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Abstract: Urban expansion has been changing the urban thermal environment. Understanding the
spatial distribution and temporal trends in the urban thermal environment is important in guiding
sustainable urbanization. In this study, we focused on the land use/land cover (LULC) changes and
urban expansion in Nanchang city, Jiangxi province, China. The four elements in the remote sensing-
based ecological index (RSEI) are heat, greenness, dryness, and wetness, which correspond to the land
surface temperature (LST), NDVI, NDBSI, and WET, respectively. According to the synthetic images
of the average indices, we conducted temporal trend analysis together with statistical significance
test for these images. We conducted partial correlation analyses between LST and NDVI, NDVSI,
as well as WET. In addition, we used the LULC maps to analyze the multi-year trends in urban
expansion. Then, we superimposed the trends in daytime and nighttime LST in summer on urban
expansion area to extract the LST trends at sample locations. The results showed that LULC in
Nanchang has substantially changed during the study period. The areas with statistically significant
trends in LST coincided with the urban expansion areas. Land cover change was the main reason
for LST change in Nanchang. In particular, artificial surfaces showed the greatest increase in LST;
for per 100 km2 expansion in artificial surfaces, the daytime and nighttime LST increased by 0.8 ◦C
and 0.7 ◦C, respectively. Among all the study land cover types, water bodies showed the greatest
differences in LST change between the daytime and nighttime. There were statistically significant
correlations between increases in LST and increases in NDBSI as well as decreases in NDVI and WET.
In view of the considerable impact of urban expansion on the urban thermal environment, we urge
local authorities to emphasize on urban greening when carrying out urban planning and construction.

Keywords: urban expansion; time series; LULC; LST

1. Introduction

Urbanization can cause many problems. With advancing urbanization, a large number
of artificial surfaces have replaced natural surfaces [1], which causes fundamental changes
in urban land cover and affects the urban environment, climate, ecology, and so on. An
urban heat island (UHI) is a typical representative of the changes in the urban thermal
environment caused by urbanization. UHI reflects the phenomenon that the temperature
in urban areas is higher than that in the surrounding rural areas [2]. UHI expands from
within the city to the surrounding areas with the progression of urbanization; it increases
energy consumption [3], aggravates air pollution [4], induces urban diseases [5], and affects
the health of residents [6]. Therefore, studying urban climate and alleviating the UHI
effect have become salient issues that must be addressed in the process of urbanization.
There are many measures to mitigate UHI, such as increasing urban surface reflectivity and
evapotranspiration rate [7], increasing blue and green infrastructure [8], reducing urban
anthropogenic heat emissions [9], choosing design strategies that are adapted to the local
climate [10], changing urban geometry, de-urbanization [11], etc.
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UHI is usually divided into two types: atmospheric urban heat island and surface
urban heat island (SUHI) [12]. Because SUHI reflects more temporal and spatial changes
than atmospheric UHI does, it is more popular among researchers [13]. Many scholars
use remote sensing technology in large-scale SUHI studies, mainly due to the advantages
of low cost, high efficiency, and relatively better temporal and spatial resolutions [14].
SUHI mainly uses the measurement of LST as a quantitative index, and most of the related
studies focus on the spatial and temporal characteristics of LST that is extracted from
thermal infrared remote sensing images such as the Landsat series, ASTER, MODIS, and
AVHRR [15]. LST measures the Earth’s surface temperature [16], and it is an important
variable of the surface-to-near-surface atmospheric energy flux exchange and interaction.
Understanding the correlations between LST and complex landscape patterns is essential
for selecting appropriate mitigation strategies to improve urban thermal environment [17].

LST is used to represent heat in the remote sensing-based ecological index (RSEI) [18].
RSEI is from the “Technical Specifications for Evaluation of Ecological Environment Condi-
tions” issued by the Ministry of Ecology and Environmental Protection of China [19]. The
four elements of RSEI (i.e., greenness, wetness, dryness, and heat) are constructed through
principle component analysis [20]. Among these, LST represents heat, NDVI (normalized
difference vegetation index) represents greenness, NDBSI (normalized difference bare soil
index) represents dryness, and WET represents wetness; all four indices are correlated
with each other [21]. Urban expansion causes LULC change, which causes changes in the
correlations among the four RSEI elements. Previous studies pointed out that NDVI is
negatively associated with LST [22], NDBSI is positively associated with LST [23], and no
correlations were found between WET and LST. Most of the related studies focused on
single correlations; however, it is important to consider partial correlation in RSEI in order
to avoid the linear effects of other variables [24,25].

