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Abstract: Shuttle bus connection is a valid technique to handle unplanned problems and promote
sustainable transportation. The study describes tools that facilitate the shuttle bus timetable adjust-
ment responding to a disturbance resulting from behind-schedule trains on a commuter railway.
This behind-schedule disturbance is divided in four stages allowing for different delay ranges. The
problem and its solution involve different elements, such as shuttle bus route selection, stop loca-
tion, and timetable adjustment. We propose a nonlinear integer programming model, in which the
objective function is based on the waiting, travelling, and walking costs for passengers as well as
the operation cost of the route chosen. Vehicle capacity constraints and precise passengers’ waiting
times are considered. A genetic algorithm and a simulated annealing algorithm combined with a
priori decomposition are used to derive an efficient solution. A case study of a shuttle bus serving the
Jinshan Railway in Shanghai, China, is tested to validate that, compared to the no-planning timetable,
the total cost of the optimized timetable is reduced by 7.6%, especially including a dramatic reduction
in the cost of passenger waiting time by 49.1%.

Keywords: shuttle bus timetabling; sustainable transportation; nonlinear integer programming
model; shuttle bus stop locations

1. Introduction

The shuttle bus service is a mode of sustainable transportation for connecting users
from hubs (e.g., railway stations or flight terminals) to strike the last-mile problem [1,2].
Generally speaking, the shuttle bus is responsible for accommodating passenger demands
upon their exiting the schedule-based commuter railway. Matching the schedule-based
(planned) timetable of the commuter railway, the shuttle bus can provide a well-connected,
synchronized service with the objective of minimizing users’ waiting times [3–5]. In
principle, the optimal shuttle bus routes and stop locations are tailored to cover a majority
of demand communities owing to their serving last-mile connecting hubs with surrounding
user destinations, such as homes, offices, and other vital locations [6–8].

A commuter railway mainly helps users who live in suburbs and work in downtown
areas to avoid traffic jams [9]. As long as there are neither disturbances nor disruptions,
commuter railway routes and schedule-based timetables can be considered reliable with
unwavering certainty; execution is precisely as planned. However, in real life operations,
disturbances and disruptions are inevitable [10–12]. Cacchiani et al. [13] elaborate on two
distinctive differences between the characteristics of “disturbances” and “disruptions”.
Disturbances, which are formally defined as the malfunctions, mistakes, or deviating states
occurring within the infrastructure or operating conditions, are common. In this study, we
focus specifically on the shuttle bus timetable adjustment in response to a behind-schedule
commuter railway disturbance.

The behind-schedule phenomenon resulting in disturbances imposes unanticipated
congestion from accumulated passengers incessantly exiting commuter railway stations.
Likewise, shuttle bus services are deprived of the opportunity of feeding into well-connected
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and timely transfers. Therefore, timely adjustment of the shuttle bus schedule necessarily
entails responding to behind-schedule commuter railway trains [14]; however, this involves
taking the uncertainty of the nature of the disturbance into account. The shuttle bus is
inclined, by rational programming, to propose multiple dimensional adjustments including
route selections, stop locations, and timetable in order to handle different delay ranges.

To date, although there are extensive railway rescheduling approaches, there is little
in the literature that pays ample attention to the follow-up feeder service adjustment that is
closely connected with the foregoing reschedule. It refers to the shifts in both departure
times and headways of the shuttle bus in our study. The defined problems in the paper
cover the threefold aspects as follows:

1. An integrated challenge with respect to bus stop locations, optional routes, and
optimized timetable;

2. The elimination process of different delay ranges predefined as four stages, which
require different responses/shifts in individual stages;

3. A nonlinear integer programming model is proposed, in which the objective func-
tion takes passengers’ waiting, travelling, and walking costs into account as well
as combining them with the operation cost of the entire route. A genetic algorithm
and simulated annealing are used to encode the candidate bus stops by searching
the traversal of bus route options. A well-adjusted timetable and bus routes show-
ing stop locations are generated by bridging the connection gap derived from the
behind-schedule commuter railway.

1.1. Literature Review

In what follows, we introduce shuttle bus optimization and, particularly, its application
accommodating the commuter railway as per various strategies or tactics. The existing
literature provide a basis for the study and contributes to a better understanding of aspects
of research addressed by our study.

Jerby and Ceder [15] proposed a route design approach for a shuttle bus system, in
which the potential passenger demand for optional routes is estimated quantitatively. The
study aims at maximizing the number of passengers and minimizing walking distances.
Lownes and Machemehl [16] proposed a mixed integer model for a single-route circulation
programming problem that was solved by a tabu search for large scale computation. Three
solution approaches, i.e., enumeration, One Tree, and tabu search, are applied for the small
and large networks. Yu et al. [17] proposed a bilevel nonlinear mixed integer programming
model to minimize the total tour cost of bus passengers and operators. They considered
passengers’ walking times and developed a tabu search with a local search strategy and
neighborhood evaluation tool but did not take into account passengers’ waiting time. Jin
et al. [18] introduced a bus bridging tactic that takes commuter demand during a disruption
horizon into consideration. They generated demand-responsive bus route candidates via
a column generation and established a path-based multicommodity network flow model.
The aim is to identify the suitable bus routes and fleet size assignment. Kong et al. [19]
presented a shuttle bus route formulating method by means of crowd sourced mobile
data. A dynamic programming algorithm was used to obtain the optimal routes of shuttle
buses. Cao et al. [20] pursued the optimized fleet size by striking the tradeoff between
timetabling and vehicle scheduling by using the skip-stop strategy. A binary variable
iteration heuristic is devised to deal with the large-scale case. Cao and Ceder [21] proposed
a real-time timetable adjustment model as per holding and speed-changing strategies to
attain reliability. Liang et al. [22] designed a robust bus bridging management plan as a re-
medial reaction to a rail transit disruption. They developed a path-based multi-commodity
flow formulation allowing for running time uncertainty of bus bridging. The model was
resolved by a column generation algorithm. Cao et al. [23] developed an approach for
deriving an optimized timetable for multiphase demands featuring three operation tactics:
marshaling, skip-stop, and robust adjustment. Wang et al. [24] concentrated on a shuttle
bus routing optimization problem under urban rail transit emergencies accounting for evac-
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uation priorities. The approach is beneficial for both railway disruptions and interruptions.
Cao et al. [25] proposed a decision-making, coupling–decoupling, strategic programming
model to achieve capacity dynamic optimization. Cao et al. [26] considered passengers’
service-frequency satisfaction in terms of waiting times, passengers’ perception of rid-
ing comfort via seat availability, and planned passenger load ratio linked with operation
efficiency. An estimation framework for bus timetabling is built for the planning stage.
Wu et al. [27] proposed a mixed-integer linear programming model as per shared ride and
shuttle bus deployment. A modified Lagrangian relaxation algorithm and rolling horizon
scheme were proposed to attain solution efficiency in solving a large-scale case. They could
get better results by using exact algorithms.

