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Abstract: Environmental protection is still a key issue that cannot be ignored at this stage of social
development. With the development of artificial intelligence, various technologies increasingly tend
to be widely used in the field of environmental protection, such as searching the wilderness through
an unmanned aerial vehicle (UAV) and cleaning garbage by robots. Traditional object detection
algorithms for this scenario suffer from low accuracy and high computational cost. Therefore, this
paper proposes an algorithm applied to automatic garbage detection and instance segmentation in
complex scenes. First, we construct sample-fused feature pyramid networks (SF-FPN) to achieve
multi-scale feature sampling on multiple levels, to enhance the semantic representation of features.
Second, adding the mask branch based on conditional convolution, introducing the idea of instance-
filters to automatically generate the filter parameters of the Fully Convolutional Networks (FCN), to
realize the instance-level pixel classification. Moreover, the Atrous Spatial Pyramid Pooling (ASPP)
module is introduced to encode the feature information in a dense way to assist the generation of
MASK. Finally, the object is detected and the instance is segmented by a two-branch structure. In
addition, we also perform data augmentation on the original dataset to prevent model overfitting.
The proposed algorithm reaches 82.7 and 72.4 according to the mAP index of detection and instance
segmentation while using the public TACO dataset.

Keywords: deep learning; object detection; instance segmentation; environmental sustainability

1. Introduction

With the continuous realization of human activities, the earth has been extremely
damaged, and if urgent and stronger actions are not taken to protect the environment, the
earth’s ecosystem and the cause of sustainable development of humans will be increasingly
threatened. In the face of increasing garbage production, how to maximize the use of waste
resources, and reduce the amount of garbage disposal to improve the quality of the living
environment is currently one of the urgent issues of common concern in the world. Since
1 May 2020, Beijing has proposed to separate domestic waste. It shows that the task of
garbage sorting is an integral part of social development at this stage [1–4].

With the development of deep learning, computer vision has become a popular field of
artificial intelligence at this stage, in which technologies such as object detection and instance
segmentation have also contributed to the development of daily life toward intelligence.

At this stage, object detection algorithms are divided into one-stage and
two-stage algorithms.

The One-stage algorithm directly regresses the positions and the class probabilities
of objects. Its representative detection algorithms have the Yolo family of algorithms
(Yolov1 [5], Yolov2 [6], Yolov3 [7], Yolov4 [8], etc.) and SSD [9]. Yolov1 divides the whole
graph into S × S grids and performs edge and category prediction for the targets in the
grids. Finally, the optimal edges are obtained by NMS. Both Yolov2 and SSD use a priori
frames, which cover different positions of the whole image by pre-setting a set of borders
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with different sizes and aspect ratios for each grid. Yolov3 uses Darknet-53 as the backbone
and introduces Feature Pyramid Networks (FPN) [10] which can better correspond to
objects of different sizes for multi-scale prediction. The idea of Yolo4 is to find the best
balance between the input network resolution, the number of convolutional layers, the
number of parameters, and the number of layer outputs.

The two-stage algorithm divides the detection task into two phases, i.e., generating
candidate regions (Region proposals) and classifying the candidate regions with border
regression. Such algorithms are typically represented by the R-CNN family (R-CNN [11],
Fast R-CNN [12], Faster R-CNN [13], Mask R-CNN [14], etc.). R-CNN generates about two
thousand candidate frames on the original image with Selective Search [15], and finally, the
target classification and edge regression are achieved by a single classification SVM. Fast
R-CNN replaces the object for selective search with a feature map generated by convolution
operation based on the former and uses RoI pooling to make the generated RoI mapping a
fixed-size feature map. To improve the speed of detection box generation, Faster R-CNN
designed the RPN module, which achieves regional proposal generation by setting multiple
scales of an anchor box. In contrast, the instance segmentation task is to generate the mask
corresponding to the object by pixel-level classification based on object detection.

