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Abstract: This paper describes how to obtain optimal power flow (OPF) in power systems that
integrate wind turbine (WT) and solar photovoltaic (PV) producers. A modified technique called
modified turbulent water flow-based optimization (MTFWO) is presented to solve the nonconvex
and nonlinear OPF problem effectively. In the OPF model, power output from renewable sources is
regarded as a dependent variable. At the same time, the voltage at the bus terminals of WT/PV is
used as a controller (decision variable). The amount of power generated by WT and PV generators
is modeled using data collected in real time on the wind speed and the amount of irradiation from
the sun. Although the TFWO algorithm has its benefits, it also has certain shortcomings in solving
challenging problems. By more effectively searching the feasible space using different interaction
mechanisms and improving exploitation capabilities, this paper improves the TFWO algorithm’s
performance. We compare the performance and effectiveness of the suggested MTFWO method with
cutting-edge optimization algorithms for solving the OPF problems, using the same system-specific
data, limitations, and control variables in the comparisons.

Keywords: the optimization of turbulence in engineered water flows; power systems; optimum
power flow (OPF); renewable energy sources (RES) such as wind and solar; nonconvex cost functions

1. Introduction

In addition to being a popular power system design tool, optimal power flow (OPF)
is an important optimization test problem [1] due to its multidimensional, nonconvex,
and nonlinear nature. Over the last few decades, researchers have experimented with a
variety of OPF formulations to increase the efficiency of a power grid exposed to a wide
range of physical restrictions [1]. To improve the existing condition of affairs, a variety
of categories and goals are used. Theoretically, any of the two possible OPF solutions
might be implemented [2], each of which has its distinct mathematical characteristics and
processing requirements.

The recent interest in OPF optimization challenges [2] may be attributed to the in-
creasing popularity of decentralized energy sources in network applications. Integration of
distant and intermittent renewable energy sources such as photovoltaic (PV) systems and
wind energy into conventional power networks has posed significant operational and ad-
ministrative issues [3]. These advancements include solar panels and wind turbines. Solar
energy is converted into electricity through PVs. Temperature and solar radiation affect
solar energy’s ability to generate electricity. As a result, assessing PV system performance
in operation is crucial for modeling, managing, and optimizing them in the future. Opti-
mizing the reflector-PV collector configuration allows solar energy to be deployed more
efficiently [4,5]. Recognizing the inherent unpredictability of intermittent energy sources
such as wind and solar cells is essential for optimizing their use. The unpredictability of
renewable resources, which imposes unanticipated dynamics on the power system, has
made it far more difficult to find a suitable solution to the OPF problem [6]. Therefore,
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photovoltaic solar collectors are usually interconnected with electrical sources or energy
accumulators [7].

Linear programming (LP) [8], Newton’s method (NM) [8], quadratic programming
(QP) [9], and nonlinear programming (NP) [10] all have strong convergence features and
may be utilized to address OPF problems. In reality, however, system goal functions
are seldom differentiable, smooth, or convex [11]. For instance, it may be challenging to
describe the fuel costs of thermal plants as a convex function with all required features using
typical approaches [11]. Numerous theories have this characteristic, including piecewise
quadratic cost, valve points, and constrained operating ranges [11]. Before agreeing on
the ideal solution, it is usual practice to iterate and repeatedly make multiple considerable
changes [11].

We need a quicker and more effective solution for genuine OPF instances. Recent
research indicates that metaheuristics may be effective for tackling complex optimization
problems. Metaheuristics may be used to address such challenges. Given that all meta-
heuristics have the same underlying constraints, it is straightforward to develop a uniform
set of methods to solve them. The following features are shared by several prominent meta-
heuristics [12]. The following are some instances of AI-based optimization strategies used
to handle OPF issues: a grey wolf optimizer (GWO) [13], MHBMO (a modified honey bee
mating optimization) [14], a multiobjective glowworm swarm optimization (MOGSO) [15],
a new differential evolution (DE) [16], a coronavirus method [17]; an efficient MOEA
(multiobjective evolutionary algorithm) [18], a BSA (a bird swarm algorithm) [19], a mul-
tiobjective OPF using GWO and DE algorithms [20], a surrogate-assisted multiobjective
probabilistic OPF [21], and a symbiotic organisms search (SOS) [22]. Using a modified moth
swarm algorithm (MMSA), which considers both direct expenditures and the likelihood of
over- or underestimating such costs, it is possible to decrease the operating costs of wind
power-producing units [23].

Solving the OPF problem is notoriously challenging due to the nonconvex and non-
linear endeavor. Existing algorithms still need to improve their performance to solve
such a complex problem. Mojtaba Ghasemi and colleagues [24] established the notion of
optimization based on turbulent water flow (TFWO) in 2021, among others. We create a
unique and successful modification of the TFWO (MTFWO) approach to address various
OPF problems in hybrid systems. The speed of convergence, finding the optimal solution,
and the algorithm’s robustness in finding the near-optimal solutions are important factors
in determining the algorithm’s performance. Moreover, in this paper, the comprehensive
comparison of the developed algorithm with existing state-of-the-art methods shows the
capability of this algorithm to solve OPF problems.

The main highlights of the paper are:

• Improving the convergence speed, exploration, and exploitation capabilities of the
conventional TFWO algorithm;

• Introducing an enhanced operator to update the population to increase the power of
local search of the original TFWO algorithm;

• Application of the proposed modified algorithm to solve the nonconvex and nonlinear
OPF problems;

• Voltage magnitude at WT and PV buses is considered a decision variable, while WT
and PV power generation forecasts are dependent variables in the OPF problem.

This article explains the following: The OPF problem formulation is presented in
Section 2. In Section 3, we will explain just how our proposed method might increase
productivity. In Section 4, the suggested approach is evaluated on a real IEEE 30-bus
network, where numerous load distribution functions are studied, and the final strategy is
assessed. Section 5 provides a synopsis of the method’s results and conclusions.

2. Problem Formulation

Due to the inherent unpredictability of both processes, merging wind and solar energy
makes it more difficult to solve the OPF issue. This article covers the OPF issue, which
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explains the variability of WT and PV output under various practical assumptions. These
particular hypotheses are detailed below: Due to the impossibility of dispatching the active
power production of solar panels and wind turbines, these values are taken into account
as anticipated values in the total power factor issue. The OPF is administered carefully
at regular intervals of 10 min [25]. When the sampling interval for wind speed and solar
irradiance is one minute, there are 10 observations at each t-interval. There have likely
been 100 total readings at this time. Using measurement data, probabilistic models of wind
speed and solar irradiance, and the mechanical properties of the WT and PV units, it is
possible to predict the active power production of wind turbines and photovoltaic units.
This allows for more precise measurements of the active power produced by these two
types of equipment. In line, the reactive power provided by WT and PV units is between
−0.4 and 0.5% of their active power. Consequently, the voltage levels on the PV and
WT buses might affect the OPF issue. To illustrate the OPF issue, consider the following
mathematical equation [25]:

Objective function (F) : MinF(x , y) (1)

Subjected to:
Inequality constraints (h) : h(x, y) ≤ 0 (2)

Equality constraints (g) : g(x , y) = 0 (3)

x ∈ X (4)

Control variables : x =

[
PG2, . . . ., PGNG, VG1, . . . , VGNG , VWT , VPV ,
T1, . . . , TNT , QC1, . . . , QCNC

]
(5)

Ti (i = 1: NT) represents the tap setting on the transformer, QCi (i = 1: NC) represents the
adjustment to the shunt VAR, and x represents the vector of control variables. F represents
the objective function that needs to be minimized, PGi (i = 1: NG) represents the active
power output of the thermal units, and VGi (i = 1: NG) represents the generator voltage
(WT and PV) [25].