Unlike the existing studies mentioned which resolved certain unanticipated situations
by deploying temporary bus bridging, this study seeks timely adjustment on daily/routine
shuttle bus systems specifically responding to behind-schedule situations that commuter
railways encounter. In other words, on rescheduling shuttle bus timetables there is a lack of
attention to newly-rescheduled commuter railways providing connection services. Table 1
illustrates the features and merits of the existing literature by comparing these closely
related and timely studies.
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Table 1. Comparison of relevant studies on shuttle bus service and its application on the commuter railway.

Publication
(Chronologically)

Motivation from
Disturbance/Disruption Capacity Constraint Considers Waiting Times Objective(s) Solution Algorithms Case

Jerby and Ceder (2006) [15] No No No To maximize the demand
potential of the route links

A heuristic algorithm based
on the first option Experiments

Lownes and Machemehl (2010) [16] No No No

To minimize the total cost of
operating bus, in-vehicle travel

time, unserved demand
and walking

Tabu search Experiments

Yu et al. (2015) [17] No No No

To minimize the total tour cost
for passengers and operators

with respect to minimization in
passenger walking time

Tabu search Experiments and real

Jin et al. (2016) [18] Disruptions Yes Yes, as a sub-problem

To minimize the total increase in
journey time of all commuter

groups over the entire
disrupted period

A column
generation procedure Experiments

Kong et al. (2018) [19] No Yes No To minimize the
operating distance

A dynamic
programming algorithm Real

Cao and Ceder (2019) [21] No Yes Yes
To minimize passengers’

in-vehicle times, waiting times
and fleet sizes

A binary variable
iteration method Experiments

Liang et al. (2019) [22] Disruptions Yes No

To minimize passengers’ travel
costs on railway, in-vehicle
costs, transfer costs and bus

bridging operation costs

A column
generation procedure Experiments

Wang et al. (2021) [24] Disturbances and
disruptions No No To minimize the total fixed edge

cost based on the OD paths A two-step method Experiments

Wu et al. (2022) [27] No Yes Yes
To minimize passengers’

waiting times, in-vehicle times,
and operation costs

Lagrangian relaxation and
rolling horizon optimization Experiments and real

This paper (2022) Disturbances Yes Yes

To minimize passengers’
waiting, travelling and walking
costs as well as operation costs

for the entire route

Genetic algorithm and
simulated annealing Experiments and real



Sustainability 2022, 14, 16708 5 of 24

1.2. Contributions

In facilitating shuttle bus development, it is neither conventional nor trivial to allow
for route selection, stop locations, and timetable adjustment jointly so as to respond to
left-behind needs with respect to commuter railway schedule disturbances. Thus, the
contribution of our study is a new integrated shuttle bus programming model with:

1. The joint optimization between tactic level routes, stops, and strategy level timetabling;
2. A nonlinear integer programming model proposed to deal with the left-behind sched-

ule adjustment problem with the objective of minimizing net supply and demand
interests with regard to walking, waiting, and traveling times;

3. Two algorithms, i.e., a genetic algorithm and simulated annealing adopted to facilitate
the solution efficiency.

1.3. Layout

The layout of this paper in the following sections is as follows: Section 2 presents
the problem statement, assumptions, and nomenclature. Section 3 proposes a nonlinear
mixed integer programming model for the shuttle bus’s route planning and timetabling
problem. The scale of commuter railway delays and the corresponding subprocesses are
pre-defined. Section 4 decomposes the model and gets the optimal stop location set in which
the optimized shuttle bus service routes and the optimized timetables in each subprocess
are derived accordingly by using a genetic algorithm and simulated annealing. Section 5
tests the case of the Jinshan Railway in Shanghai, China, and conducts a sensitivity analysis.
Section 6 presents the conclusions and suggestions for further research.

2. Problem Statement
2.1. Study Context

Figure 1 represents the geographical topology of the shuttle bus network serving the
commuter railway. Stop location candidates (black points) surrounding the destination
centroids (orange squares) allow us to generate the optional routes, depicted by the black
lines of Figure 1. The demand origin, namely, the railway station, is marked by blue
diamond shapes. Typically, the cost–benefit estimation drives us to capture/elect the
optimized routes from the candidate set.
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In this sense, it suggests a sophisticated route necessarily covers the overall destination
centroids, well aware of how costs are saved via our modelling.

In the real world, matters such as congested demand, weather conditions, or temporary
power loss and so on, have always subjected railway systems to unanticipated disturbances.
Given these unforeseen events, the disturbance is inclined to trigger departure delays and
leads to unscheduled headway between the disturbance train and the predecessor/successor
ones. In that case, in order to facilitate transporting the passenger accumulation in an
efficient manner, the shuttle bus should respond in a timely enough manner to enable and
provide a reasonable adjustment for meeting these unanticipated demands.