For previous research of the R-CNN family of algorithms, Kaiming He proposed Mask
R-CNN, which introduces the mask branch (composed of FCN [16]) based on Faster R-
CNN, and performs pixel-by-pixel prediction of the object by a fully convolutional network,
thus realizing the instance segmentation under object detection.

Therefore, in this paper, considering object detection in complex scenes and weighing the
accuracy and speed of task implementation, we propose an anchor-free algorithm for garbage
detection to achieve the tasks of object detection and instance segmentation simultaneously.

This paper contributes as follows:

• The sample-fused FPN is constructed to achieve feature extraction and fusion at
multiple scales, enhancing the semantic information of the features.

• Adding a mask branch based on conditional convolution [17]. By ASPP [18], the
module encodes the feature values in a dense form, assisting mask generation, and
automatically generates filter parameters for different instances based on conditional
convolution, thus the corresponding mask generation is achieved.

• The dual branches of mask and box are trained in an end-to-end form, based on which
the object detection and instance segmentation tasks are implemented.

Combining the above improvements, the model in this paper is trained and tested on
the public dataset TACO [19]. Compared with the mainstream algorithms at this stage, the
model presents better results for the task and can achieve accurate garbage detection and
instance segmentation.

2. Related Works

As a hot topic in urban governance at this stage, researchers have proposed relevant
solutions based on computer vision. Lee used SSD with AlexNet as the backbone network
for waste detection [20]. Ma proposed a lightweight Single-Stage Detector (SSD) with a
novel feature fusion model for solving the problem of garbage detection [21]. Cao migrated
the InceptionV3 model, which has been pre-trained on the ImageNet dataset, to the task
of garbage recognition [22]. Kang used ResNet-34 network as the base architecture and
improved the three aspects of feature fusion, residual unit, and the activation function to
achieve garbage classification [23]. Shi improved the accuracy of garbage classification
by branching extensions to the Xception and implementing multi-layer network feature
fusion [24]. However, the above network models are limited to garbage detection in a
simple context and are only trained and tested on single-object images without considering
the numerous visual interference elements in natural scenes, e.g., the presence of occlusions,
the size of garbage volume, etc. As artificial intelligence gradually replaces human work in
many aspects, how to implement garbage detection in natural environments must become
a key task.
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Therefore, this paper improves the FCOS network structure based on its base module.
We replace traditional FPN by building SF-FPN structure to enhance the capability of
feature extraction. The idea of conditional convolution is introduced to automatically
generate the network parameters and reduce the computational cost. Eventually, the two-
branch structure of detection and instance segmentation is trained end-to-end so that the
network can achieve the corresponding tasks simultaneously.

3. FCOS

FCOS is a one-stage algorithm proposed by Tian to solve the object detection problem
on a pixel-by-pixel method [25]. The network structure is shown in Figure 1. The core idea
of the algorithm is to directly regress the class and minimum bounding box of the object
corresponding to the current position at each pixel point. By eliminating predefined anchor
boxes, the hyperparameter design process of the anchor is removed, avoiding the situation
where parameters affect network performance, while significantly reducing computational
costs. Compared with the traditional one-stage algorithm or anchor-free algorithm, FCOS
achieves better results in the task of object detection.
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Figure 1. The network structure of FCOS.

The main innovation of FCOS is achieved in two parts. Firstly, it uses FPN for multi-
scale prediction. The range of object sizes is restricted directly for each level and the
distance between each location and the minimum bounding box of the object, i.e., l, t, r, b,
is calculated.

These values are compared with the maximum regression distance of each level, to
set positive and negative samples. The scale-corresponding multi-layer prediction can be
realized based on the above operation, which largely enhances the prediction performance
when bounding boxes overlap and avoids the problem of fuzzy matching.

Since the FCOS uses a pixel-by-pixel regression strategy, it produces a large number of
low-quality predicted bounding boxes far from the centers of the object during training.
Therefore, a branch parallel to the classification is added to predict the centeredness of
the position, which describes the normalized distance from the position responsible for
this object to its center. When testing, the centeredness values are multiplied with the
corresponding classification scores to rank the bounding boxes and reduce the weight of
the bounding boxes which are away from the center of the object. Eventually, non-maximal
suppression (NMS) was used to remove bounding boxes that have low scores, significantly
improving detection performance.