LST measurements are usually obtained by inverting remote sensing image data with
thermal infrared bands [26]. Many scholars use the Landsat and MODIS remote sensing
data (available to the public for free) to retrieve LST in UHI studies. For example, Landsat
data are used to monitor the formation of SUHI [27], evaluate multi-year urban expansion
and the corresponding thermal characteristics [28], compare the relationships between
green space patterns and the cooling effects in multiple cities [24], analyze the impact of
urban central parks on UHI [29], study the impact of major rivers on UHI [30], analyze
changes in urban impervious surfaces [31], compare the spatio-temporal characteristics
of LST among big cities [32,33], etc. However, due to the 16-day revisit period of Landsat
images, the number of images is relatively small [34]. In addition, many images are
disturbed by cloud systems, and only images with no or few clouds are usable [35]. The time
series of Landsat images may have missing images or images that need to be stitched due to
small coverage, which collectively affects the accuracy of the study results. Urbanization is
a continuous and dynamic process, and fragmented Landsat images may not be enough to
reveal the time series of UHI [36]. Therefore, most studies select historical images of multi-
year and multi-scenario Landsat images for analysis [37], especially the images during the
same timescale of the year [38]. Another common research method in UHI studies is to use
MODIS [39] to invert the LST to obtain the geographical distribution map of LST. MODIS
remote sensing data are medium-resolution (250–1000 m) images with a revisit period of
1 day. The one-scene data in MODIS cover a large area, the amount of stitching is smaller
compared to the Landsat series images, and high-frequency cloud-free observations help
capture the time series of phenology data [40]. MODIS series products provide LST, NDVI,
and other data, among which LST data include both the daytime and nighttime scales,
which is more suitable for image change studies with continuous time series [41,42]. For
example, MODIS remote sensing images were used to investigate the temporal trend in
urban LST [43], to analyze the long-term trends in Asian vegetation greenness and climate
variables as well as their correlation [44], and to evaluate the SUHI mode and its driving
factors in five major cities in Bangladesh [45]. Time series of remote sensing data could
reveal the dynamic changes in LST [46]. Previous scholars combined the advantages of
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both Landsat and MODIS to study UHI and concluded that MODIS is superior in dynamic
time series analysis [46,47].

When using LST to study UHI, it is important to divide rural and urban areas, although
no uniform standards have been issued yet [48]. Thus far, the division between rural and
urban areas has been mainly based on city borough boundaries [49,50], the center of
the city and a certain radius [51], the intercepted or stitched city-wide remote sensing
images [52], the impervious surface coverage area [53], the night light coverage [54], the
grid cells that have more than 50% of development land [55], etc. These above-mentioned
division methods have great uncertainty, and the derived UHI conclusions might be
biased. Therefore, reasonably dividing the city boundary is critical in urban expansion and
UHI analyses.

MODIS remote sensing images are often used as the main data source for RSEI evalua-
tion [21]. In this study, we used the MODIS image data to analyze the thermal environment
change and its related factors from 2000 to 2020 in Nanchang, Jiangxi, China. According
to the RSEI theory, we analyzed the correlations between LST and NDVI, NDBSI, as well
as WET. The goal of this study is to (1) quantify the trends in urban thermal environment
during the day and night in summer; (2) analyze the effects of NDVI, NDBSI, and WET on
changes in LST before and after urban expansion; and (3) investigate the relationships be-
tween the trends in urban thermal environment and urban expansion. Our study provides
visualized results for the local decision makers and urban planners.

2. Materials and Methods
2.1. Research Area

The research area is Nanchang city (28◦10′–29◦11′ N and 115◦27′–116◦35′ E, Figure 1),
the capital of Jiangxi province (in the northern part of the province) in China. Nanchang
city is located in the lower reaches of the Yangtze River in southern China, with a total area
of 7190 km2. It has a subtropical monsoon humid climate, and a southwest wind prevails
in summer. Due to the cold winter and hot summer climate, Nanchang is known as one
of the “four furnace cities” in China. The northeastern part of Nanchang is adjacent to
Poyang Lake (the largest freshwater lake in China), and the city is in the Poyang Lake
Plain, with a relatively flat terrain. Within the city limits, there are two main rivers (i.e., the
Gan River and Fu River) and many other waters passing through the city. To the west
of the city center is the Meiling Mountains (with an altitude above 800 m, the only high
mountains in the central city area), which extend in the southwest–northeast direction.
There are six administered districts (i.e., Donghu, Xihu, Qingshanhu, Qingyunpu, Xinjian,
and Honggutan districts) and three administered counties (i.e., Nanchang, Jinxian, and
Anyi counties) in Nanchang city, and the central urban area mainly covers the six districts
and Nanchang county.

2.2. Datasets

We chose the LST data from the free eight-day average MOD11A2 v6.1 remote sens-
ing image product from the United States Geological Survey (https://lpdaac.usgs.gov/
products/, accessed on 5 October 2022) [56]. This product adopts the daytime and night-
time surface temperature observation layers of the MODIS 31 and 32 bands, which provides
average values of LST and emissivity during the day and night. This product directly
excludes the influence of the cloud system and can meet the clear sky standard. The
time series of the product are relatively complete, the coverage of the product is up to
1200 km, and the quality of the product is good. The product provides a long-term series
of average LST images starting from 2000, with a resolution of 1000 m [57]. Many studies
have successfully used the MODIS dataset to derive urban surface heat island intensity
and confirmed that it can provide satisfactory surface temperature measurements [58].
NDVI data were from the MOD13A1 product, and NDBSI and WET data were from the
MOD09A1 product. The above-mentioned data were obtained from the GEE platform
(https://earthengine.google.com, accessed on 5 October 2022).

https://lpdaac.usgs.gov/products/
https://lpdaac.usgs.gov/products/
https://earthengine.google.com
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LULC raster images were downloaded from http://globeland30.org/, accessed on
10 January 2022. The resolution of this dataset is 30 m, with the LULC data from the
three years of 2000, 2010 and 2020. Tongji University took the lead in verifying the data
from 2010 and reported the final overall accuracy of 83.50%, with a Kappa coefficient of
0.78. The Chinese Academy of Sciences took the lead in verifying the data from 2020 and
reported the overall accuracy of 85.72%, with a Kappa coefficient of 0.82 [59]. The accuracy
of data in both 2010 and 2020 met the standards of this study. According to the actual land
use in Nanchang, the land cover was categorized into seven types, including arable land,
woodland, grassland, wetland, water bodies, artificial surfaces, and bare ground. More
details of the datasets are listed in Table 1.