Figure 2a shows the different stages of the commuter railway once encountering a
disturbance with a consequence ranging from “normal” to “abnormal” transition, and
subsequently recovering to “normal”. Owing to the shuttle bus loop, the origin and
terminal stops of the shuttle bus route are located at a railway station which we define as
the origin station, shown in Figure 2. Origin station also refers to the blue diamond shape in
Figure 1. Figure 2b demonstrates the individual processes of shuttle buses that are triggered
to adjust correspondingly, yielding to a commuter railway behind schedule. “Farthest bus
stop” refers to the bus stop at the greatest distance from the origin station. Furthermore, as
one example of shuttle bus timetable adjustment in Figure 2b, taking multi-scales of delays
into consideration, we classified the different headway intervals with comparison to the
planned headway. It should be noted that the headway time-intervals are yielding to their
own separate periods as defined in Figure 2a.
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Figure 2. Demonstration of shuttle bus serving commuter railway during different periods: (a) individual
stages of the commuter railway undergoing the disturbance; (b) headway interaction between shuttle
bus and commuter railway allowing for delays.
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For the sake of clear representation, the bus headways of four sub-processes are
denoted by hb1 to hb4, respectively. Four headways correspond to four stages s1 to s4. s1 is
the normal operation horizon in which commuter railway trains and shuttle buses precisely
execute the scheduled timetables/headways as planned. s2 and s3 are behind-schedule
situations. The headway period between the delayed train i and its predecessor as well
as the successor of train i on a given line are denoted as s2 and s3, respectively. In other
words, s2 explicitly refers to the period between the delayed train and the predecessor
train. Thus, the headway is more than that of the normal schedule s1. Accordingly, the
headway of the shuttle bus system necessarily entails a longer headway than normal. s3
implies the headway between the delayed train and successor train, which leads a shorter
headway than that of the initial plan/normal. Correspondingly, the headway of the shuttle
bus warrants reducing. s4 is in the transition period, which means that the headway of the
commuter railway returns to normal. Nevertheless, the headways of the shuttle buses may
still be larger than those before disturbances.

2.2. Assumption

The aforesaid problem statement motivates us to propose the following assumptions:

1. The delays caused by disturbance have the capability of recovering to a normal/plan
by rescheduling techniques along the railway operation horizon;

2. A great number of passengers alighting from trains have a fixed number of gates to
exit and follow the first-come first-served principle (FCFS). The OD (origin destination)
proportion of passenger demand arriving at the origin station is stable;

3. Rigorous load capacity is fixed owing to the homogeneous vehicle type. In other
words, the passengers who exceed the upper load of capacity threshold cannot board
vehicles. In addition, overtaking is allowed;

4. The destinations desired by passengers are located approximately in the center of the
defined districts. Destination information for these commuter passengers is known to
assure exact destination districts;

5. Traffic accidents and vehicle breakdown do not occur on the horizon of the study;
6. A shuttle bus is featured by a single-directional loop route. Notice that shuttle

buses do not pick up the passengers along the route, rather they are customized to
accommodate commuter railway demand from the origin station. It means that there
are only alighting passengers as long as the shuttle buses depart from the origin station;

7. The number of trips is judged by an evaluation metric of operation cost with a
hypothesis of sufficient fleet sizes.

Herein, the motivations of the aforementioned assumptions are presented in detail.
Assumption (1) refers to a controllable scale of delay that conforms to the definition of dis-
turbance [13]. Thus, the knock-on effect of continuing delay is not taken into consideration.
Then, Assumption (2) specifies an even arrival rate of passengers, the rule of which fits
FCFS owing to the exiting queue. Commuter passengers are mainly fixed and thereby their
OD are steady, which facilitates collecting their travel information. Next, Assumption (3)
stipulates strict capacity constraint and bunching elimination. Assumption (4) achieves
valid service areas covered by shuttle bus, and Assumption (5) guarantees an available
study context. Finally, Assumption (6) and Assumption (7) clarify a unidirectional/one-
way service style and assess the number of trips instead of the fleet size as one objective of
the model, respectively.

2.3. Nomenclature

A shuttle bus system is composed of stop set I = {i, j, k} and destination centroid set
G = {g}. A given set of trips B = {bsn} is responsible for the connection service. The set of
processes undergoing disturbance is denoted by S = {s}.

Given that the OD matrix is captured, the number of passengers dg who are desired
for their destinations are known as input. Yielding to Assumption (5), the running time
candidates tij between stops i and j are fixed and obtained. Walking link is depicted by
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yig for seeking the distance/time τig between the stop location and destination centroid as
estimation criteria. db means the number of total trips, which are equal to the number of
elements in set B.

To be clear, the notations and parameters used throughout the paper are explained
in Table 2.

Table 2. List of notations and parameters along with explanatory descriptions.

Sets

G Set of destination centroids, G = {g}
I Set of bus stops, I = {i, j, k}
B Set of trips, B = {bsn}, which indicates that trip n belongs to process s
S Set of subprocesses, S = {s}
U Set of users, U = {u}

Parameters

dg Number of passengers who are willing to reach destination centroid g (unit: pax)
tij Bus travel time between bus stops i to j (unit: min)
τig Walking time of passengers from stop i to destination centroid g (unit: min)
co Vehicle operation cost per unit time (unit: USD /min)
civ In-vehicle travel cost for each passenger per unit time (unit: USD /min)
cov Out-of-vehicle walking cost for each passenger per unit time (unit: USD /min)
cwv Waiting cost for each passenger per unit time (unit: USD /min)
Cb Capacity of vehicle b (unit: pax/vehicle) that is fixed subject to Assumption (3)
λ Passenger arrival rate (unit: pax/min)
δ Passenger drop-on/drop-off time (unit: sec)
δ0 Opening/closing door time (unit: sec)
tu Time slice when passenger u arrives at origin station