However, in complex scenes, FCOS will be affected by occlusion, which leads to its
low detection accuracy. In addition, it cannot realize the task of instance segmentation, so
this paper improves and optimizes it based on the FCOS model.
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4. Methods

In this section, we improve the internal network of FCOS, aiming to achieve object
detection as well as instance segmentation in a two-branch structure and to improve the
experimental accuracy to some extent.

4.1. Sample-Fused FPN

To enhance the effectiveness of feature extraction, FPN connects high-level features
to low-level features horizontally in a top-down order which both have different reso-
lutions and semantic information. This operation allows feature maps at all scales to
have rich semantic information, thus making independent predictions at different levels.
Figure 2a illustrates the basic structure of the FPN, the FPN output pi of the feature map
ci corresponding to the backbone network can be expressed as Equations (1) and (2). Di
stands for bottom-up backbone network, and Ui represents the bottom-up FPN operation
(up-sampling and feature fusion).

ci = Di(ci1) (1)

pi = Ui(c i, pi+1
)

(2)
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However, in complex scenes, environmental factors can have an impact on the feature
extraction of the object. So, in garbage detection, the variability in size between different
garbage types requires the feature maps to contain semantic and spatial information at
different scales. In this paper, we propose a new FPN structure, called sample-fused FPN,
with the structure shown in Figure 2b. The ASPP module is introduced based on the
original FPN structure. The computation flow of the feature map is as follows:

mi = Ui(c i, mi+1) (3)

ai = Ai(c i) (4)

pi = Si(a i, mi) (5)

mi and pI are similar which both represent the feature maps obtained after FPN. Ai is the
ASPP module and the structure is shown in Figure 3. It uses three different operations
for ci, i.e., feature extraction based on dilated convolution, feature extraction based on
1 × 1 convolution, and global feature extraction based on a pooling operation of the image.
It is equivalent to acquiring the contextual information of the image at multiple scales.
Among them, DC1, DC2, and DC3 represent the dilated convolution with three different
sampling rates, which are set to 6, 12, and 18, respectively. Then, we concatenate the
five feature maps obtained by feature extraction and use 1 × 1 convolution to reduce the
number of feature map channels so that the output is the ai. Si stands for feature fusion,
which fuses the top-down output feature map with the feature map outputted by the ASPP
module in an additional way to obtain pi in the end.
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4.2. Mask Head Based on Conditional Convolution

In conventional algorithms, for instance, segmentation, most of them use full convolu-
tional networks to classify images on a pixel-by-pixel basis. Although the segmentation
mask of the object is obtained in this way, the effect is relatively poor, especially in an
environment with more occlusions around the object. Therefore, this paper improves the
traditional mask branch by introducing the idea of conditional convolution and dilated con-
volution to increase the accuracy of instance segmentation. Figure 4 shows the improved
mask branch.
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For each instance, a specific convolution kernel parameter is learned, and by replacing
the standard convolution, it can increase the size and capacity of the model while maintain-
ing efficient inference. The computation of parameters based on conditional convolution is
shown in Equation (6).

Output(x) = σ((α 1·W1 + . . .+ αn·Wn)∗ x) (6)

As shown above, the parameters of the convolution kernel are transformed into a
linear combination of n experts where α1~αn are the weighting coefficients learned by
gradient descent. Subsequently, we assign these dynamically generated filters to the fully
convolutional network. For an image with K instances, K different mask heads will be
automatically generated, and the filter in each mask head contains the features of the
corresponding instance. Therefore, in the instance segmentation task, it will only be
triggered for the pixels of the corresponding instance, eventually producing the mask
prediction of the instance. Compared with RoI, it can better represent irregular shapes.
In addition, we add the ASPP module in front of the fully convolutional network. By
combining a series of dilated convolutions, a sufficiently large receptive Field is obtained
while fusing multi-scale information. As a result, the output features not only cover a large
range of semantic information but also do information encoding in a very dense manner,
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which can assist the fully convolutional network in pixel-by-pixel classification, to achieve
high accuracy in the task of instance segmentation.