Dependent variables : y =

[
PG1 , V L1, . . . , V LNL, Q G1, . . . , Q GNG,
Q WT , VPV , S l1, . . . , Sl NTL

]
(6)

The current number of power plants, thermal transformers, and variable-frequency-
drive (VAR) compensators that are in operation are NG, NT, and NC, respectively. The
reactive power outputs from the generator, represented by QGi (i = 1: NG); the power on the
slack bus, represented by PG1; the voltage at the load bus, represented by VLi (i = 1: NTL);
and the transmission line loads make up the components of vector y. Load bus capacity
and transmission line count are denoted by NL and NTL, respectively.

2.1. Constraints

The solution to the classical nonlinear OPF equations may be written as (7) and (8), as
proven by the inequality limitations (g) in Equation (2).

PGi − PDi −Vi ∑ NB
j=1Vj

[
Gij ∗ cos

(
δi − δj

)
+ Bij ∗ sin

(
δi − δj

)]
= 0; I = 1 : NB (7)

QGi −QDi −Vi ∑ NB
j=1Vj

[
Gij ∗ sin(δi − δj)− Bij ∗ cos(δi − δj)

]
= 0; i = 1 : NB (8)

In the above equations, QDi and PDi are the reactive and real load demands, respec-
tively, and NB is the total number of buses. These three variables are represented in the
equation by parentheses. The real component of the bus admission matrix is denoted by
the letter Gij, while the imaginary component is denoted by the letter Bij. The voltage angle
that exists between the i bus and the j bus is represented by δij

(
= δi − δj

)
. Equation (3),

when applied to the study of the operational variables of a function, demonstrates the
existence of inequality boundaries. This category also includes restrictions placed on the
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amount of reactive power that can be generated by generators and the amount of branch
flow [25].

Vmin
Li ≤ VLi ≤ Vmax

Li ; i = 1, 2, . . . , NL (9)

Qmin
Gi ≤ QGi ≤ Qmax

Gi (10)

Sli ≤ Smax
li ; l = 1, 2, . . . , NTL (11)

Constraints (4) define the space of possible solutions for the OPF problem:

Pmin
Gi ≤ PGi ≤ Pmax

Gi ; i = 1, 2, . . . , N (12)

Vmin
Gi ≤ VGi ≤ Vmax

Gi ; i = 1, 2, . . . , NG (13)

Tmin
i ≤ Ti ≤ Tmax

i ; ∀i = 1 , . . . , NT (14)

Qmin
Ci ≤ QCi ≤ Qmax

Ci ; ∀i = 1 , . . . , NC (15)

The restrictions that apply to both the independent variable (x) and the other controls
(other variables) are the same. In addition to this, the inequality requirements of the
dependent variables, particularly y, may be relaxed by including these components in the
objective function in the form of quadratic penalty factors. The goal of performing these
steps is to narrow down the available choices.

2.2. Objective Functions

One of the primary objectives taken into account while examining OPF competitions
for thermal power plants is fuel cost (Fcost). The price of a thermal generating unit may be
expressed mathematically as a quadratic function of the generator’s output power.

Mincost(x, y) =
N G

∑
i=1

(
αi + b iPG i + ci P2

Gi

)
(16)

where PGi is the active power output of the ith thermal power plant and ai, bi, and ci are the
cost coefficients that correlate to that plant’s power output. The following aim function has
to be met in order to achieve the desired result of minimizing the overall active power loss
(Ploss) in the system.

MinPloss(x, y) =
NTL

∑
i=1

NTL

∑
j=1
j 6=i

GijV2
i + BijV2

j − 2ViVjcosδij (17)

Safety and service quality may be measured, in large part, by looking at the bus
voltage. The primary goal here is to reduce the amount of voltage variation (VD) on the
load bus, as shown by the following expression:

MinVD(x , y) =
NL

∑
i=1

∣∣∣ Vi −Vre f
i

∣∣∣ (18)

where Vi is the bus i voltage standard, which is typically 1 p.u. and indicates the level
of voltage present on the ith bus. At a power plant that runs on fossil fuels, such as coal,
petroleum, and natural gas, the generation of electricity is accomplished by the combustion
of those fuels. When anything is burnt, a significant amount of toxins is discharged into the
atmosphere. In the context of this inquiry, the approach [26] is used to calculate emission
predictions for both nitrogen oxides (NOx) and sulfur oxides (SOx).

MinEmission (x, y) =
NG

∑
i=1

(
αi + βiPGi + γiP2

Gi + ξiexp(θiPGi

)
(19)
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where αi (ton/h), βi (ton/h MW), γi (ton/h MW2), ξi (ton/h), and θi (1/MW) are emission
coefficients of the ith power plant. The amount of tax for producers can be determined
based on the amount of greenhouse gases emitted, making producers use more suitable
and renewable fuels, such as wind and solar power plants that produce electric energy,
and the amount of environmental pollution from fossil fuels can be reduced effectively.
However, a carbon tax is not the only way to consider the externalities associated with
conventional energy conversion.

A penalty function is added to the primary objective function in the following way in
order to take into account the fact that the restrictions have been broken:

J =
NG

∑
i=1

Fi(PGi) + λP

(
PG1 − Plim

G1

)2
+ λQ

NG

∑
i=1

(
QGi −Qlim

Gi

)2
+ λV

NL

∑
i=1

(
VLi −V lim

Li

)2
+ λS

NTL

∑
i=1

(
Sli − Slim

li

)2
(20)

where λP, λV, λQ, and λS are the penalty factors; and zlim is a variable that is defined in the
following equation as an auxiliary variable:

zlim =


z; zmin ≤ z ≤ zmax

zmin; z ≤ zmin

zmax; z ≥ zmax
(21)

2.3. Modeling of WT and PV Generation
2.3.1. Modeling of WT Generation

When the wind velocity (v) is known, the following equation [25] may be used to
calculate the power output of a WT:

PW T (v) =


0 v ≤ vci
v−vci
vn−vci

P w tnvci ≤ v ≤ vn

P wtnvn ≤ v ≤ vc o
0 v ≥ vc o

(22)

Pwtn is the nominal power, vn is the wind speed, vci is the speed at which the wind
turbine starts producing electricity, and vco is the speed at which it ceases. Weibull distri-
butions may be used as an overarching framework for characterizing the randomness of
wind speed at a given time and location.

f v (v) =
K
C
∗
( v

C

)
K−1 ∗ e−1∗( v

C )k
, v > 0 (23)

The cumulative density function (CDF) for the Weibull distribution is:

F v(v) = 1− Exp(−
( v

C

)k
) (24)

For the purpose of estimating the v, we have studied the CDF with its inverse:

v = C ∗ (−1 ∗ ln (r))
1
k (25)

Weibull’s probability density function for wind speed is represented by the symbol
fv(v); the size and shape parameters of the Weibull distribution are represented by the
symbols C and k; and r is a uniformly distributed random integer that may take on any
value between 0 and 1, respectively. We are able to estimate WT’s output power [25] by
basing our calculations on the likelihood of all potential states over that time period.

P W T =
∑ Nv

g=1PW Tg ∗ fv

(
vt

g

)
∑ Nv

g=1 fv

(
vt

g

) (26)
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where vt
g is the gth state of wind speed at the tth time interval; PWTg is the power generation

of WT calculated using (22) for v = vt
g; fv

(
vt

g

)
is the probability of the wind speed for state

g during the specified interval t.

2.3.2. Modeling of PV Generation

Solar irradiation is directly related to the amount of electricity that may be extracted
from a PV system [25]:

P PV (S) =

Ppvn

(
S 2

RCSstc

)
S ≤ RC

Ppvn

(
S

Sstc

)
S ≥ RC

(27)

The symbol S represents the solar irradiance at the surface of the PV module, whereas
the letter Sstc represents the solar irradiance under standard test circumstances. Ppvn denotes
the nominal output power of the PV unit. A certain spectral irradiance value is denoted by
the letter sign Rc. One may use beta PDF [25] to build a model that adequately accounts for
the stochastic nature of solar irradiation:

fs(S) =

{
Γ(α+β)

Γ(α)Γ(β)
Sα+1(1− S)β−1; 0 ≤ S ≤ 1, α ≥ 0, β ≥ 0

0; Otherwise
(28)

In this expression, S represents the kW/m2 of solar irradiance, fs(S) is the beta dis-
tribution function of S. α, β, and Γ ( ) are the shape parameters and gamma function,
respectively.