Variables

db Number of total trips
δi Total alighting time of passengers at bus stop i over all trips (unit: min)

tbsn Departure time of trip n in subprocess s

wij
Total number of passengers assigned at the link between stops i and j over all

trips (unit: pax)
wtu Waiting time for passenger u at origin station (unit: min)

Decision variables

zi
Bus stop selection indicator, which specifies that bus stop i is elected if zi = 1;

otherwise zi = 0

xij
Bus link selection indicator, which implies that one bus link candidate between

bus stops i and j is elected if xij = 1; otherwise xij = 0

yig

Passenger link selection indicator, which suggests there are passengers who
choose the walk link from stop i to destination centroid g (i.e., alighting from bus

stop i and desired to destination centroid g) if yig = 1; otherwise yig = 0

eu
bsn

Passenger boarding selection indicator, which denotes that the passenger u
boards the trip n in subprocess s from origin station if eu

bsn
= 1; otherwise eu

bsn
= 0

hbs Headway of shuttle bus in subprocess s (unit: min)

3. Modelling Formulation
3.1. Objective Functions

This section introduces objective functions of the model in detail. Objective function (1)
is mainly involved with passengers’ and operators’ interests, which is to minimize four
components, i.e., passengers’ costs for (i) walking, (ii) travelling, (iii) waiting, and (iv)
operation cost.

mincov ∑
i∈I

∑
g∈G

τigdgyig + civ

(
∑
i∈I

∑
j∈I\{i}

tijwij + ∑
i∈I

∑
j∈I\{i}

δiwij

)
+ cwv ∑

u∈U
wtu + co

(
db ∑

i∈I
∑

j∈I\{i}
tijxij + ∑

i∈I
δi

)
. (1)
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In the objective function, cov, civ, cwv, and co are monetary coefficients, respectively.
The Objective function (1) minimizes the net travel benefits given by (i) walking times from
stop to destination centroid; (ii) in-vehicle travelling times for passengers; (iii) waiting
times at origin station; and (iv) shuttle buses’ travelling times. These time costs are assessed
based on an identical monetary unit, i.e., U.S. dollars.

Next, Section 3.2 will state the constraints of the shuttle bus.

3.2. Shuttle Bus Constraints

Constraints (2) and (3) specify link xij is generated once stops zi and zj are elected,
which are equal to 1. Constraint (4) validates the number of passengers wij distributed
to the link xij only when link xij is selected (equal to 1). Constraint (5) achieves an equi-
librium assignment, in which the number of passengers dg aiming for their destination g,
dgyig, is equal to in-vehicle passengers wki minus the ones wij alighting at stop i already.
Constraint (6) clarifies that the number of passengers alighting at all stops along the route
(right side) is equal to the sum of ones boarding from the origin station i0 (left side). Con-
straint (7) ensures that all passengers have alighted already once the shuttle bus arrives
at terminal stop (i.e., back at the origin station i0). Constraint (8) assures that the capac-
ity summation of total shuttle buses Cbdb is more than total passenger demand ∑g∈G dg.
Constraint (9) presents the number of passengers boarding one single bus as less than the
vehicle capacity Cb. Constraint (10) stipulates the minimum and maximum headways of the
shuttle bus system. Especially, the headway cannot exceed the duration of each subprocess.
Constraint (11) states that the bus can depart from the origin station only if meeting the
headway of the subprocess. Constraint (12) calculates the waiting time of passengers at
the origin station, which depends on the time-window between the arrival time at origin
station and the boarding time. Constraint (13) ensures that the waiting time of passenger
u is non-negative, i.e., if passengers want to get on the bus, they must arrive at origin
station earlier than the departure time of trip n at origin station. Constraint (14) expresses
the relationship between the bus dwell time and the number of alighting passengers, as
well as door opening and closing times. Constraint (15) validates that the passenger flow
of each link is non-negative. Constraint (16) manifests the relationship between bus stop
selection zi and passenger walking links yig. Only when the bus stop i is selected is the
corresponding walk link valid. Constraint (17) strictly imposes one destination centroid
corresponding to one stop. Constraints (18)–(21) are decision variable constraints.

∑
j∈I\{i}

xij = zi ∀i ∈ I, (2)

∑
i∈I\{j}

xij = zj ∀j ∈ I, (3)

wij ≤
(

∑
g∈G

dg

)
xij ∀i, j ∈ I, (4)

∑
k∈I\{i}

wki − ∑
j∈I\{i}

wij = ∑
g∈G

dgyig ∀i ∈ I, (5)

∑
i∈I\{i0}

wi0i = ∑
i∈I\{i0}

∑
g∈G

dgyig, (6)

∑
k∈I\{i0}

wki0 = 0, (7)

Cbdb ≥ ∑
g∈G

dg, (8)

∑
u∈U

eu
bsn
≤ Cb ∀bsn ∈ B, (9)
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hmin ≤ hbs ≤ hmax ∀s ∈ S, (10)

tbsn −
s−1

∑
t=1

hct −
⌊

tbsn −∑s−1
t=1 hct

hbs

⌋
hbs = 0 ∀bsn ∈ B, (11)

wtu =

(
∑

bsn∈B
eu

bsn
tbsn

)
− tu ∀u ∈ U, (12)

eu
bsn

tu ≤ tbsn ∀u ∈ U ∀bsn ∈ B, (13)

δi =

δ ∑
g∈G

yigdg + dbδ0 ∀yig = 1

0 ∀yig = 0
∀i ∈ I, (14)

wij ≥ 0 ∀i, j ∈ I, (15)

yig ≤ zi ∀i ∈ I, (16)