4.3. The Overall Structure of the Network

As can be seen from Figure 5, compared to the structure of FCOS, we have improved
Neck by replacing the FPN with the SF-FPN constructed in this paper and introducing a
Mask head based on conditional convolution. Based on the above modification, the network
can be trained in an end-to-end form so that it can eventually achieve object detection and
instance segmentation.
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First, we input an image that has the size of H ×W × 3, and the features of the image
are extracted based on ResNet. Then, the feature maps extracted from each layer of the
backbone network are input into SF-FPN to optimize the feature information. Subsequently,
we input the obtained feature maps into the Detection head and Mask head. The detection
head aims at classifying and regressing bounding boxes and optimizing them by the
centeredness function to achieve object detection. The Mask head is divided into two parts.
In the first part, the corresponding network parameters are generated for each instance
based on conditional convolution and combined into filters of the fully convolutional
network. In the second part, up-sampling the input feature map and expanding it to
one-eighth of the original image size is achieved. Finally, a fully convolutional network is
used to classify the input feature maps pixel by pixel, generating the mask corresponding
to each object.

4.4. Loss Function

The total loss function of the network model in this paper can be defined as:

Loverall = Ldetection +λLmask (7)

Since the detection branch is constructed based on FCOS, the focal loss [26] and the
loss of Intersection over Union (IoU) are used for classification and regression, respectively.
However, it is impossible to directly optimize the part which has no overlap and poorly
discriminates different ways of alignment by using IoU as a loss. Therefore, this paper
introduces Generalized Intersection over Union (GIoU) [27]:

GIoU = IoU − Ac −U
Ac (8)

Among them, Ac represents the minimum enclosing box of the bounding box and
ground truth. U is the combined area of the bounding box and ground truth. Because the
GIoU introduces the concept of Ac, the regression can still be optimized when the bounding
box and ground truth do not overlap. It can better reflect the overlap of the two boxes. In
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general, GIoU retains the original features of IoU while weakening its drawbacks. The loss
function of GIoU is defined as:

LGIoU = 1 − GIoU (9)

Ldetection and Lmask are defined as Equations (10) and (11):

Ldetection =
1

Npos
∑
x,y

Lcls(p x,y, cx,y
∗ )+

λ

Npos
∑
x,y

o{cx,y
x >0}Lreg(t x,y, tx,y

∗ ) (10)

Lmask({θ x,y}) =
1

Npos
∑
x,y

o{cx,y
x >0}Ldice(FCN(F x,y; θx,y), Mx,y

∗ ) (11)

Since we use the original detection head of FCOS in this paper, we do not introduce its
loss function. In the loss calculation of the mask head, o is the indicator function. Because
of the use of the sigmoid function in the mask head to determine the front and back view
of the pixel, it is a binary classification. The value is 1 when cx,y

x > 0 and 0 otherwise. Npos

is the number of positive samples that are judged as foreground when cx,y
x > 0. Fx,y, θx,y

are the feature map and the parameters of the convolution at (x, y), respectively. Mx,y
∗ is

the mask of the corresponding instance generated at this position. Finally, the number of
positive and negative samples is balanced by Ldice, similar to focal loss.

5. Experiments
5.1. Dataset

This paper uses the TACO dataset, which is an open image dataset of waste in the
field. Figure 6 shows some of the images in this dataset. It contains 1500 photos of garbage
taken in various environments which have 4784 examples, and the environment in which
the garbage is located is divided into seven categories, and the garbage category is divided
into sixty categories. Moreover, it provides annotations corresponding to the objects in
the images that are defined in the form of a COCO dataset. These annotations consist of
the information on the bounding box, the segmentation mask, and the category. Based
on this dataset, the training and testing of algorithms in this application scenario can
be implemented.
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In general, GIoU retains the original features of IoU while weakening its drawbacks. The 
loss function of GIoU is defined as: 

