet, and the entropy weight method is
then used to objectively determine the weights of multiple indicators in view of the amount
of information in order to realize the prioritization of the state-characteristic parameters.
The correlations between the selected feature parameters were reduced using PCA, and the
MFHI was constructed through the corresponding weight assignment and fusion. HSMM
training was then performed to describe the relationship between the internal state and
observation sequence of the PMSTM, after which an overall performance degradation
model was established. The observation sequence of the hidden state was observed to be
directly recursive from the previous state through SIR, demonstrating the recursive optimal
estimation of the internal state while realizing RUL estimation. By conducting simulation
experiments, the state estimation and RUL prediction were performed by taking six groups
of data as examples in order to verify the effectiveness of the algorithm. Additionally,
compared with the conventional HSMM method, the results signify that the proposed
method can generate more accurate predictions. In general, compared with other published
methods, the method proposed in this paper was less computationally intensive and
possessed more accurate computational results.

Future work might focus on finding more suitable methods to obtain observation
sequences. Additionally, we will do some research on planning tests based on the pro-
posed model.

Author Contributions: Conceptualization, G.T. and J.S.; methodology, G.T. and Y.Q.; software, G.T.
and Y.Q.; validation, G.T. and S.W.; writing—original draft preparation, G.T.; writing—review and
editing, S.W.; visualization, Y.Q.; supervision, S.W.; project administration, S.W. and J.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grants
51875014, 51620105010, 51575019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all the teachers at the School of Automation
Science and Electrical Engineering, Beijing University, for their support and advice in the completion
of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DCNN Deep convolutional neural network
GMM Gaussian mixture model
HI Health index
HMM Hidden Markov model
HSMM Hidden Semi-Markov model
ISOMAP Isometric mapping
LPP Lifetime prediction performance
MFHI Multi-parameter fusion health index
PCA Principal component analysis
PMSTM Permanent magnet synchronous traction motor
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PSO Particle swarm optimization
RMSE Root mean square error
RNN Recurrent neural network
RUL Remaining useful life
SIR Sample importance resampling
SNR Signal-to-noise ratio
SVM Support vector machine
URT Urban rail transit
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