Table 1. Period, resolution, and sources of the datasets used in this study.

Dataset Period Resolution Source

LULC 2000, 2010, and 2020 30 m http://globeland30.org/. Accessed on 10 January 2022

LST 2000–2020 1000 m https://developers.google.com/earth-engine/datasets/
catalog/MODIS_061_MOD11A2. Accessed on 5 October 2022

NDVI 2000–2020 1000 m https://developers.google.com/earth-engine/datasets/
catalog/MODIS_061_MOD13A1. Accessed on 5 October 2022

NDBSI 2000–2020 1000 m https://developers.google.com/earth-engine/datasets/
catalog/MODIS_061_MOD09A1. Accessed on 5 October 2022

WET 2000–2020 1000 m https://developers.google.com/earth-engine/datasets/
catalog/MODIS_061_MOD09A1. Accessed on 5 October 2022

Administrative map N/A N/A http://datav.aliyun.com/portal/school/atlas/area_selector.
Accessed on 15 May 2022

2.3. Methods and Data Processing
2.3.1. LULC Extraction

Land change was analyzed with the parallel technology of Patch-generating Land
Use Simulation (PLUS) software (https://github.com/HPSCIL/Patch-generating_Land_

http://globeland30.org/
http://globeland30.org/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1
http://datav.aliyun.com/portal/school/atlas/area_selector
https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
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Use_Simulation_Model, accessed on 15 May 2022), which was developed by the High-
Performance Space Computing Intelligence Laboratory of China University of Geosciences—
Wuhan. The software combines land expansion analysis and the cellular automata (CA)
model of multi-type patches to generate a land use model, with relatively high simulation
accuracy. It is suitable for analyzing changes in LULC and predicting fairly accurate LULC
for multiple objectives [60]. In this study, we only used the LULC change analysis module
of the software to obtain the before and after change data of LULC in different years. We
downloaded the LULC raster images from 2000, 2010, and 2020 in Nanchang, and used the
PLUS plague to generate a land-use simulation [61]. Then, we imported the LULC maps
into ArcGIS 10.5 to compute the dynamic change in LULC. We also used the Origin2021
software to draw Sankey maps to illustrate the dynamic changes in LULC.

2.3.2. Temporal Trend Analysis

We used the Sen-MK trend analysis (Equation (1)) to detect the temporal trends. It
is a non-parametric statistical method that is relatively efficient and robust in performing
trend analysis for long-term series data [21]. The MK method (Equations (2)–(5)) is a
non-parametric statistical test method for judging the significance of a trend; it is widely
used in testing the significance of trends in long-term series data [45].

β = mean
( xj − xi

j− i

)
, ∀j > i (1)

where xj and xi are time series data; and j and i are the ending and beginning times,
respectively. In this study, positive (negative) β means denotes an increasing (decreasing)
trend in long-term series of LST data [62].

Z =


S√

Var(S)
0

S+1√
Var(S)

(S > 0)
(S = 0)
(S < 0)

(2)

S =
n−1

∑
i=1

n

∑
j=i+1

sign
(
xj − xi

)
(3)

sign
(
xj − xi

)
1
0
−1

i f
(
xj − xi

)
> 0

i f
(
xj − xi

)
= 0

i f
(
xj − xi

)
< 0

(4)

where n is the number of datasets; and xi and xj are the data values in the i-th and j-th
consecutive time series. When n is greater than or equal to 0, the statistic S shows an
approximately normally distribution, and the variance Var(S) is:

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(5)

where m is the knot sequences (the number of repeats in the dataset); and ti is the width
of knot i (the number of duplicates in the i-th duplicate data group) [25]. Under a given
significance level α, if |Z| > Z1− α

2
, it denotes that the non-existent hypothesis is rejected,

and the time series data have a significant trend. When the absolute value of Z is greater
than 1.65, 1.96, and 2.58, it denotes that the trend passes the 90%, 95%, and 99% significance
test, respectively [63]. In ArcGIS10.5 software, the trend is reclassified into nine categories:
“−4” is extremely significant decrease, “−3” is significant decrease, “−2” is slightly signif-
icant decrease, “−1” is non-significant decrease; “0” is no change; “1” is non-significant
increase, “2” is slightly significant increase, “3” is significant increase, and “4” is extremely
significant increase.

https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
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2.3.3. Temporal Trend Analysis

We used the RS-GIS technique to analyze the image data [64]. With the Create fishnet
tool in ArcGIS 10.5, we built a 1 km by 1 km fishnet (same spatial resolution as the MODIS-
LST) [65]. We computed the ratio of artificial surface area to total land area in the fishnet in
2000 and 2020, and defined the urban fishnet area as the area that has above 10% artificial
surface area [66]. We defined the land use in 2000 as the old district and urban expansion
as the fishnet area difference between 2020 and 2000.