LGIoU = 1 - GIoU (9) 

Ldetection and Lmask are defined as Equations (10) and (11): 

Ldetection = 1
Npos

Lcls(px,y,c*
x,y)

x,y

+
λ

Npos
o{cx

x,y>0}Lreg(tx,y,t*
x,y)

x,y

 (10) 

 Lmask({θx,y}) = 1
Npos

o{cx
x,y>0}Ldice(FCN(Fx,y;θx,y),M*

x,y)
x,y

  (11) 

Since we use the original detection head of FCOS in this paper, we do not introduce 
its loss function. In the loss calculation of the mask head, o is the indicator function. Be-
cause of the use of the sigmoid function in the mask head to determine the front and back 
view of the pixel, it is a binary classification. The value is 1 when cx

x,y  > 0 and 0 otherwise. 
Npos is the number of positive samples that are judged as foreground when cx

x,y  > 0. Fx,y, 
θx,y are the feature map and the parameters of the convolution at (x, y), respectively. M*

x,y 
is the mask of the corresponding instance generated at this position. Finally, the number 
of positive and negative samples is balanced by Ldice, similar to focal loss. 
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Figure 6. TACO dataset.

5.2. Evaluation Metrics

To evaluate the effectiveness of this algorithm in garbage detection and instance
segmentation, we use the AP as an evaluation metric.

The AP (average precision) is the average value of precision at different recalls.

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

Equations (12) and (13) calculate the precision and recall, respectively. Among them,
True Positive (TP) represents the samples that are predicted to be correct and positive.
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False Positive (FP) represents the samples that are predicted to be positive but are actually
negative. On the contrary, False Negative (FN) represents the samples that are predicted to
be negative but are actually positive. Ultimately, the AP can be calculated by Equation (14).

AP =
∫ 1

0
P(R)dR (14)

Since the TACO dataset contains multiple classes of objects, we use mAP to evaluate
the overall effectiveness of the algorithm on the dataset. It is the average value of AP for
different categories. The mAP is represented as Equation (15). N is the number of categories
that exist in the dataset.

mAP =
∑N

i=1 APi

N
(15)

5.3. Training

The configuration of the experimental platform which is applied in this paper is shown
in Table 1.

Table 1. Configuration parameters.

Devices Configuration

Operating system Ubuntu18.04
Processor Intel(R) Xeon(R)Silver 4110 CPU @2.10 GHz

GPU GeForce RTX 2080Ti
GPU accelerator CUDA 10.2

Frame Pytorch
Compilers Vscode

Scripting language Python3.8

Since the TACO dataset has only 1500 images at this stage, we improve the sample
quality by data enhancement such as flipping, rotating, and random cropping of the original
images. Finally, the dataset is divided into ten equal parts and the model is trained by
using the ten-fold cross-validation method. The detailed operation is shown in Figure 7.
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Figure 7. Training the network based on the ten-fold cross-validation method.

In the basic structure of the network, we used ResNet-101 [28] as the backbone network
and initialized it with weights pre-trained on ImageNet to give the model some feature
extraction capability that reduces the training time. During the training phase, the batch
size is set to 12 and the initial learning rate is 0.01. On this basis, the network parameters
are optimized by using stochastic gradient descent (SGD), where the momentum, as well
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as decay weights, are 0.9 and 0.0001, respectively. Finally, the number of iterations is set to
100 k. When the values of iteration are 60 k and 80 k, the learning rate becomes one-tenth
of the original automatically.

5.4. Visualization of Test Results

Figure 8 shows the effect of the algorithm proposed in this paper for object detection
and instance segmentation on the TACO dataset. It can be seen that this algorithm can be
better applied to complex scenes. It is not only able to achieve accurate object detection, the
effect of generating a mask for different instances is relatively good.
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5.5. Performance Comparison of Different Algorithms

To scientifically demonstrate the effectiveness of the algorithm proposed in this pa-
per applied to complex scenarios, we trained other algorithms simultaneously on the
TACO dataset and compared their performance on the dataset of the test. The results are
shown below.