∑
i∈I

yig = 1 ∀g ∈ G, (17)

zi ∈ {0, 1} ∀i ∈ I, (18)

xij ∈ {0, 1} ∀i, j ∈ I, (19)

yig ∈ {0, 1} ∀i ∈ I, (20)

eu
bsn
∈ {0, 1} ∀u ∈ U. (21)

4. Solution Algorithm
4.1. Decomposition

To solve this problem, we execute the decomposition preprocess, i.e., pre-considering
the shortest distance from stops to destination centroids. Afterwards, obtained from pre-
solved outcomes, the new objective function links the selected bus stops to design a route
and then generates the shuttle bus timetable seeking the minimum cost.

minciv

∑
i∈I

∑
j∈I\{i}

tijwij + ∑
i∈I

∑
j∈I\{i}

δ̂iwij

+ cwv ∑
u∈U

wtu + co

db ∑
i∈I

∑
j∈I\{i}

tijxij + ∑
i∈I

δ̂i

, (22)

∑
j∈I\{i}

xij = ẑi ∀i ∈ I, (23)

∑
i∈I\{j}

xij = ẑj ∀j ∈ I, (24)

wij ≤
(

∑
g∈G

dg

)
xij ∀i, j ∈ I, (25)

∑
k∈I\{i}

wki − ∑
j∈I\{i}

wij = ∑
g∈G

dgŷig ∀i ∈ I, (26)

∑
i∈I\{i0}

wi0i = ∑
i∈I\{i0}

∑
g∈G

dgŷig, (27)

∑
k∈I\{i0}

wki0 = 0, (28)

Cbdb ≥ ∑
g∈G

dg, (29)

∑
u∈U

eu
bsn
≤ Cb ∀bsn ∈ B, (30)
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hmin ≤ hbs ≤ hmax ∀s ∈ S, (31)

tbsn −
s−1

∑
t=1

hct −
⌊

tbsn −∑s−1
t=1 hct

hbs

⌋
hbs = 0 ∀bsn ∈ B, (32)

wtu =

(
∑

bsn∈B
eu

bsn
tbsn

)
− tu ∀u ∈ U, (33)

eu
bsn

tu ≤ tbsn ∀u ∈ U ∀bsn ∈ B, (34)

wij ≥ 0 ∀i, j ∈ I, (35)

xij ∈ {0, 1} ∀i, j ∈ I, (36)

eu
bsn
∈ {0, 1} ∀u ∈ U. (37)

Herein, we rewrite Constraints (1)–(21) to derive new Constraints (22)–(37). In brief,
we eliminate the decision variables in determining the optional bus stop locations and com-
puting passenger walking time. Thereby, we can reduce the traversal on route selection. δ̂i
refers to alighting time of passengers at optimized stop candidate i in Constraint (22). ẑi and
ẑj denote bus stops i and j selected in the pre-solved sub-problem in Constraints (23)–(24).
ŷig is the optimized passenger link in the pre-solved sub-problem in Constraints (26)–(27).

Objective function (38) is created for the purpose of pre-determining the shuttle bus
routes and finding the optimized route as per genetic algorithm and simulated annealing.
Explicitly, given the OD matrix of passenger demand, the aim is to minimize the total cost
of one refined trip as per the testing of different routes.

min ∑
i∈I

∑
j∈I\{i}

tijwij + ∑
i∈I

∑
j∈I\{i}

δ̂iwij. (38)

Objective function (38) addresses the travel time and alighting times of passengers
that refer to the first and second terms of Objective function (22), respectively. Initially,
Objective function (38) helps for the shortest (precisely, that means minimum cost) path
problem of TSP.

4.2. Genetic Algorithm

We adopt a genetic algorithm (GA) [28,29] to resolve the nonlinear integer program-
ming model proposed, rather than employ the TSP approach because TSP is incapable
of adjusting the shuttle bus headway to handle the behind-schedule commuter railway.
The OD matrix of passenger demand is known based on real-time information collection
and historical data. GA is applied twice to seek the shuttle bus service’s optimized routes
and timetables, respectively. The procedures of addressing this problem are presented in
detail below.

4.2.1. Genetic Algorithm for the Routing Problem

First, GA is used to solve the routing problem. The detailed steps are introduced.
Step 1: Initialization.
Generate the evolution time counter t = 0, stipulate the maximum evolution times T,

and define random individuals M in the initial population P(0) with the generation of the
initial route candidate r as the initial population.

Step 2: Personal evaluation.
Calculate the fitness of everyone in the population P(t). For the purpose of optimiz-

ing routes, different route candidates are tested with the objective of minimizing total
passengers in-vehicle travel costs.

Step 3: Select operation.
Apply the selection operation to the population. The aim of the selection is for the

next generation to inherit the optimized individuals, or alternatively to generate new
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individuals through combining and crossover. Then, they should be inherited by the next
generation. The selection operation is the basis of the fitness evaluation of the individuals in
the population. We use the roulette selection, which is a replay random sampling method.
The probabilities of each individual accessing the next generation is equal to the inverse
proportion of its fitness value to the total fitness of the total population. A smaller fitness
value poses a higher possibility for seeking a superior shuttle bus route.

Step 4: Crossover operation.
Exert the crossover operation on the population. Crossover relates to the activities of

replacing and recombining part of the formation of the two parent individuals to result
in a new individual. Suppose there are G bus stops. In the crossover operation process,⌊

G
2

⌋
stops of the individual P1 is randomly selected. If this part is selected, all the genes of

this part are exchanged with the corresponding genes of individual P2. Figure 3 shows the
crossover operation process of individual P1 and P2 (the omitted part also has exchange).
Numbers of P1 and P2 represent bus stop indices. Crossover operation ensures that the
resulting offspring individual is a feasible solution. By crossing operations, new routes
are generated.
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Step 5: Mutation operation.
Implement mutation operator for the population; that is, the gene value on some loci

of the individual string in the population is changed. As shown in Figure 4, a mutation
mask is randomly generated before performing the mutation operation. For the selected
individual’s bus stop part, the mutation operation is performed on the

⌊
G
2

⌋
genes.
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Step 6: Termination.
Until t = T, the individual within the maximized fitness derived from the evolution is

utilized as the optimized outcoming output and the traversal is brought to an end.
By means of the foregoing six steps, after inputting the initial data (i.e., optimal bus

stops set and basic passenger information), an optimized route r′ is obtained.