In addition, we used codes to search in the MODIS product from the Google Earth En-
gine platform to generate and download the time series of average daytime and nighttime
LST, NDVI, NDBSI, and WET image data between June 1 and September 1 from 2000 to
2020. Then, we imported these annual LST raster images in MATLAB R2018b to conduct
Theil–Sen median slope trend analysis [67,68] and ran the non-parametric Mann–Kendall
test to test the statistical significance of the trend [69]. Last, we ran an overlay analysis
between the maps of trends in LST and the maps of LULC, and extracted the change
slope of average LST for all land cover types through fitting a linear regression. We also
generated random sampling points in the vector map of land change from 2000 to 2020 in
Nanchang to compare the daytime and nighttime LST in each year. The resolution of LST
images is 1000 m, therefore, the distance between the sampling points must be greater than
1000 m to avoid generating the same LST value. We randomly selected 600 samples for
data analyses and data verification [70]. By comparing the average LST at the sampling
points, we obtained the time series of LST for all land cover types in Nanchang. We used
partial correlation analysis to analyze the correlations between LST and NDVI, NDBSI, and
WET. Then, we used a double-tail t-test to test the statistical significance of the correlations
at p < 0.05 [71] (Figure 2).
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3. Results
3.1. LULC Change from 2000 to 2020 in Nanchang

Urbanization has the most important anthropogenic influence on the urban climate [72].
Urbanization is the major driving force for LULC change, especially in developing coun-
tries [73]. Hence, understanding LULC change is essential for assessing urban climate
change. From 2000 to 2010, the urban area was slowly and evenly expanding within the
radius of central Nanchang (Figure 3). However, from 2010 to 2020, urbanization became
more rapid with the main expansion in the southwest direction, followed in the northeast
and south. Based on the LULC maps in 2000, 2010 and 2020, artificial surfaces substantially
increased while arable land greatly decreased; wetland and water bodies were mutually
converted due to the water level change in the Poyang Lake; grassland, woodland, arable
land and bare ground all showed a decreasing trend (Figure 4).
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The main characteristic of urban expansion in Nanchang was the increase in artificial
surfaces. Land-use changes during the periods of 2000–2010, 2010–2020 and 2000–2020 are
illustrated in Tables 2–4, respectively [70]. The central urban area has been nibbling into
the surrounding areas, which is similar to other big cities in China. During the period of
2000–2010, artificial surfaces increased by 100.56 km2 in Nanchang, among which 87.79 km2

(87.3%) was converted from arable land (Table 2). During the period of 2010–2020, artificial
surfaces increased by 304.05 km2 (about three times the magnitude from 2000–2010), among
which 244.10 km2 (80.3%) was converted from arable land and the remaining was converted
from grassland, woodland, water bodies and wetland (Table 3).
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Table 2. LULC (unit: km2) comparison between 2000 and 2010 in Nanchang. Total land mass is set
in italics.

2010

Type Grassland Arable
Land Woodland Bare

Ground
Artificial
Surfaces Wetland Water

Bodies
Total Land

Mass

20
00

Grassland 368.9703 0.0585 - - 7.0875 - 0.0342 376.1505
Arable land 0.891 4080.7926 0.0072 0.2799 87.7932 4.5594 0.8451 4175.1684
Woodland - 0.0378 952.2315 - 3.9366 0.0153 0.0873 956.3085

Bare ground - - 0.0882 43.2891 - - 1.7289 45.1062
Artificial
surfaces - 2.5461 0.3024 0.3483 369.2727 0.0927 0.2097 372.7719

Wetland 0.0666 0.2835 - - 2.682 570.9555 - 573.9876
Water bodies - 0.0225 0.0063 0.0558 2.5551 - 688.3947 691.0344

Total land mass 369.9279 4083.741 952.6356 43.9731 473.3271 575.6229 691.2999 7190.5275

Table 3. LULC (unit: km2) comparison between 2010 and 2020 in Nanchang. Total land mass is set
in italics.

2020

Type Grassland Arable
Land Woodland Bare

Ground
Artificial
Surfaces Wetland Water

Bodies
Total Land

Mass

20
10

Grassland 217.0872 45.0108 54.6525 0.2754 33.9282 2.2932 16.6806 369.9279
Arable land 35.8947 3647.0889 54.2079 0.9252 244.098 1.08 100.4463 4083.741
Woodland 56.8008 59.0841 787.4559 0.0405 26.4906 0.252 22.5117 952.6356

Bare ground 0.2547 3.7485 0.0099 12.8484 0.5688 2.5389 24.0039 43.9731
Artificial
surfaces 1.1853 17.7606 1.206 0.0045 449.7201 0.2439 3.2067 473.3271

Wetland 0.0864 7.3404 0.1278 0.0009 5.8005 46.251 516.0159 575.6229
Water bodies 1.8504 49.7277 5.1975 1.4742 16.767 1.8801 614.403 691.2999