Predicted PV production power [25] is evaluated in light of the probabilities of all
solar irradiance levels across the observed time range.

PPV =
∑ NS

g=1PPV,g fS

(
St

g

)
∑ NS

g=1 fS

(
St

g

) (29)

where St
g represents the gth possible state of solar irradiance at the tth time interval,

PPVg represents the power production of PV computed using Equation (27), and fS(St
g)

represents the probability of solar irradiance for state g at time t.

3. The Proposed Optimization Algorithm
3.1. TFWO

As was stated at the beginning of the paper, the rest of the research will focus on
documenting and recreating the original implementation and performance of the TFWO
algorithm at each level.

3.1.1. Formation of Whirlpools

The beginning population, which is denoted by X0 and Np, the total number of objects,
is partitioned into NWh groups, sometimes known as whirlpools, before the algorithm
continues with any further steps. Then, the strongest member of the whirlpool is chosen
to be the center and the hole (the population that has the greatest values of the objective
function f ( )). This results in a centrifugal force that grows with increasing distance from
the center of the whirlpool. As a consequence of this force, objects and particles (X; Np-NWh:
the number of starting objects) are pushed in a direction that is counter to the direction in
which they are moving.

3.1.2. The Effects of Whirlpools on Objects and Particles of Its Set and Other Whirlpools

Every whirlpool (Wh) functions as a sucking well or hole. It has the propensity to
centralize the positions of its associated objects (X) by applying a centripetal force on them
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and plunging them into its well. Centrifugal force is used to achieve this effect. This
indicates that the ith particle’s position (Xi) is combined with that of the jth whirlpool’s
(Whj) via the jth whirlpool’s behavior, making Xi = Whj.

However, there are still some deviations brought about by extra whirlpools, as deter-
mined by their relative positions (Wh-Whj) and objective values (f ( ), which cause some
deviations (∆Xi). Figure 1 depicts the impact of these whirlpools on their collection of
objects and particles, leading to a new position for the ith particle equal to Xi

new = Whj −
∆Xi. Figure 1 shows how objects and particles travel around their whirlpool’s center while
keeping their distinct angle (δ).

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 28 
 

3.1.1. Formation of Whirlpools 
The beginning population, which is denoted by X0 and Np, the total number of 

objects, is partitioned into NWh groups, sometimes known as whirlpools, before the 
algorithm continues with any further steps. Then, the strongest member of the whirlpool 
is chosen to be the center and the hole (the population that has the greatest values of the 
objective function f ( )). This results in a centrifugal force that grows with increasing 
distance from the center of the whirlpool. As a consequence of this force, objects and 
particles (X; Np- NWh: the number of starting objects) are pushed in a direction that is 
counter to the direction in which they are moving. 

3.1.2. The Effects of Whirlpools on Objects and Particles of Its Set and Other Whirlpools 
Every whirlpool (Wh) functions as a sucking well or hole. It has the propensity to 

centralize the positions of its associated objects (X) by applying a centripetal force on them 
and plunging them into its well. Centrifugal force is used to achieve this effect. This 
indicates that the ith particle’s position (Xi) is combined with that of the jth whirlpool’s 
(Whj) via the jth whirlpool’s behavior, making Xi = Whj. 

However, there are still some deviations brought about by extra whirlpools, as 
determined by their relative positions (Wh-Whj) and objective values (f ( ), which cause 
some deviations (∆Xi). Figure 1 depicts the impact of these whirlpools on their collection 
of objects and particles, leading to a new position for the ith particle equal to Xinew = Whj − 
∆Xi. Figure 1 shows how objects and particles travel around their whirlpool’s center while 
keeping their distinct angle (δ). 

 
Figure 1. The model by whirlpool for optimization purposes. 

So, this angle changes somewhat at each time step (in the algorithm): 
𝛿𝛿𝑖𝑖new = 𝛿𝛿𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 ∗ 𝜋𝜋 

The extreme and intermediate values of Equation (30) for the furthest and nearest 
whirlpools are used to model and calculate ∆Xi.  This allows us to solve for jth using 
Equations (34) and (35) below, where jth is the value of the angle of the ith particle 
concerning its whirlpool, i.e., δi, the variation of the particle’s position that is amenable to 
reduction. 

Δ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎ𝑡𝑡) ∗ |sum(𝑊𝑊ℎ𝑡𝑡) − sum(𝑋𝑋𝑖𝑖)|0.5 (30) 

Δ𝑋𝑋𝑖𝑖 = (1 + |𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿𝑖𝑖new) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿𝑖𝑖new)|) ∗ �𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿𝑖𝑖new) ∗ �𝑊𝑊ℎ𝑓𝑓 − 𝑋𝑋𝑖𝑖� − 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿𝑖𝑖new) ∗ (𝑊𝑊ℎ𝑤𝑤 − 𝑋𝑋𝑖𝑖)� (31) 

𝑋𝑋𝑖𝑖new = 𝑊𝑊ℎ𝑗𝑗 − Δ𝑋𝑋𝑖𝑖 (32) 

where 𝑊𝑊ℎ𝑓𝑓  is 𝑊𝑊ℎ with a minimum value of Δ𝑡𝑡  and 𝑊𝑊ℎ𝑤𝑤  is 𝑊𝑊ℎ with a maximum 
value of Δ𝑡𝑡, respectively. 
• Pseudocode 1: 

for t=1:𝑁𝑁𝑊𝑊ℎ − {𝑗𝑗} 
𝛥𝛥𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎ𝑡𝑡) ∗ |sum(𝑊𝑊ℎ𝑡𝑡) − sum(𝑋𝑋𝑖𝑖)|0.5 

iδ

new
1 2i i rand randδ δ π= + ∗ ∗

iX

new
i j iX Wh X= −∆

jWh

Figure 1. The model by whirlpool for optimization purposes.

So, this angle changes somewhat at each time step (in the algorithm):

δnew
i = δi + rand1 ∗ rand2 ∗ π

The extreme and intermediate values of Equation (30) for the furthest and nearest
whirlpools are used to model and calculate ∆Xi. This allows us to solve for jth using
Equations (34) and (35) below, where jth is the value of the angle of the ith particle concern-
ing its whirlpool, i.e., δi, the variation of the particle’s position that is amenable to reduction.

∆t = f (Wht) ∗ |sum(Wht)− sum(Xi)|0.5 (30)

∆Xi = (1 + |cos(δnew
i )− sin(δnew

i )|) ∗
(

cos(δnew
i ) ∗

(
Wh f − Xi

)
− sin(δnew

i ) ∗ (Whw − Xi)
)

(31)

Xnew
i = Whj − ∆Xi (32)

where Wh f is Wh with a minimum value of ∆t and Whw is Wh with a maximum value of
∆t, respectively.