4.2.2. Genetic Algorithm for the Timetabling Problem

In addition, GA is used to solve the timetabling problem. The detailed steps are introduced.
Step 1: Initialization.
Generate the evolution time counter t = 0, stipulate the maximum evolution times

T, and define random individuals M in the initial population P(0). In generating the
initial timetable, the random bus headways hbs in each subprocess s is defined as the
initial population.
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Step 2: Personal evaluation.
Calculate the fitness of everyone in the population P(t). For the purpose of optimizing

timetable, the headway of shuttle bus service in each process s is tested with the objective
of minimizing total passengers traveling, waiting, and vehicle operation costs.

Step 3–Step 6 are similar to the steps in Section 4.2.1
By means of the foregoing six steps, after inputting the initial data (i.e., optimized

route and basic passenger information), the optimized shuttle bus headway h′bs is derived.
The Algorithm 1 flowchart reflecting the details is shown in Figure 5. The follow-

ing pseudocode presents the algorithmic procedures by which the shuttle bus timetable
candidates are derived.
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Algorithm 1. Procedures for generating the shuttle bus route/timetable by GA

input the initial populations containing the route candidate/ the headway of each subprocess
Pop, terminate condition T, evolutionary population generation t
output New_Pop
initialize t← 0 , fitness function value ← +∞
fitnessP (Pop)
while (t ≤ T) do

GA-operationP (Pop)
fitnessP (Pop)

New_Pop← Pop
t++

end while
return New_Pop

4.3. Simulated Annealing

Compared to GA, simulated annealing (SA) [30,31] has a global search superiority by
which fewer results are trapped in the local optimum. SA is derived from the annealing
process of solid materials in physics starting with an initial temperature and followed by
a temperature decrease. The global optimal solution is found randomly in the solution
space, so it belongs to a probability-based search scope. Similar to GA, this paper applies
SA twice to seek the shuttle bus service’s optimized routes and timetables, respectively.
The procedures for addressing this problem are presented in detail as follows.

4.3.1. Simulated Annealing for the Routing Problem

First, SA is used to solve the routing problem in a similar way.
Step 1: Initialize, choose an initial solution, i.e., the route candidate x0 to calculate

fitness z(x0), i.e., total passengers in-vehicle travel costs, let xbest = x = x0, use the given
starting and termination temperatures T0 and Tf , respectively, and set iteration k = 0.

Step 2: Randomly choose a solution xk in the neighborhood and calculate the objective
function increment ∆ f = f (xk) − f (x). For neighbor solution generation, the order of
any two bus stops can be exchanged or the elements between the two bus stops can be
rearranged in reverse order.

If ∆ f < 0, then let x = xk. Otherwise, generate a random number ξ = U(0, 1). If the
random number is smaller than the transfer probability P(∆ f , T), then let x = xk.

Step 3: Decrease the temperature T.
Step 4: If the maximum number of iterations kmax or the minimum temperature Tf is

reached, then stop. Let xbest = x, or else go to Step 2.

4.3.2. Simulated Annealing for the Timetabling Problem

In addition, SA is used to solve the timetabling problem, whose steps are summarized
as follows.

Step 1: Initialize, choose an initial solution x0, i.e., the initial timetable, i.e., the ran-
dom bus headways hbs in each subprocess s, calculate fitness z(x0), i.e., total passengers
traveling, waiting, and vehicle operation costs, let xbest = x = x0, use the given starting
and termination temperatures T0 and Tf , respectively, and set iteration k = 0.

Step 2–Step 4 are similar to the steps in Section 4.3.1
The following pseudocode presents the algorithmic procedures by which the shuttle

bus timetable candidates are derived (Algorithm 2).
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Algorithm 2. Procedures for generating the shuttle bus route/timetable by SA

input the initial solution x0, termination temperature Tf , set iteration k
output xbest
initialize x ← x0 , T ← T0 , k← 0
while k ≤ kmax and T ≥ Tf do

xk ← NEIGHBOR(s)
∆ f ← f (xk)− f (x)

if ∆ f < 0 or RANDOM(0, 1) ≤ P(∆ f , T) then
x ← xk

end if
T ← COOLING(T, k, kmax)
k← k + 1

end while
xbest ← x
return xbest

In essence, both GA and SA are heuristics. We employ these two tailored algorithms
to validate the correctness of resolving the model and deriving a solution of a real case. In
addition, with a reasonably acceptable gap of optimized results between the two algorithms,
it turns out that a near-optimal solution is attained with a compatibility of efficiency. The
next section practically demonstrates the modeling effectiveness and solution efficiency as
per a real case of Shanghai shuttle transit.

5. Case Study
5.1. Data and Parameter Settings

The model established is implemented for a real case of shuttle buses that belong to
the feeder system serving Jinshan Railway in Shanghai, China. The loop route of the shuttle
bus creates a service circle that covers an area within a radius of 5 km. The origin station
is the first-departure bus stop near Tinglin Railway Station. The working area and living
area near the origin station are regarded as the demand districts. The shapes of these areas
are depicted as a rectangle or a triangle, which facilitates the seeking of the destination
centroid. As shown in Figure 6, demand communities are distributed along the east and
west directions from the origin station.
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The historical and officially released data serves as an input basic. The average
headway of Jinshan Railway at peak hours is 20 min. Assume (hypothetically) that the
delay time of a train will be 15 min. The train arrival time of each subprocess studied is
shown in Table 3. Due to the disturbance, the headway in subprocess 2 becomes 35 min,
and the headway in subprocess 3 becomes 5 min.