Total land mass 313.1595 3829.761 902.8575 15.5691 777.3732 54.5391 1297.2681 7190.5275

Urban expansion is related to the urban development policies in Nanchang. Since
the “Two banks by one river” policy was created, urban development in Nanchang has
been focusing on the western bank of the Gan River and the central urban area was mainly
expanding towards the southwest direction. According to the LULC data analysis, the
urban area expanded by 404.60 km2 from 2000 to 2020, which accounted for 5.63% of the
total city area (Table 4). Compared with the situation in 2000, the percentage of artificial
surfaces to total city area increased by 5.63% in 2020, while the percentage of arable land,
grassland, woodland and bare ground to the total city area decreased by 4.80%, 0.87%, 0.74%
and 0.41%, respectively (Table 5). In 2020, the LULC map showed that the central urban
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area included the Donghu area, Xihu area, Qingshanhu area, Qingyunpu area, Honggutan
area, central newly built area, and the west-central Nanchang county.

Table 4. LULC (unit: km2) comparison between 2000 and 2020 in Nanchang. Total land mass is set
in italics.

2020

Type Grassland Arable
Land Woodland Bare

Ground
Artificial
Surfaces Wetland Water

Bodies
Total Land

Mass

20
00

Grassland 217.2555 45.0414 54.6984 0.2754 39.8268 2.2932 16.7598 376.1505
Arable land 36.0882 3650.733 54.3141 0.9909 327.1851 4.3659 101.4912 4175.1684
Woodland 56.8476 59.1264 787.6638 0.0207 29.7612 0.2592 22.6296 956.3085

Bare ground 0.2547 3.7467 0.0909 12.762 0.0486 2.5389 25.6644 45.1062
Artificial
surfaces 0.7767 14.1786 0.7677 0.0324 353.6595 0.3177 3.0393 372.7719

Wetland 0.0864 7.2693 0.1278 0.0009 7.6959 42.9435 515.8638 573.9876
Water bodies 1.8504 49.6656 5.1948 1.4868 19.1961 1.8207 611.82 691.0344

Total land mass 313.1595 3829.761 902.8575 15.5691 777.3732 54.5391 1297.2681 7190.5275

Table 5. Percentages of LULC types to total city area in 2000, 2010, and 2020 in Nanchang.

Year Grassland Arable Land Woodland Bare Ground Artificial Surfaces Wetland Water Bodies

2000 5.23% 58.06% 13.30% 0.63% 5.18% 7.98% 9.61%
2010 5.14% 56.79% 13.25% 0.61% 6.58% 8.00% 9.61%
2020 4.36% 53.26% 12.56% 0.22% 10.81% 0.76% 18.04%

3.2. Changes in LST, NDVI, NDBSI, and WET from 2000 to 2020 in Nanchang

According to the Pearson’s correlation analysis between the LST and MODIS data
for the samples of the Landsat images, R2 ranged from 0.494–0.738; the correlation was
statistically significant, indicating that MODIS data could be used for analyses of this
study [74]. In central Nanchang, the following study indices showed statistically signifi-
cant changes: increasing LST, decreasing NDVI, increasing NDBSI, and decreasing WET
(Figure 5). The increasing trend in LST in Nanchang is consistent with the global warming
background. In summer, about 17.5% of the total land area (1251.81 km2) showed a signifi-
cant or extremely significant increasing trend in daytime LST, mainly focusing on most of
the Qingshanhu area, southern Xihu area, southern Qingyunpu area, northern Honggutan
area, western Nanchang county, and central new urban area. About 7.2% of the total land
area (515.97 km2) showed a significant or extremely significant increasing trend in night-
time LST, mainly focusing on the central Qingshanhu area, east central Honggutan area,
central new urban area, southern Qingyunpu area, and central Xihu area. About 8.5% of the
total land area (607.21 km2) showed a significant or extremely significant decreasing tend
in NDVI; about 7.9% of the total land area (561.97 km2) showed a significant or extremely
significant increasing trend in NDBSI; and about 4.8% of the total land area (342.10 km2)
showed a significant or extremely significant decreasing trend in WET. In the areas where
LST was significantly increasing, NDVI was significantly decreasing; in the areas where
LST was significantly decreasing, NDVI was significantly increasing, especially in the
central urban area. This indicates that LST was negatively correlated with NDVI, which
is consistent with most previous related studies [22]. Overall, the area with a significant
increasing trend in LST overlapped with the area with a significant increasing trend in
NDBSI, indicating a positive correlation between LST and NDBSI [23,24]. The area with a
significant increasing trend in LST overlapped with the area with a significant decreasing
trend in WET, indicating a negative correlation between LST and WET.
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LST change varied among different land cover types (Figure 6). From 2000 to 2020,
artificial surfaces showed the highest average daytime LST, followed by grassland and
woodland, arable land; wetland and water bodies showed the lowest average LST; average
daytime LST for bare ground greatly fluctuated among the values for woodland, grassland
and arable land. The increasing trend in daytime average LST was more evident for artificial
surfaces than for the other five vegetation covered types. Artificial surfaces showed the
greatest average daytime average LST, followed by bare ground, grassland, woodland,
arable land, wetland and water bodies. Average nighttime LST was the highest for water
bodies and wetland, followed by bare ground, artificial surfaces, arable land, woodland and
grassland. The slope of daytime average LST was above 0.155 for artificial surfaces (with
the largest trend) but below 0.027 for other land cover types (especially low for woodland
and bare ground). The slope of nighttime average LST was fairly close among the study
land cover types, with the largest value for artificial surfaces (up to 0.065), followed by bare
ground (Table 6). In sum, urban expansion caused substantial increases in both daytime
and nighttime LST in summer.