• Pseudocode 1:

for t = 1 :NWh − {j}

∆t = f (Wht) ∗ |sum(Wht)− sum(Xi)|0.5

end
Wh f = Wh with a minimum value of ∆t

Whw = Wh with a maximum value of ∆t
δnew

i = δi + rand1 ∗ rand2 ∗ π

∆Xi = (1 + |cos(δnew
i )− sin(δnew

i )|) ∗
(

cos(δnew
i ) ∗

(
Wh f − Xi

)
− sin(δnew

i ) ∗ (Whw − Xi)
)

Xnew
i = Whj − ∆Xi

• Pseudocode 2:

Xnew
i = min

(
max

(
Xnew

i , Xmin), Xmax)
if f
(
Xnew

i
)
<= f (Xi)
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Xi = Xnew
i

f (Xi) = f (Xnew
i )

end

3.1.3. Centrifugal Force

The moving item feels a pull toward the center as a result of the centripetal force, but
it also feels a push away from the center as a result of the centrifugal force. Newton’s first
rule of motion says that an object at rest will remain at rest, and an object in motion will
continue to travel at the same speed and in the same direction unless an unbalanced force
acts upon it and causes it to move in a different direction or at a different pace. Sometimes
the centrifugal force (FEi) of the vortex is stronger than the FEi (also known as the traction
force) of the vortex, and this results in the particle being moved to a new place at random.
The centrifugal force is modeled in Equation (33) as a random variable along one dimension
of the target. This is due to the fact that it happens at random for each aim (or the solution).
To accomplish this, first, the FEi is determined by its angle with the center of the hole (as in
Equation (33)), and then, if this force is greater than the random r-value, the centrifugal
action is carried out randomly for the pth dimension using Equation (34). To summarize, to
accomplish this, first the FEi is determined by its angle with the center of the hole (as in
Equation (33)), and then, to summarize, to accomplish this, the first thing that has to be
carried out in order to complete this procedure is to calculate the FEi. This is performed by
calculating the angle of the item in relation to the center of the hole.

FEi =
[
(cos(δnew

i ))2 ∗ (sin(δnew
i ))2

]2
(33)

xi,p = xmin
p + xmax

p − xi,p (34)

• Pseudocode 3:

FEi =
[(

cos
(
δnew

i
))2 ∗

(
sin
(
δnew

i
))2
]2

if rand < FEi
p = round(1 + rand∗(D− 1));

xi,p = xmin
p + xmax

p − xi,p

f (Xi) = f (Xnew
i )

end

This is expressed as shown in Figure 2.
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3.1.4. Interactions between the Whirlpools

Their interactions influence the nearby things, which causes them to be tossed about
like debris in a tornado. We have attempted to model this phenomenon analogous to
how whirlpools influence the movement of things and particles. In this model, individual
whirlpools have a gravitational pull on one another, exert centrifugal force on one another,
and eventually drag other whirlpools toward their centers. Conceptually, these whirlpools
are analogous to vortices, i.e., they unify the position of the considered whirlpool with its
position. A little portion of Equation (35) models and calculates Whj by searching for the
whirlpool closest to the objective function. Then, using the value of the angle of the jth
whirlpool, j, together with the following equations, Equations (36) and (37), we obtain a
variation of the whirlpool’s position that is amenable to a decrease in the objective function
of the whirlpool (artificial intelligence).

∆t = f (Wht) ∗
∣∣sum(Wht)− sum

(
Whj

)∣∣ (35)

∆Whj = rand(1, D) ∗
∣∣∣cos

(
δnew

j

)
+ sin

(
δnew

j

)∣∣∣ ∗ (Wh f −Whj

)
(36)

Whnew
j = Wh f − ∆Whj (37)

• Pseudocode 4:

for t = 1 :NWh − {j}

∆t = f (Wht) ∗
∣∣sum(Wht)− sum

(
Whj

)∣∣
end
Wh f = Wh with a minimum value of ∆t

Whnew
j = Wh f − ∆Whj

∆Whj = rand(1, D) ∗
∣∣∣cos

(
δnew

j

)
+ sin

(
δnew

j

)∣∣∣ ∗ (Wh f −Whj

)
δnew

j = δj + rand1 ∗ rand2 ∗ π

• Pseudocode 5:

Whnew
j = min

(
max

(
Whnew

j , Xmin
)

, Xmax()
)

if f
(

Whnew
j

)
<= f

(
Whj

)
Whj = Whnew

j

f
(
Whj

)
= f

(
Whnew

j

)
end

When this happens, the strongest new member of the whirlpool is selected as the new
center and hole of the whirlpool for the following iteration. The roles of this strongest new
member are replaced with the roles of the previous center and well of the whirlpool, as
shown by the following pseudocode:

if f (Xbest) <= f
(
Whj

)
Whj ↔ Xbest

f
(
Whj

)
↔ f (Xbest)

end

The flowchart of the TFWO optimization method is shown in Figure 3.
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3.2. The Proposed MTFWO

The initial iteration of the TFWO algorithm is inexperienced and produces inaccurate
solutions to difficult optimization tasks. Although the TFWO protocol has its benefits, it
also has certain shortcomings; this paper proposes a new MTFWO algorithm to address
these issues and make information sharing more convenient for users.

With more people interacting from both populations, the search might come closer to
the goal area without deciding on locally optimum answers. By more effectively searching
the relevant decision space and improving exploitation capabilities, such an approach
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greatly improves the TFWO algorithm’s performance. The updated and enhanced search
of the proposed MTFWO algorithm is described by Equation (38). Similar to the primary
method, the equation incorporates a random coefficient and a sine and cosine coeffi-
cient that may be subtracted or added, as well as a local and global search. Due to the
population’s extended search area and the algorithm’s ability to sidestep the local opti-
mality trap, the global and local optimums are approached using distinct equations of
motion and varying accelerations. To achieve this, we multiply it by random numbers,
i.e., rand +

∣∣cos
(
δnew

i
)
− sin

(
δnew

i
)∣∣, which can change in the range from zero to two. This

new equation greatly improves the recommended algorithm’s ability to perform local and
global searches and deal with a broad range of problems, and is shown by the following
pseudocode 6:

∆Xi =

{ (
rand +

∣∣cos
(
δnew

i
)
− sin

(
δnew

i
)∣∣) ∗ (((Xj + Xk

)
− 2 ∗ Xi

))
; if rand ≤ 0.25(

1 +
∣∣cos

(
δnew

i
)
− sin

(
δnew

i
)∣∣) ∗ (cos

(
δnew

i
)
∗
(

Wh f − Xi

)
− sin

(
δnew

i
)
∗ (Whw − Xi)

)
; else

(38)

Xnew
i = Whj − ∆Xi; (39)

• Pseudocode 6:

for t = 1 :NWh − {j}
∆t = f (Wht) ∗ |sum(Wht)− sum(Xi)|0.5

end
Wh f = Wh with a minimum value of ∆t

Whw = Wh with a maximum value of ∆t
δnew

i = δi + rand1 ∗ rand2 ∗ π
if rand ≤ 0.25

∆Xi = (rand + |cos(δnew
i )− sin(δnew

i )|) ∗
(((

Xj + Xk
)
− 2 ∗ Xi

))
;

else

∆Xi = (1 + |cos(δnew
i )− sin(δnew

i )|) ∗
(

cos(δnew
i ) ∗

(
Wh f − Xi

)
− sin(δnew

i ) ∗ (Whw − Xi)
)

;

Xnew
i = Whj − ∆Xi;

end

As seen in the main equations of the TFWO, coefficient
(
1 +

∣∣cos
(
δnew

i
)
− sin

(
δnew

i
)∣∣)

takes a value between 1 and 2. However, this value should tend to zero for better algorithm
searching and convergence performance in higher iterations. Since the proposed coefficient,
i.e., rand +

∣∣cos
(
δnew

i
)
− sin

(
δnew

i
)∣∣, can take a value between 0 and 2, this shortcoming

is fixed. According to (38), it is clear that the two terms k and j are added together, so to
balance both sides of the subtraction sign and as a result of the general equation, the i
term that is subtracted from these two terms must be multiplied by 2. This is a rule that is
observed in almost all search algorithms. Of course, this equation can be written as follows:

Using (38) to increase the power of local search is the most important change made to
the original algorithm. The value of 0.25 is chosen experimentally. It can balance between
exploration and exploitation of the algorithm for the OPF problem. However, for other
optimization problems, it should be appropriately adjusted.