As can be seen from Table 2, the algorithm proposed in this paper achieves better
results on garbage detection in complex scenarios. Compared with the Faster R-CNN, the
mAP index of our method is improved by 8.6. Compared with the Cascade R-CNN [29],
the mAP index of our method is improved by 3.0. Compared with the FCOS, which is
more frequently used at this stage, our method in this paper does not lose an advantage
in accuracy. Its mAP index increased by 1.5. Since the method in this paper is improved
based on FCOS, the mAPs index is increased by 1.6, which is enough to prove that the
improvement of the FPN structure can bring some effectiveness. It enhances the capability
of feature extraction so that the feature maps at each scale get sufficient feature information
and the features of small objects are more easily perceived, to locate and classify the objects
effectively. Overall, our proposed algorithm in this paper can handle the task of object
detection in complex scenes and achieve better detection accuracy.

Table 3 shows the final results obtained for each algorithm tested on the instance
segmentation task. Since the FCOS algorithm can only implement the target detection task,
we add the mask branch to its structure so that it can complete the instance segmentation
simultaneously. It can be seen that the algorithm proposed in this paper also presents
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better results on this task. Compared with the Mask R-CNN, the mAP index of our method
is improved by 4.6. Compared with the MS R-CNN [30], the mAP index of our method
is improved by 3.8. Compared with the recently proposed algorithm, SOLO [31], the
mAP index of our method is improved by 2.2. In addition to this, for different sizes of
the object, its mAPs index, mAPm index, and mAPl index all improved by 1.8, 2.7, and
1.5, respectively. Therefore, the mask branch introduced in this paper not only helps the
network to accomplish the basic instance segmentation task but also achieves better results
compared with other algorithms.

Table 2. Performance comparison of algorithms on object detection.

Method mAP mAP50 mAP75 mAPs mAPm mAPl

Faster R-CNN 74.1 85.0 81.4 18.5 68.6 84.3
Cascade R-CNN 79.7 84.6 82.8 24.1 67.2 91.3

FCOS 81.2 86.1 83.5 23.9 69.4 92.0
Our method 82.7 86.8 85.1 25.7 71.2 92.3

Table 3. Performance comparison of algorithms on instance segmentation.

Method mAP mAP50 mAP75 mAPs mAPm mAPl

Mask R-CNN 67.8 83.3 74.4 4.5 61.2 75.8
MS R-CNN 68.6 82.4 75.4 4.4 61.1 76.4

SOLO 70.2 83.5 76.7 5.1 62.7 78.1
Our method 72.4 84.9 78.1 6.9 65.4 79.6

6. Conclusions and Outlook

As the level of materials required for human activities increases, it causes an increas-
ingly serious situation of environmental pollution. Therefore, environmental protection
has become a key research element to maintain stable social development at this stage.

In this paper, we propose a garbage detection algorithm that can be applied in complex
environments according to an intelligent garbage cleaning task. First, to effectively reduce
the impact of garbage size and environmental factors on the detection effect, an SF-FPN is
constructed based on the dilated convolution, which enriches the semantic information of
the feature map and improves the detection accuracy through feature extraction at multiple
scales. Then, a mask branch based on conditional convolution is introduced to dynamically
generate parameters for each object, resulting in the instance-level prediction of pixels.
Finally, the network is trained end-to-end. The results show that the proposed algorithm is
better than the current algorithm in garbage detection and instance segmentation tasks and
achieves accurate detection and instance segmentation of garbage in complex scenarios. It
provides an algorithmic basis for the subsequent automated cleaning of terrestrial waste
by robots.

However, in the current work, there are still certain shortcomings that need to be
improved. For example, the number of images in the TACO dataset is small. Although our
algorithm has improved the accuracy compared to other algorithms, the overall accuracy
of small object detection is low. In addition, how to optimize the network and reduce
its computing resources is also a research content that needs attention. Finally, we will
consider attaching the algorithm to a device to achieve practical application.
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