Sustainability 2022, 14, 16531 11 of 22

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 5. Geographical distribution of the trends in average daytime and nighttime LST in summer 
from 2000 to 2020 in Nanchang. 

 
Figure 6. Time series of average daytime and nighttime LST slope for various LULC types in sum-
mer from 2000 to 2020 in Nanchang. 
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Table 6. Arithmetic mean (unit: ◦C) and slope of average LST for various LULC types in summer
from 2000 to 2020 in Nanchang. For the two timescales of daytime and nighttime, the highest (lowest)
temperatures are set in red (blue), and the greatest slopes are set in red.

Item Timescale Arable Land Woodland Grassland Wetland Water Bodies Artificial
Surfaces

Bare
Ground

Average Daytime 30.5 31.1 31.2 28.2 28.1 32.4 31.1
Nighttime 25.3 24.8 24.5 26.4 26.4 25.4 25.6

Slope Daytime 0.016 0.009 0.023 0.027 0.012 0.155 0.006
Nighttime 0.039 0.043 0.037 0.034 0.045 0.065 0.058

3.3. Relationships between LULC Change and Average LST Change in Nanchang

LULC could affect LST [75–78]. Based on the LULC change maps from 2000 to 2020
in Nanchang, we extracted the artificial surfaces as the urban expansion area. Then, we
superimposed the urban expansion area with the change trend in average LST (Figure 5)
to derive their relationships (Figure 7). Before superimposing, the two images in Figure 5
were resampled, and the resolution was set as 30 m (the same as the LULC maps).The urban
expansion area in Nanchang was completely surrounded by the areas with statistically
significant (p < 0.05 and p < 0.01) trends in average daytime LST in summer. The urban
expansion area highly overlapped with the area that showed a statistically significant
(p < 0.05 and p < 0.01) trend in average nighttime LST. Such consistency indicates that
urban expansion substantially changed the thermal environment in the new urban area,
which exacerbated the urban heat island effect. In 2020, the correlation coefficient between
artificial surfaces and bare ground and the statistically significant trend (p < 0.05 and
p < 0.01) in average daytime LST was up to 0.405, indicating a decent effect of urban
expansion on the average LST trend. In the central area of Nanchang city, the average LST
for non-artificial surfaces (including most of the Gan River, Qingshan Lake, Yao Lake, and
Xiang Lake, etc.) also showed a statistically significant increasing trend. In the old central
urban area (including the southern Donghu area, Xihu area, northern Qingyunpu area,
and Qingshanhu area), the average LST did not show a statistically significant increase,
the average NDVI showed a statistically significant (p < 0.05) increase, while the average
NDBSI showed a statistically significant (p < 0.05) decrease (LST was negatively associated
with NDVI but positively associated with NDBSI). Under the influence of the prevailing
southwest wind, the old central urban area to the northeast of the Gan River (located in the
downwind direction) showed a non-statistically significant increasing or even decreasing
trend in average LST. The old central urban area of Nanchang showed a slow increase in
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average LST in summer, indicating that the main reason for the land surface change was
the change in artificial surfaces and that urban expansion did not improve the thermal
environment in the area. The areas with statistically significant increases in average LST
were beyond the central urban area, which means that urban expansion affected the average
LST in both the urban area and the surrounding suburbs. In particular, urban expansion
significantly affected average LST for the non-artificial area within 10–20 km of the eastern
and northern boundaries of the central urban area. In sum, urban artificial surfaces greatly
affected the urban average LST, and the cooling effect of water bodies and grassland (blue
and green spaces) may not be enough to offset the heating effect of urban expansion.
Furthermore, the main direction of urban expansion aligned with the prevailing wind
direction in summer, which was detrimental to the urban thermal environment in the urban
area and even in the suburbs. Urban policy makers and planners should pay more attention
to these effects.
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and urban expansion from 2000 to 2020 in Nanchang.