4. MTFWO for Different OPF Problems

Both the TFWO and the MTFWO have been constructed on the IEEE 30 bus power
system in order to solve the eight separate OPF issues that have been identified. The
maximum number of TFWO and MTFWO iterations is 500 when Npop is equal to 33 and
NWh is equal to 3 (population size and number of eddies, respectively). These are the
power system parameters; they are found in [26]. On a computer furnished with an i7 CPU
running at 3.0 GHz and 8 gigabytes of RAM, simulations were carried out using MATLAB
8.3. (R2014a).
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4.1. OPF Solutions IEEE 30-Bus Network

What is seen in Figure 4 demonstrates this. OPF operation simulations are performed
with an active load of 283.39 MW and a reactive load of 126.18 MVAr using the IEEE 30-bus
test system. The essential parts of an IEEE 30-bus test system are as follows: The 41 lines of
transmission include 9 shunt VAR compensators on buses 10, 12, 15, 17, 20, 21, 23, 24, and
29, and 4 off-nominal tap ratio transformers on lines 6–9, 6–10, 4–12, and 28–27.
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Buses 1, 2, 5, 8, 11, and 13 house the thermal power plants. Typical values for each
parameter are 115 and 230 volts for generators, 0.95 and 1.1 p.u. for transformer tap settings,
and 0 and 5 MVAr for shunt VAR compensations (0.95 and 1.1 p.u.). Load bus voltages
may only be 0.95–1.05 p.u. in magnitude. To describe the nodes, buses, and heat generators
that make up the system, this paper refers to the data supplied in reference [26].

Using the objective functions defined in Section 2, we first analyze the six deterministic
OPF scenarios for the original setup of the system (without WT and PV) to show that the
proposed MTFWO method is effective. Table 1 displays the best-case outcomes attained
by the proposed MTFWO algorithm. The values shown here are the highest obtained
throughout 30 iterations of testing each scenario. All the prerequisites have been met, and
the results are consistent with the target functions that were considered. The MTFWO-
derived optimal values for OPF variables are shown in Table 1 below, in the absence of
stochastic renewable energy.
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Table 1. Best solutions for six instances in the base case.

Decision Variables
Limitations Instances

Lower Upper 1 2 3 4 5 6

P G1 (MW) 49 251 177.1697 140.0001 198.7431 102.5856 176.3452 122.15643
P G2 (MW) 18 81 48.6955 55.0000 44.8830 55.5630 48.8217 52.54522
P G5 (MW) 16 51 21.3899 24.0879 18.4621 38.1104 21.6363 31.52471
P G8 (MW) 11 35 21.2389 34.9985 10.0000 35.0000 22.3212 35.00001
P G11 (MW) 1 31 11.9284 18.3681 10.0001 30.0000 12.1560 26.77462
P G13 (MW) 13 41 12.0000 17.6858 12.0002 26.6696 12.0000 20.98255

VG1 0.965 1.11 1.0849 1.0744 1.0816 1.0698 1.0420 1.073036
VG2 0.965 1.11 1.0607 1.0572 1.0580 1.0576 1.0227 1.057463
VG5 0.965 1.11 1.0350 1.0313 1.0304 1.0359 1.0155 1.03283
VG8 0.965 1.11 1.0383 1.0392 1.0373 1.0438 1.0076 1.04132
VG11 0.965 1.11 1.0990 1.0876 1.0994 1.0830 1.0481 1.04022
VG13 0.965 1.11 1.0513 1.0674 1.0636 1.0574 0.9874 1.02364
T6–9 0.90 1.11 1.0721 1.0251 1.0415 1.0853 1.0696 1.10006
T6–10 0.90 1.11 0.9185 0.9578 0.9701 0.9000 0.9000 0.95258
T4–12 0.90 1.11 0.9762 1.0015 0.9951 0.9903 0.9415 1.03145
T28–27 0.90 1.11 0.9738 0.9725 0.9780 0.9751 0.9710 1.00504

QC10 (MVAR) 0.00 5.01 2.6670 4.8401 4.7382 4.5918 5.0000 3.38923
QC12 (MVAR) 0.00 5.01 1.2027 0.0025 1.9409 0.1673 1.5141 0.06502
QC15 (MVAR) 0.00 5.01 4.2890 3.0310 3.7691 4.4881 5.0000 3.92194
QC17 (MVAR) 0.00 5.01 4.9995 4.9531 4.6145 5.0000 0 5.00006
QC20 (MVAR) 0.00 5.01 4.2549 4.8434 4.3642 4.2338 5.0000 4.98046
QC21 (MVAR) 0.00 5.01 4.9976 5.0000 5.0000 5.0000 5.0000 4.99994
QC23 (MVAR) 0.00 5.01 3.3310 2.1912 2.9300 3.2521 5.0000 4.19076
QC24 (MVAR) 0.00 5.01 4.9998 4.9990 5.0000 5.0000 5.0000 4.99966
QC29 (MVAR) 0.00 5.01 2.6262 2.5173 2.6844 2.5592 2.6486 2.61303

Cost ($/h) - - 800.4781 646.4789 832.1666 859.0401 803.8125 830.34663
Emission (t/h) - - 0.3663 0.2835 0.4378 0.2289 0.3639 0.25293

Power losses (MW) - - 9.0222 6.7403 10.6885 4.5286 9.8804 5.58342
V.D. - - 0.9064 0.9193 0.8603 0.9274 0.0941 0.2983

4.1.1. Case 1: Minimization of Fuel Cost

In this scenario, we want to minimize the total fuel expense across all generators, as
shown in Equation (40).

J1 =
NG

∑
i=1

(
αi + biPGi + ciP2

Gi

)
+ λP

(
PG1 − Plim

G1

)2
+ λQ

NG

∑
i=1

(
QGi −Qlim

Gi

)2
+ λV

NL

∑
i=1

(
VLi −Vlim

Li

)2
+ λS

NTL

∑
i=1

(
Sli − Slim

li

)2
(40)

Based on experimental results in Table 2, the fuel cost using MTFWO is 800.4781 (USD/h)
which is less in comparison to the optimization approaches in Table 2, which shows solu-
tions using a variety of existing optimization methods, including a flower pollination algo-
rithm (FPA) [26], MHBMO [20], hybrid shuffle frog leaping algorithm (SFLA) and simulated
annealing (SFLA-SA) [27], hybrid modified particle swarm optimization (PSO) and SFLA
(MPSO-SFLA) [28], hybrid phasor PSO (PPSO) and GSA (gravitational search algorithm)
(PPSOGSA) [25], MSA [26], JAYA [29], firefly algorithm (FA) [30], manta ray foraging opti-
mization (MRFO) [31], Aquila optimizer (AO) [32], adaptive real-coded biogeography-based
optimization (ARCBBO) [33], hybrid of imperialist competitive algorithm (ICA) and TLBO
(teaching-learning-based optimization) (MICA–TLA) [34], tabu search (TS) [35], artificial bee
colony (ABC) [36], hybrid FA and JAYA (HFAJAYA) [30], hybrid PSO and GSA (PSOGSA) [37],
modified Gaussian bare-bones ICA (MGBICA) [38], adaptive group search optimization
(AGSO) [39], DE [40], moth-flame optimization (MFO) [26], evolutionary programming
(EP) [41], GWO [14], stud krill herd algorithm (SKH) [42], and TFWO. Figure 5 shows the
dramatic decrease in per-mile fuel costs.
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Table 2. The obtained optimal results in the current works for Case 1.

Optimizer Fuel Cost (USD/h) Emmission (t/h) Power Losses (MW) V.D.