Sustainability 2022, 14, 16708 16 of 24

Table 3. The train arrival time and status of each subprocess.

Status Subprocess Train Arrival Time

Normal 1 7:30

Abnormal
2 7:50
3 8:25

Transition 4 8:30
Normal 1 8:50
Normal 1 9:10

The arrival rate λ of passengers is 26 pax/min based on practical, actual observa-
tion. Referring to Yu et al. [17], boarding and alighting time per passenger δ is set as
1.7 s. The fixed time of opening/closing door δ0 is 4.0 s. Values of parameters co, civ,
and cwv that refer to Chen et al. [32] are valued as 2.5 USD/min, 0.17 USD/min, and
0.25 USD/min, respectively.

According to Assumption (2), the OD matrix of passengers is usually stable and
identical. Thus, based on the practical survey and historical data, the number of passengers
exiting from Tinglin Railway Station is 200 pax/train and the average running speed of
the shuttle bus is 30 km/h. According to Constraint (10), the minimum headway hmin and
maximum headway hmax are set to 1 and 30 min, respectively. Besides, the proportion of
passengers arriving at each destination area can be obtained in Table 4. There are three
gates at the exit. The vehicle capacity of the shuttle bus is 50 pax/vehicle.

Table 4. Percentage of arrival passengers in each destination area (100%).

Index of Destination Area Reach Ratio

0 0
1 0.2
2 0.2
3 0.05
4 0.2
5 0.05
6 0.15
7 0.1
8 0.05

5.2. Computation Results and Solution Quality

The GA and SA used in this paper is programmed by Python 3.9 on a personal
computer with Inter Core 8th i5 CPU @ 1.40 GHz and 8.00 GB RAM. In predetermining the
initial parameters of GA from the experimental experience, it is reasonable to predefine
the population size as 100, and the maximum number of iterations as 500, respectively.
The probabilities of crossover and mutation are 0.9 and 0.001, respectively. For SA, it is
reasonable to predefine starting and termination temperatures T0 = 100, Tf = 1× 10−9,
and cooling rate as 150.

Two candidate stops are examined for serving each of the survey communities and
an alternative one is elected by the proposed model. We predetermine a bus stop near
the destination centroid within the communities so as to begin with the global iteration.
Figures 7 and 8 exhibit the feasible links between stops to generate an optimized shuttle bus
route by GA and SA, respectively. The same optimized routes are obtained by two different
algorithms, whose elected route stops are indexed by 0-1-2-4-3-5-8-6-7-0. The length of the
route is 15.44 km. Next, the available headway range is texted randomly in each subprocess
to obtain the optimized result. Figures 9 and 10 illustrate that the fitness value decreases
continuously along with algorithmic iteration, and the speed of convergence in SA is faster
compared to GA. In both algorithms, the same results are obtained. We find the optimized
solution in which the total cost is USD 9545 and the headway of each sub-process is 5, 7, 1,
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5, and 5 min, respectively. Detailed results of GA and SA are shown in Table 5, where NIO
refers to the number of iterations already when converging.

Table 5. Results of GA and SA.

Algorithms Optimized Routes Headway of Each Sub-Process Costs (USD) CPU_Time (s) 1 NIO 1

GA 0-1-2-4-3-5-8-6-7-0 5-7-1-5-5 9545 125.76 43
SA 0-1-2-4-3-5-8-6-7-0 5-7-1-5-5 9545 137.32 33

1 CPU_time refers to the computation times when deriving a converging result; NIO is the number of iterations
already when converging.

As a comparable metric, the item no-planning timetable refers to unchanged departure
times and headway as the initial plan regardless of punctuality or disturbance undertaken.

In Figure 11a, the headway of the no-planning timetable is regulated to be 5 min as a
comparable metric whereas Figure 11b demonstrates the optimized headways obtained
by GA which shift in each subprocess. The departure times of the no-planning timetable
and adjusted timetable are shown in Table 6. Figure 12 shows the cost comparison of the
two timetables. We find out that passengers in-vehicle travel time is unchanged when
applying either of the two timetables. The optimized timetable requires more trips than the
no-planning one, which causes a 10.2% increase to the operation cost compared to the cost
of the no-planning timetable. On the other hand, in seeking the comparison of waiting time
between them, a noteworthy reduction of 49.1% results from using the optimized timetable.
The decrease is due to timely accommodation of the majority of congested accumulation
passengers. To conclude, the optimized timetable results in a 7.6% reduction for the total
objective compared to the no planning timetable.
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Table 6. Detailed no planning and optimized bus timetable.

No Planning Optimized

Index Trip Departure
Times Index Trip Departure

Times Index Trip Departure
Times Index Trip Departure

Times

1 b11 7:30 12 b31 8:25 1 b11 7:30 12 b33 8:27
2 b12 7:35 13 b41 8:30 2 b12 7:35 13 b34 8:28
3 b13 7:40 14 b42 8:35 3 b13 7:40 14 b35 8:29
4 b14 7:45 15 b43 8:40 4 b14 7:45 15 b41 8:30
5 b21 7:50 16 b44 8:45 5 b21 7:50 16 b42 8:35
6 b22 7:55 17 b51 8:50 6 b22 7:57 17 b43 8:40
7 b23 8:00 18 b52 8:55 7 b23 8:04 18 b44 8:45
8 b24 8:05 19 b53 9:00 8 b24 8:11 19 b51 8:50
9 b25 8:10 20 b54 9:05 9 b25 8:18 20 b52 8:55

10 b26 8:15 10 b31 8:25 21 b53 9:00
11 b27 8:20 11 b32 8:26 22 b54 9:05

5.3. Sensitivity Analysis

Examining the variable change possibilities induces us to explore the quantifiable
sensitivity of inputs, parameters, and constraints. In detail, the sensitivity analysis of the
overall objective is performed with regard to different fluctuations on delay times (input),
arrival rates measured by number of gates (parameter), and vehicle capacity (constraint).