3.4. Correlations between LST and NDVI, NDBSI as Well as WET

We conducted partial correlation analyses between daytime and nighttime LST in
summer and NDVI, NDBSI, as well as WET (Figure 8) and ran a statistical significance
t-test for their correlations (Figures 9 and 10). According to the division standards stated in
the ‘Section 2, we divided Nanchang city into the old urban area and the expansion area
(Figure 11) and summarized the partial correlation coefficients between LST and NDVI,
NDBSI, as well as WET for the two types of area (Table 7). Whether it was in the old urban
area or the expansion area, LST was negatively correlated to NDVI and WET but positively
correlated to NDBSI. In summer, the correlations between LST and NDVI, NDBSI, as well as
WET were stronger during the daytime than during the nighttime. During the daytime in
summer, the correlations between LST and NDVI as well as WET in the old urban area were
similar to that in the expansion area; while the correlation between LST and NDBSI was
relatively stronger in the expansion area than in the old urban area (indicating a stronger
effect of urban sprawl than the old urban area on impervious surfaces, which was also
illustrated in Figure 4). We compared the correlation coefficients between LST and NDVI,
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NDBSI, as well as WET that passed the statistical significance test (t ≥ t0.05) for the old
urban area and expansion area (Table 8). In both the old urban area and the expansion area,
more than 30% of the area showed statistically significant correlation coefficients between
LST and NDVI as well as NDBSI, while less than 30% of the area showed statistically
significant correlation coefficient between LST and WET. For the old urban area and the
expansion area, the area with statistically significant correlation coefficient between LST
and NDBSI was equal to or slightly larger than the area with a statistically significant
correlation coefficient between LST and NDVI. This indicates that NDVI and NDBSI were
a set of indicators of opposite changes, and urban expansion induced more significant LST
and NDBSI changes than NDVI and WET changes.
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Figure 11. Left: Map of the urban area in Nanchang in 2000. Center: Map of the urban area in Nan-
chang in 2020. Right: Map of the extracted urban sprawl from 2000 to 2020 in Nanchang. 
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Table 7. Partial correlation coefficients (with arithmetic mean in the parentheses) between LST and
NDVI, NDBSI, as well as WET in the old urban area and the expansion area of Nanchang.

Timescale Location LST vs. NDVI LST vs. NDBSI LST vs. WET

Daytime Old urban area −0.90~0.74 (−0.18) −0.71~0.85 (0.17) −0.78~0.73 (−0.09)
Expansion area −0.84~0.62 (−0.18) −0.71~0.92 (0.21) −0.92~0.65/−0.09

Nighttime Old urban area −0.74~0.74 (−0.03) −0.73~0.78 (0.03) −0.84~0.84 (−0.01)
Expansion area −0.84~0.66 (−0.10) −0.70~0.79 (0.05) −0.80~0.72 (−0.02)

Table 8. The area and area ratio (to the subtotal area) with statistically significant (t ≥ t0.05) correlation
coefficients between LST and NDVI, NDBSI as well as WET in the old urban area and the expansion
area of Nanchang.

Location LST vs. NDVI LST vs. NDBSI LST vs. WET

Old urban area 266.03 km2 (32.32%) 269.56 km2 (32.75%) 224.52 km2 (27.28%)
Expansion area 232.10 km2 (31.88%) 247.86 km2 (34.05%) 178.40 km2 (24.51%)

4. Discussion

Urban expansion affects the urban thermal environment [79] and could worsen the
trend in the urban heat island [80–82]. In Nanchang city, urban expansion is mainly guided
by government policy, with economic development as the primary goal. During the past
two decades, urban expansion substantially deteriorated the urban thermal environment
in Nanchang. The urban expansion in Nanchang city is a typical example of gradual
outward expansion from the center, which lacks reasonable planning for cooling sources
layout and cooling corridor construction. The blue and green spaces could serve as cooling
sources [83]; however, the blue and green spaces have been decreasing in Nanchang due to
the urban expansion. The Gan River is an excellent cooling source for the city, but it has not
been fully utilized. The corridor that is to the west of the Xiang Lake and connects to the
Gan River has a certain cooling effect in the northern part of the city, while most other river
(or stream) corridors are too narrow to provide any cooling for the city. In the northern and
eastern parts of the central urban area, the construction of several lake parks (including
large lakes of Qingshan Lake, Aixi Lake, and Yao Lake) is close to completion. However,
the cooling effect of these lake parks is not close to enough to offset the rising temperatures
caused by rapid urban expansion in the vicinity. It is imperative to take measures to better
use the cooling sources in the city area [84]. The fast increase in artificial surfaces has
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caused a statistically significant warming trend at night in summer in Nanchang. The
average daytime (nighttime) LST for artificial surfaces increased from 30.9 ◦C (23.4 ◦C) in
2000 to 34.1 ◦C (26.4 ◦C) in 2020. This is equivalent to a 0.8 ◦C (0.7 ◦C) increase in daytime
(nighttime) LST for per 100 km2 increase in artificial surfaces, which is substantially greater
to the magnitude of 0.1 ◦C (0.1 ◦C) in the Guangdong–Hong Kong–Macau Greater Bay
Area [85]. Increases in artificial surfaces are inevitable in urban expansion, and local
government should consider using new construction materials and technology to mitigate
UHI [86,87].