FPA [26] 802.7983 0.35959 9.5406 0.36788
MHBMO [20] 801.985 - 9.49 -
SFLA-SA [27] 801.79 - - -
MPSO-SFLA

[28] 801.75 - 9.54 -

PPSOGSA [25] 800.528 - 9.02665 0.91136
MSA [26] 800.5099 0.36645 9.0345 0.90357
JAYA [29] 800.4794 - 9.06481 0.1273

FA [30] 800.7502 0.36532 9.0219 0.9205
MRFO [31] 800.7680 - 9.1150 -

AO [32] 801.83 - - -
ARCBBO [33] 800.5159 0.3663 9.0255 0.8867

MICA-TLA [34] 801.0488 - 9.1895 -
TS [35] 802.29 - - -

ABC [36] 800.660 0.365141 9.0328 0.9209
HFAJAYA [30] 800.4800 0.3659 9.0134 0.9047
PSOGSA [37] 800.49859 - 9.0339 0.12674
MGBICA [38] 801.1409 0.3296 - -

AGSO [39] 801.75 0.3703 - -
DE [40] 802.39 - 9.466 -

MFO [26] 800.6863 0.36849 9.1492 0.75768
EP [41] 803.57 - - -

GWO [14] 801.41 - 9.30 -
SKH [42] 800.5141 0.3662 9.0282 -
IEP [43] 802.46 - - -
TFWO 800.7308 0.3668 9.3207 0.9044

MTFWO 800.4781 0.3663 9.0222 0.9064

Figure 5. Convergence trends for Case 1.

4.1.2. Case 2: Minimization of Piecewise Quadratic Fuel Cost

There are a variety of fuel options that might be used to power thermal generating
units in a power system, including oil, coal, and natural gas. This is due to the inherent
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usefulness of the situation. Piecewise quadratic fuel cost functions may be derived for
each fuel type by decomposing the overall fuel cost function of these units. Evidently, the
fuel cost coefficients for the remaining single-fuel source generators are the same as in
Instance 1. For the purpose of describing the fuel cost characteristics of the producing units
connected to the first and second buses, a piecewise quadratic function is now utilized.
Here is the formula for this function:

fi(PGi) =
n f

∑
k=1

(
ai,k + bi,kPGi + ci,kP2

Gi

)
(41)

where ai,k, bi,k, and ci,k are coefficients for the cost of the ith power plant for the kth fuel
choice, and nf is the number of fossil fuel possibilities for the ith power plant.

The objective function can be described by Equation (42).

J2 =
NG

∑
i=1

fi(PGi) + λP

(
PG1 − Plim

G1

)2
+ λQ

NG

∑
i=1

(
QGi −Qlim

Gi

)2
+ λV

NL

∑
i=1

(
VLi −V lim

Li

)2
+ λS

NTL

∑
i=1

(
Sli − Slim

li

)2
(42)

The simulation results are shown in Table 3 and demonstrate that the recommended
approach results in a fuel cost of 646.4789 USD/h. The best fuel cost determined by the
MTFWO algorithm is shown to be lower than the best fuel cost calculated by the sparrow
search algorithm (SSA) [44], Lévy TLBO (LTLBO) [45], MFO [26], MICA-TLA [34], gbest
guided ABC (GABC) [46], a modified DE (MDE) [40], social spider optimization (SSO) [47],
FPA [26], MPSO-SFLA [28], an improved EP (IEP) [43], MSA [26], and TFWO in Table 3. In
addition, the convergence of the proposed algorithms for the OPF problem at the cheapest
feasible fuel cost is shown in Figure 6.

Table 3. The obtained optimal results in the current works for Case 2.

Optimizer Fuel Cost (USD/h) Emission (t/h) Power Losses (MW) V.D.

SSA [44] 646.7796 0.2836 6.5599 0.5320
LTLBO [45] 647.4315 0.2835 6.9347 0.8896
MFO [26] 649.2727 0.28336 7.2293 0.47024

MICA-TLA [34] 647.1002 - 6.8945 -
GABC [46] 647.03 - 6.8160 0.8010
MDE [40] 647.846 - 7.095 -
SSO [47] 663.3518 - - -
FPA [26] 651.3768 0.28083 7.2355 0.31259

MPSO-SFLA [28] 647.55 - - -
IEP [43] 649.312 - - -

MSA [26] 646.8364 0.28352 6.8001 0.84479
TFWO 646.9716 0.2838 6.7859 0.9099

MTFWO 646.4789 0.2835 6.7403 0.9193

4.1.3. Case 3: Minimization of Fuel Cost Considering Valve Point Effects (VPEs)

The effect of loading on the performance of the generators in the IEEE 30-bus test
system may be simulated by adding a sinusoidal component to the cost curves of the
generators; with the VPEs factored in, we obtain Equation (43).

J3 =
NG
∑

i=1
(αi + biPGi + ciP2

Gi) +
NG
∑

i=1
|ei sin[ fi(Pmin

Gi − PGi)]|+ λP(PG1 − Plim
G1 )

2 + λQ
NG
∑

i=1
(QGi −Qlim

Gi )
2

+λV
NL
∑

i=1
(VLi −V lim

Li )2 + λS
NTL
∑

i=1
(Sli − Slim

li )2
(43)

where ei and fi are the ith power plant’s VPE costs.
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Figure 6. Convergence trends for Case 2.

The suggested MTFWO algorithm is compared to various heuristic techniques pre-
sented in the background section of the research in Table 4. In the tables can be found the
optimal values for adjusting the control variables that were obtained using the proposed
strategy. The simulation results showed that the recommended strategy resulted in the
lowest feasible cost per hour for gasoline of USD 832.1666, which is a lower number when
compared to the findings of other ways. The total amount spent on petrol fluctuated during
the length of the research, as shown in Figure 7. Based on the data collected, it can be
concluded that the offered MTFWO algorithm successfully identified appropriate OPF
solutions for the conducted case study.

Table 4. The obtained optimal results in the current works for Case 3.

Optimizer Fuel Cost (USD/h) Emission (t/h) Power Losses (MW) V.D.

PSO [48] 832.6871 - - -
Self-adaptive

penalty based on
DE (SP-DE) [49]

832.4813 0.43651 10.6762 0.75042

FA [30] 832.5596 0.4372 10.6823 0.8539
HFAJAYA [30] 832.1798 0.4378 10.6897 0.8578

TFWO 832.6704 0.4380 10.8997 0.8365
MTFWO 832.1666 0.4378 10.6885 0.8603

We applied the recommended metaheuristics to the multiobjective OPF problems in
the fourth through sixth examples, but we were unable to find a solution in any of them.
Table 4 further summarizes the top solutions to the simulation findings for Cases 4–6 using
the MTFWO method.
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Figure 7. Convergence trends for Case 3.

4.1.4. Case 4: Minimization of Fuel Cost and Real Power Loss

The objective of this simulation technique for evaluating the MTFWO algorithm’s
performance is to minimize the active power losses and the quadratic cost function, which
are respectively represented by Equations (16) and (17). As part of this simulation, we ran
the MTFWO method to address the OPF problem 30 times.

The objective function is described by the following Equation (44):

J4 =
NG
∑

i=1
(αi + biPGi + ciP2

Gi) + φp ∑
ij

gij(V2
i + V2

j − 2ViVjcosδij) + λP(PG1 − Plim
G1 )

2 + λQ
NG
∑

i=1
(QGi −Qlim

Gi )
2

+λV
NL
∑

i=1
(VLi −V lim

Li )2 + λS
NTL
∑

i=1
(Sli − Slim

li )2
(44)

where the value of φp is selected as 40, like [26].
Table 5 displays the simulation outcomes that were used to find the optimal values

for changing the control variables. Figure 8 displays the study’s convergence character-
istic of the best fuel cost result obtained from the algorithms, and Table 5 compares the
proposed MTFWO algorithm to heuristic strategies found in the literature. The MTFWO
algorithm yielded optimum fuel costs of 859.0401 USD per hour and active power losses
of 4.5286 (MW). Based on the data in Table 5, it is obvious that the MTFWO algorithm
produces a substantially lower estimate of the total objective function compared to the best
result obtained in the aforementioned body of research.