5.3.1. Delay Times

In this section, we test a delay range between 1 min and 19 min which is derived from
the commuter railway. In order to clarify the impact of different delay scales, a trend of
fitness value is calculated.

Figure 13 primarily depicts the variation in total cost from USD 9450 to USD 9600 in
response to delay time ranges from 1 min to 17 min. Notice that the delay time approaches
the upper bounds of 18 min and 19 min, which results in a quickly increased cost of
USD 9698 and USD 9845, respectively, and a markedly higher than the average cost. As
investigated for the average cost of USD 9510 based on the 1st–17th min delay situations,
the two heaviest delay scenarios, namely 18 and 19 min, cause a 1.98% and 3.53% increment
of total cost, respectively. Yielding to the larger delays (such as 18–19 min), the swift
growth on accumulated demand allows more trips (fleet sizes) to accommodate the layover
passengers; however, these generate greatly increasing operation costs.
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5.3.2. Arrival Rates

Attention to infrastructure contributes to clarifying the efficiency of users exiting the
railway. In practice, sites where passengers go through the gates are more inclined to
produce huge crowds; it is the so-called bottleneck. Typically, we treat the number of gates
as the core element of impact on passenger arrival rates. The observation of the number of
gates in Figure 14 fulfills this test. There is a range from 1 to 10, which covers the common
infrastructures in practice.
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A reduction (like a valley) of 1.51% and 1.40% in the value of two gates is represented
in Figure 14 with a comparison to one gate and three gates, respectively. Clearly, their
values are USD 9585, USD 9441, and USD 9575. Essentially, the number of gates possesses
a positive correlation with passenger arrival rate. Yielding lesser bus capacity than train ca-
pacity, the frequency of the shuttle bus increases depending on the demand level measured
by the number of gates passed. Until the number of gates reaches nine and ten or more, the
total cost is stabilized at USD 9716. It suggests that, until the upper threshold is reached,
the higher the passengers’ arrival rate is, the longer the waiting times.

5.3.3. Vehicle Capacities

Last but not least, Figure 15 shows the investigation of the performance of multiple
vehicle capacities. The capacity variable is tested to pursue the tradeoff between service
frequency (as the reciprocal of headway) and waiting times as per a range of 15 to 120 pax.
In the capacity range from 15 to 70 pax, lower capacity requires more trips/frequencies to
serve, but it generates greater operation costs. On the other hand, along with the capacity
increasing from 70 to 120 pax, one vehicle/trip can accommodate more waiting passengers,
resulting in lower frequency. The longer headway poses drastically increased passenger
waiting costs that account for the total cost and thereby heavily exceed 70 pax/veh. In
particular, the total cost of USD 9433 with Cb = 70 indicates that the best compromise result
emerging from the model is obtained by attaining a tradeoff between the minimal sum of
operation and the waiting times, as demonstrated in Figure 15.
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6. Conclusions

This study focuses on shuttle bus timetable adjustment in response to commuter rail-
way disturbances that specifically refer to behind-schedule delays. In an attempt to achieve
last-mile convenience required by sustainable transportation, shuttle bus timetables are
dedicated to offering synchronized connections in order to attain a more user-oriented
service, favorable to transfer between both modes (i.e., from railway to bus). Thus, en-
hancing the capacity of the shuttle bus to handle unforeseen/fluctuated demand derived
from behind-schedule railway delays is sufficient to warrant a valid model and solution;
most previous studies paid less attention to the follow-up adjustment, even if the initial
disturbance has already been addressed. To bridge this gap, not only are multiscale railway
delays taken into consideration, but shuttle bus route and stop formulation is also facili-
tated. An integer programming model is proposed. The nature of the entire mathematical
formulation of the model is non-linear, prompting us to seek decomposition and a heuristic
method. The objective is to minimize passengers’ waiting, travelling, and walking costs
as well as the operation costs of the entire route yielding to the shortest path, in principle,
between stops and centroids. Numerical results of the Shanghai case study validate 7.6%
savings of the total cost by using our approach with a comparison between an adjustment
timetable and the no-planning one. Moreover, they validate a 49.1% reduction to passengers’
waiting times.

The threefold concentration of the sensitivity analysis on delay times, passenger arrival
rates, and the upper bound of the capacity threshold are conducted to exploit the sophis-
ticated nature of the modeling formulation. If we elaborate, this threefold concentration
involves (i) the two heaviest delays (i.e., 18 and 19 min) leading a sharp growth of 1.98%
and 3.53% because of the additional trips/vehicles required for accumulated demand in the
delay horizon; (ii) the test of passengers’ arrival rate, mainly impacted by the number of
gates, which finds a valley (USD 9441) floor and steady peak value (USD 9716); (iii) optimal
capacity value (70 pax) sought along with its bilateral variation of capacity, which presents
a compatible optimum for the operation and passenger waiting costs.

This study, aimed at striking a successor solution to the adjustment problem of shuttle
bus response to a behind-schedule predecessor railway, elucidates the potential of sus-
taining future research. As successive solutions narrow the focus of future research, our
attention is directed to the following aspects requiring improvement or solutions:
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1. The disruptions on the commuter railway, which spurs the adjustment of vehicle
scheduling and renders crew scheduling infeasible. Under this circumstance, the
knock-on effect of spreading the delay should be taken into consideration;

2. Traffic conditions should be considered in terms of the randomness of traveling time;
3. Passengers’ boarding and alighting times tend to be precisely tracked, and this needs

to be improved specifically in relation to the degree of in-vehicle crowding.
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