Among all the land cover types, water bodies showed a relatively greater effect on
the daytime and nighttime LST change [88]. Nanchang city is adjacent to the Poyang
Lake, with many large rivers passing through the city, including the Gan River and the Fu
River. Water bodies and other high-water-content land cover types such as wetland and
arable land (paddy fields are dominant to the south of the Yangtze River) showed relatively
lower average daytime LST; water bodies and wetland showed relatively higher average
nighttime LST. This could be explained by the high heat capacity of water bodies [47].
Artificial surfaces showed higher daytime LST than any other land cover types did; the
nighttime LST for artificial surfaces was lower than that for water bodies and wetland
but higher than that for vegetation covered areas such as woodland, grassland and arable
land. Urban residents mainly live in the central area of the city, and the land cover type in
the central urban area barely includes any arable land. Compared with artificial surfaces,
average daytime LST was about 4.0 ◦C lower for blue spaces (i.e., water bodies and wetland)
and 1.2–1.4 ◦C lower for green spaces (i.e., woodland and grassland). This indicates that
blue and green spaces are ideal cooling areas during the day. At night, LST was about
1.0 ◦C higher for blue spaces than for artificial surfaces, while LST was about 0.5–0.8 ◦C
lower for green spaces than for artificial surfaces, indicating a warming effect of blue spaces
but a cooling effect of green spaces. Considering urban human activities mostly occur
during the day, the focus of improving the urban thermal environment should be on the
daytime cooling effects of blue and green spaces [89].

In Nanchang, urban expansion caused a statistically significant increase in LST; the
increase in LST was associated with the increase in mean NDBSI and the decreases in mean
NDVI and WET. However, LST was decreasing in the central old district of Nanchang,
which was associated with the increase in NDVI. During the past two decades, several
urban construction measures were implemented in the old district of Nanchang to increase
the green vegetation, including building new urban parks, upgrading the landscape of the
parks, renovating the community environment, etc. In addition, a lot of public infrastructure
such as schools, hospitals and administrative buildings were relocated from the old district
to the new district; as a result, the population density decreased in the old district [78].
Therefore, increasing urban greening to increase NDVI could be an effective measure to
improve the thermal environment in the old district [90,91]. Even though the LST was
decreasing in the central old district, the remaining old district still showed an increase
in LST due to the outward urban expansion. This indicates that urban expansion could
change the underlying surface and hence the urban thermal environment. Due to the
uneven distribution of parks and trees, the cooling effect may not be enough to offset the
urban expansion effect on the thermal environment [92]. Nevertheless, it is still important to
increase the urban green area to maximize its cooling effect on the environment [53,93,94].

We only addressed the relationships between the temporal trend in LST and the four
indices of LULC, NDVI, NDBSI and WET. However, we omitted other factors such as
artificial warming [95], socio-economic effects [96], etc. In addition, our analyses were
solely based on the MODIS remote sensing data, which may not be comprehensive enough
to assess the trend in LST and its influencing factors. The LULC data we used may have a
certain level of internal error due to cloud pollution, seasonal factors, etc. We only focused
on the summer months of June through August, yet other months could be important as
well. In order to provide a more comprehensive report to assist in urban planning, we
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would suggest future studies use higher resolution data [97], including more affecting
factors [98,99], and expand the timescale to all four seasons [100].

5. Conclusions

LULC change was the main reason for LST change in Nanchang. We compared the
LULC maps from the three years of 2000, 2010 and 2020 to obtain the urban expansion
information in Nanchang. Based on the time series of remote sensing data, we analyzed
the trends in the mean values of the four summer RSEI elements (i.e., LST, NDVI, NDBSI
and WET). In addition, we analyzed the correlations among the temporal trends in the four
RSEI elements. Regardless of daytime or nighttime in summer, the areas with statistically
significant trends in the four elements (increasing LST, increasing NDBSI, decreasing NDVI
and decreasing WET) were highly consistent with the urban expansion areas. Therefore,
we concluded that LULC change was the main reason for LST change in Nanchang. It is
important for local authorities to pay more attention to the impact of LULC change on LST
in urban planning and management.

Artificial surfaces contributed most to the warming trend in the LST in Nanchang.
Among all the land cover types, artificial surfaces caused the greatest warming in LST.
Per 100 km2 expansion of artificial surfaces, the daytime and nighttime LST in summer
increased by 0.8 ◦C and 0.7 ◦C, respectively. Hence, increases in artificial surfaces was the
main reason for urban warming, indicating that urban expansion was closely associated
with the change in the urban thermal environment in Nanchang. Increases in artificial
surfaces are at the cost of decreased blue and green spaces [14], which worsens the urban
thermal environment.

Water bodies showed the largest negative (positive) effect on daytime (nighttime) LST.
Nanchang city is a famous water capital due to its numerous water areas, which help to
cool down the urban thermal environment during the day but hinders the increase in urban
temperature at night. In particular, the Gan River and the surrounding green spaces had a
certain cooling effect on its downwind area in summer, which slowed the LST rising in the
area. In order to alleviate the urban heat island effect in Nanchang, it is imperative to tap
into the potential of the Gan River to maximize the synergistic cooling effect of the blue
and green spaces.

In Nanchang, urban expansion has been focusing on the southwestern part of the
city, which is not conducive to the urban thermal environment. The direction of urban
expansion overlaps with the prevailing wind direction in summer, and the thermal effect of
the upwind area on the downwind area could be expanded. According to the most recent
temporal trend in LST in Nanchang, aggressive outward urban expansion from the center
would continue to expand the UHI scope, which would be detrimental to the livability
of the city in the long run. The greening measures in the old district of Nanchang have
effectively improved the urban thermal environment, and we recommend expanding such
measures to other districts as well.
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