4.1.5. Case 5: Minimization of Fuel Cost and V.D.

The bus’s voltage is a crucial indicator of reliability and safety. Solutions to OPF diffi-
culties that are centered on costs may be theoretically achievable, but their voltage profiles
may not be suitable. A dual-target function is required here to simultaneously increase fuel
economy and enhance voltage profile by limiting load bus voltage deviations from 1.0 per
unit. In certain cases, it is possible to express the objective function mathematically (45).
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J5 =
NG
∑

i=1
(αi + biPGi + ciP2

Gi) + φv
NPQ
∑

i=1
|Vi − 1.0|+ λP(PG1 − Plim

G1 )
2 + λQ

NG
∑

i=1
(QGi −Qlim

Gi )
2 + λV

NL
∑

i=1
(VLi −V lim

Li )2

+λS
NTL
∑

i=1
(Sli − Slim

li )2
(45)

where φv was given the value of 100 [26] as a factor. Finding the best answer to the issue has
been a focus of the suggested approach. Table 6 displays the results of using the MTFWO
method to determine the best settings for the control parameters. Additionally, the results
of the comparison are shown in Table 6; from this, it is obvious that the MTFWO greatly
decreased this multiobjective function. In Figure 9, we can see the convergence curve for
this multiobjective function, as computed by the TFWO and MTFWO algorithms for the
Case 5 problem.

Table 5. The obtained optimal results in the current works for Case 4.

Optimizer Fuel Cost
(USD/h)

Emission
(t/h)

Power
Losses (MW) V.D. J4

Enhanced MSA (EMSA) [50] 859.9514 0.2278 4.6071 0.7758 1044.2354
Quasi-oppositional modified

Jaya (QOMJaya) [51] 826.9651 - 5.7596 - 1402.9251

Modified Jaya (MJaya) [51] 827.9124 - 5.7960 - 1059.7524
Multiobjective ant lion

algorithm (MOALO) [52] 826.4556 0.2642 5.7727 1.2560 1057.3636

Spherical prune DE
(SpDEA) [53] 837.8510 - 5.6093 0.8106 1062.223

MSA [26] 859.1915 0.2289 4.5404 0.92852 1040.8075
TFWO 859.3726 0.2290 4.5498 0.9188 1041.3646

MTFWO 859.0401 0.2289 4.5286 0.9274 1040.1841
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Figure 8. Convergence trends for Case 4.
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Table 6. The obtained optimal results in the current works for Case 5.

Optimizer Fuel Cost
(USD/h)

Emission
(t/h)

Power
Losses (MW) V.D. J5

Dragonfly algorithm (DA) with
aging PSO (DA-APSO) [54] 802.63 - - 0.1164 814.2700

SpDEA [53] 803.0290 - 9.0949 0.2799 831.0190
Multiobjective modified

bare-bones PSO
(BB-MOPSO) [55]

804.9639 - - 0.1021 815.1739

MPSO [26] 803.9787 0.3636 9.9242 0.1202 815.9987
EMSA [50] 803.4286 0.3643 9.7894 0.1073 814.1586

Hybrid PSO and salp swarm
Optimization (PSO-SSO) [56] 803.9899 0.367 9.961 0.0940 813.3899

Multiobjective modified ICA
(MOMICA) [55] 804.9611 0.3552 9.8212 0.0952 814.4811

MFO [26] 803.7911 0.36355 9.8685 0.10563 814.3541
TFWO [1] 803.416 0.365 9.795 0.101 813.5160

Salp swarm Optimization
(SSO) [56] 803.73 0.365 9.841 0.1044 814.1700

PSO [56] 804.477 0.368 10.129 0.126 817.0770
Modified sorting nongenetic
algorithm (MNSGA-II) [55] 805.0076 - - 0.0989 814.8976

TFWO 803.9968 0.3641 10.1240 0.0995 813.9468
MTFWO 803.8125 0.3639 9.8804 0.0941 813.2225
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In (46), the weighting factors with values of 𝜙𝜙𝑣𝑣 = 21, 𝜙𝜙𝑝𝑝 = 22, and 𝜙𝜙𝑒𝑒 = 19 are 
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4.1.6. Case 6: Minimization of Fuel Cost, Emissions, V.D., and Losses

The function for lowering emissions linked to the OPF issue may be thought of as the
total of all the many kinds of emissions that are examined, including SOX and NOX, with a
proper price or weighting placed on each pollutant that is released. We want to minimize
fuel cost, V.D., emission, and power loss while taking into account two major groups of
emissions gases using the total objective function, provided by Equation (46).
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J6 = J5 + φp ∑
ij

gij(V2
i + V2

j − 2ViVj cos δij) + φe

NG

∑
i=1

(
αi + βiPGi + γiP2

Gi + ξi exp(θiPGi

)
(46)

In (46), the weighting factors with values of φv = 21, φp = 22, and φe = 19 are
employed to strike a balance among the problem’s various goals (see [26] for details). The
optimal settings for the controls are shown in Table 7 for Case 6. This demonstrates that the
OPF issue can be solved most efficiently using the MTFWO technique. The best fuel cost
result achieved by the MTFWO algorithm is compared to those found by other methods
in Table 7. Objective function values reported in the literature are lower than the lowest
value recorded here, i.e., 964.2606. Just take a glance at the desk to see the end product. The
convergence curve for the global objective function in Case 6 was calculated using TFWO
and MTFWO (Figure 10).

Table 7. The obtained optimal results in the current works for Case 6.

Algorithm Fuel Cost
(USD/h)

Emission
(t/h)

Power
Losses (MW) V.D. J6

Hybrid Jaya–Powell’s pattern
search 2 (J-PPS2) [57] 830.8672 0.2357 5.6175 0.2948 965.1201

MOALO [52] 826.2676 0.2730 7.2073 0.7160 1005.0512
BB-MOPSO [55] 833.0345 0.2479 5.6504 0.3945 970.3379

PSO [56] 828.2904 0.261 5.644 0.55 968.9674
Hybrid Jaya–Powell’s pattern

search 3 (J-PPS3) [57] 830.3088 0.2363 5.6377 0.2949 965.0228

MSA [26] 830.639 0.25258 5.6219 0.29385 965.2907
MNSGA-II [55] 834.5616 0.2527 5.6606 0.4308 972.9429

Hybrid Jaya–Powell’s pattern
search 1 (J-PPS1) [57] 830.9938 0.2355 5.6120 0.2990 965.2159

Multiobjective DA (MODA) [58] 828.49 0.265 5.912 0.585 975.8740
MFO [26] 830.9135 0.25231 5.5971 0.33164 965.8080

Improved NSGA-II
(I-NSGA-III) [59] 881.9395 0.2209 4.7449 0.1754 994.2078

SSO [56] 829.978 0.25 5.426 0.516 964.9360
TFWO 830.5073 0.2535 5.6410 0.2987 965.6985

MTFWO 830.3466 0.2529 5.5834 0.2983 964.2508
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4.2. Solving the OPF Problem Considering WT and PV Generation
4.2.1. Case 7: Minimization of the Generation Cost Incorporating WT and PV Generation

For a system that makes use of renewable sources such as WT and PV, reducing the
fuel cost, wind cost, and PV cost indicated by Equation (47) is the goal.

J7 = J1 +
NW

∑
i

Fcost(WTi) +
NPV

∑
i

Fcost(PVi) (47)

This, together with the values for work temperature and photovoltaic power, may
be obtained in the aforementioned equation. WTi represents the cost of the ith thermal
generator to produce the electrical energy, whereas PVi stands for the cost of the ith solar
photovoltaic generator. Table 8 shows the specifications of wind power and solar PV plants’
PDFs [60]. In Table 8, the PDF parameters and the cost coefficients are identical to those
found in Case 1. The best results produced by the proposed MTFWO method are shown in
Table 9.

Table 8. Specifications of the WT and PV plants’ PDFs.

WT Plants PV Plant

Wind Farm No. of
Turbines

Rated Power,
Pwr (MW)

Weibull PDF
Parameters

Weibull Mean,
Mwbl

Rated Power, Psr
(MW)

Lognormal PDF
Parameters

Lognormal Mean,
Mlgn

1 (bus 5) 25 75 c = 9, k = 2 v = 7.976 m/s 50 (bus 13) µ = 6, σ = 0.6 G = 483 W/m2
2 (bus 11) 20 60 c = 10, k = 2 v = 8.862 m/s

Table 9. The variables optimal values obtained for Case 7.

Variables TFWO MTFWO

PG1 (MW) 134.90791 134.90791
PG2 (MW) 29.1694 27.5152
Pws1 (MW) 44.1115 43.1911
PG3 (MW) 10 10
Pws2 (MW) 37.2235 36.4806
Pss (MW) 33.755 37.096

VG1 1.0718 1.0714
VG2 1.0569 1.0564
VG5 1.035 1.0344
VG8 1.0612 1.0975
VG11 1.0997 1.1
VG13 1.0487 1.0497

QG1 (MVAR) −2.29534 −2.4284
QG2 (MVAR) 11.8338 11.6775
Qws1 (MVAR) 22.42 22.4327
QG3(MVAR) 40 40

Qws2 (MVAR) 30 30
Qss (MVAR) 15.0431 15.3694

Fuelvlvcost (USD/h) 442.7995 437.3083
Wind gen cost (USD/h) 248.4581 242.7311
Solar gen cost (USD/h) 91.2925 101.8322

Total cost (USD/h) 782.5501 781.8715
Emission (t/h) 1.76192 0.45530

Power losses (MW) 5.7673 5.7908
V.D. 0.45386 0.45530

The presented figures represent the best results from 30 repetitions of each test. All
requirements have been satisfied, and the outcomes are in line with the intended uses.
With the aforementioned control variables fine-tuned, the overall fuel cost for Case 7 was
drastically lowered in comparison to the first run of the TFWO algorithm. A contrast
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between the convergence characteristics of TFWO and MTFWO for Case 7 is shown in
Figure 11.
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4.2.2. Case 8: Minimization of the Generation Cost Incorporating WT and PV Generation
with the Carbon Tax

Ctax, short for the carbon tax, is charged on the production of carbon dioxide and other
greenhouse gases with the intention of increasing financing for renewable energy sources
such as WT and PV. An approximate cost for carbon emissions may be calculated using the
following formula [60]:

CE = CtaxE (48)

J8 = J7 + CtaxE (49)

Approximately 20 USD per ton in Ctax is predicted [60]. Table 10 displays OPF results as
estimated by the carbon price and anticipated output of wind turbines and solar generators.
Table 10 shows that the quality and stability of solutions achieved with the suggested
MTFWO are improved over those obtained with the traditional TFWO approach. There
is an increase in the penetration of wind and solar electricity in comparison to Case 7 if
a carbon price is contemplated (Case 8) and imposed (Case 7). Furthermore, Figure 12
displays the convergence qualities of these distinct approaches. Compared to traditional
TFWO, there is little question that the suggested MTFWO yields superior solutions and
converges to the faster optimal solution. Taking into account stochastic aspects such as WT
and PV productions, these statistics demonstrate that MTFWO can handle very complex
OPF situations.
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Table 10. Case 8’s ideal values for all variables.

Variables TFWO MTFWO

PG1 (MW) 124.05273 123.42123
PG2 (MW) 34.5467 32.7675
Pws1 (MW) 46.79 45.8762
PG3 (MW) 10 10
Pws2 (MW) 39.3703 38.6302
Pss (MW) 33.9203 37.9805

VG1 1.071 1.0705
VG2 1.0576 1.057
VG5 1.0365 1.0359
VG8 1.0405 1.0404
VG11 1.0981 1.0982
VG13 1.0548 1.0562

QG1 (MVAR) −2.54117 −2.69805
QG2 (MVAR) 12.4645 12.2864
Qws1 (MVAR) 22.9406 22.9691
QG3(MVAR) 35.4423 35.2379

Qws2 (MVAR) 30 30
Qss (MVAR) 17.3678 17.8613

Fuelvlvcost (USD/h) 435.9284 428.3159
Wind gen cost (USD/h) 265.5061 259.5920
Solar gen cost (USD/h) 91.5097 104.5964

Total cost (USD/h) 792.9442 792.5043
Emission (t/h) 0.91868 0.88611

J8 811.3178 810.2265
Power losses (MW) 5.2800 5.2756

V.D. 0.46700 0.46966
Carbon tax (USD/h) 18.3736 17.7222
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4.3. Discussions

Table 11 shows side-by-side comparisons of all the results, including the least (Min),
average (Mean), greatest (Max), and standard deviation (Std.) of expenditures, as well
as the time required for simulation. Compared to the TFWO approach, the suggested
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MTFWO excels in every conceivable way, as shown in Table 11. TFWO’s best-case scenario
is also inferior to the worst-case scenario described for the MTFWO; these comparisons
demonstrate the possibility for the suggested MTFWO to provide a workable solution to
the OPF issue. The consistency and robustness of the suggested method’s findings are
shown by the proximity of the best, average, and worst solutions of the MTFWO. The given
data suggest that the suggested approach may converge to a nearly global optimal state in
a realistic amount of time.

Table 11. Statistical results to show the performance of algorithms.

Method Min Mean Max Std. Time (s)

Case 1

TFWO 800.7308 800.9731 801.4006 0.49 28
MTFWO 800.4781 800.5693 800.7024 0.12 28

Case 2

TFWO 646.9716 647.2543 647.6081 0.31 28
MTFWO 646.4789 646.5545 646.6870 0.14 28

Case 3

TFWO 832.6704 832.9429 833.3842 0.54 28
MTFWO 832.1666 832.2869 832.4130 0.16 28

Case 4

TFWO 1041.3646 1041.7019 1042.1275 0.45 27
MTFWO 1040.1841 1040.2748 1040.5255 0.27 28

Case 5

TFWO 813.9468 814.2870 814.5443 0.33 28
MTFWO 813.2225 813.3611 813.4389 0.11 28

Case 6

TFWO 965.6985 965.9988 966.4672 0.50 28
MTFWO 964.2508 964.4095 964.5010 0.17 27

Case 7

TFWO 782.5501 782.8716 783.3426 0.52 31
MTFWO 781.8715 781.9663 782.2456 0.25 31

Case 8

TFWO 811.3178 811.6268 811.9747 0.39 31
MTFWO 810.2265 810.3940 810.4835 0.12 31

5. Conclusions

The multiobjective OPF has become one of the most popular optimization problems
in the power systems sector. Our study proposes a modified optimization strategy for
OPF-related challenges. This optimization is based on the water’s surface optimization
technique (TFWO) with a modified TFWO, known as a modified turbulent flow (MTFWO).
Initially, OPF was formulated as a nonlinear optimization problem with equality and
inequality constraints, to be solved inside existing power systems. Throughout the course
of the investigation, many goal functions were considered. Included were a quadratic cost
function, a piecewise quadratic cost function, and a cost function that took into account the
valve point impact of an IEEE 30-bus test system with integrated WT and PV generators.
The objective was to raise the voltage profile while simultaneously decreasing transmission
line and bus expenses. In short, this paper presented the OPF problem, which considers
all constraints related to the generators, and this indicates that this paper can observe
as comprehensive research in the OPF sector. The proposed MTFWO was shown to be
resilient, computationally efficient, and adaptive for handling the OPF problem with
multiple objective functions. Simulation results indicated that the suggested technique may
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identify optimum settings for the test system’s control variables. The suggested MTFWO
algorithm gave higher-quality solutions to OPF problems than stochastic approaches. To
show this, the results obtained with MTFWO were compared to those obtained with the
other methodologies outlined. Results from the simulation also proved the effectiveness of
the proposed method in real-world circumstances. The suggested metaheuristic performed
better than a number of commonly utilized and potent algorithms that had previously been
published. This demonstrates the effectiveness and utility of the suggested metaheuristic
in handling problems involving several goals concurrently. This paper has shown the
advantages of the MTFWO method in order to achieve the set of optimal solutions and
the best compromise solution to OPF problems, respectively. The proposed paradigm
proved to be a useful tool for tackling a wide variety of challenges related to the global
characteristics of very complex systems.
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