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Abstract: The location of a logistics center is very important in a logistics system, as the success of
the location determines the whole logistics system’s structure, shape, and mode, and not only affects
the logistics center’s own operating costs, performance, and future development, but also affects the
operation of the entire logistics system. Therefore, the selection of the location for a logistics center
has great significance for improving the efficiency of regional logistics and optimizing the structure
of a logistics system. This study constructed a multi-factor constrained P-median site-selection model
to optimize the locations of logistics centers to improve the efficiency of logistics and optimize the
structure of the logistics system in a region. The results show that the optimal distribution of logistics
center sites and the coverage of freight capacity demand derived from the particle swarm algorithm
are more balanced than those derived by the other algorithm. Following the comparison of the results
for the utility of the optimized layout points solved by the particle swarm algorithm and the immune
genetic algorithm, it is concluded that the optimal fitness value obtained by the particle swarm
algorithm is lower than the other. It is proven that the particle swarm algorithm of the P-median
site-selection model under this multi-factor constraint has some reference value for the selection of
the sites of multi-logistics centers.

Keywords: location selection; particle swarm optimization; immune genetic algorithm; facility
location problems

1. Introduction

The location of a logistics center, the key node of a logistics system, determines
the structural layout of the entire logistics system, which affects the efficiency and cost of
logistics. Researchers around the world conducted studies on the location of logistics service
facilities and put forward a series of optimization models and algorithms with theoretical
and applied value. Ouyang [1] presents a novel method for finding representative regional
center points, referred to as “concave interior centers”, to approximate inter-regional
distances for solving optimal facility location problems. Pakravan [2] presents a stochastic
programming model to deal with the opposition typically encountered in constructing an
undesirable facility. Fernández [3] highlights a non-linear, constrained, discrete, competitive
facility location problem with minimal market share constraints, which is solved using
heuristic algorithms. Other optimization models include a hierarchical model for selecting
the location of an emergency shelter [4], selecting the location of an energy power plant
based on a multi-criteria decision [5], and a location selection problem for a military
airport [6].

There is also much research addressing algorithms. Heine [7] presents an approxi-
mation algorithm with proven worst-case guarantees—in terms of both the running time
and solution quality—to research location routing, in which strategic location decisions are
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based on the placement of facilities (depots, distribution centers, warehouses, etc.). Li [8]
proposes a differential CS extension with balanced learning—the Cuckoo search algorithm
with balanced learning (O-BLM-CS)—for determining the best location of a logistics dis-
tribution center. Zhang [9] used a genetic-algorithm-based multi-objective optimization
(MOO) approach to optimize the locations of new healthcare facilities in Hong Kong. Addi-
tionally, a distributionally robust optimization (DRO) method was developed for locating
emergency rescue stations in a high-speed railway network [10]. Other examples include
an artificial fish swarm algorithm for selecting the center location strategy [11], a cuckoo
search–differential evolution (CSDE) approach to solving the problem of the location of
a logistics distribution center [12], an improved and optimized ant colony algorithm for
selecting the location of a logistics center [13], and a supervised-learning-driven (SLD)
heuristic to determine the best capacitated facility location [14]. In conclusion, we find that
most studies focus on single-facility-location problems, particularly Weber’s classic single
facility location problem [15]; for example, the authors of [16] studied a robust fixed-charge
location problem under uncertain demand and facility disruptions. The authors of [17]
developed a location-allocation model for healthcare facilities that incorporates a choice
model to represent care consumers’ preferences and choice decisions on the care facilities. A
partial study of the capacity-constrained facility location problem from a mechanism design
perspective was published [18,19]. There are also some studies relating to modeling and
solving a bi-objective stochastic facility location problem [20]. Additionally, Liu et al. [21]
provide a combined framework for the locations of emergency facilities in transportation
networks. They all have multiple objectives and requirements. Ge et al. [22] examine the
facility location problem for the U.S. fresh produce supply chain, and build a model that
incorporates an empirical scenario into a facility location problem. The results suggest
that the reliability of facility locations can be improved without significantly increasing the
operating costs. Blanco et al. [23] introduce a general modeling framework for a multi-type
maximal covering location problem. They propose a natural non-linear model and derive
an integer linear programming reformulation. Wang et al. [24] built a bi-objective func-
tion model to consider minimizing the total cost and the carbon emission for the location
optimization of fresh agricultural cold chain logistics. Some scholars focus on a medium-
term distribution plan for a pharmaceutical network, considering distribution center (DC)
location and transportation decisions. They propose a multi-product, multi-period, and
multi-modal mathematical model integrating network design and distribution planning
decisions [25].

In summary, more and more location selection research uses meta heuristic algorithms.
Combined with the uncertainty and complexity of the real world, the location problem
usually considers that some or all of the input parameters, such as the service station’s
operating time, construction cost, demand point location, and demand quantity, are un-
certain. PSO is a type of probabilistic global optimization algorithm, namely, an uncertain
algorithm. Its advantage is that the algorithm can have more opportunities to solve the
global optimal solution.

Therefore, in this study, a P-median model with multi-factor constraints was con-
structed to optimize the overall efficiency of the regional logistics network and maxi-
mize customer satisfaction based on the regional logistics center location problem, com-
pared with the results calculated by particle swarm optimization (PSO) and the immune
genetic algorithm (IGA). The structure comprises four parts; the first part is the intro-
duction, the second presents analysis of the problem and model construction, the third
presents arithmetic examples and the results of the analysis, and the fourth presents the
research conclusions.

2. Problem Modeling

A P-median location model is a set of locations of candidate logistics centers that
are selected to correlate to each subset of a set of locations of a given number of demand
points. That is, it matches each demand point to its nearest logistics center point separately
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to ensure the lowest overall global transportation cost. As shown in Figure 1, we find
the least square points from the known alternative points so that all the demand points
have the minimum–maximum distance from the adjacent facility points, which is a type of
minimax problem. The objective of this problem is to maximize the number of demand
points covered or the total amount of demand.
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Figure 1. Median model.

It is necessary to consider certain factors, such as the shipment volume, delivery
distance, and warehousing cost, in the construction of the logistics center location model, in
order to ensure the model’s feasibility. Additionally, the cost of the logistics center mainly
depends on the user’s freight throughput, transportation-out costs, and infrastructure
equipment costs. Therefore, the site-selection model in this paper mainly considers two
factors, i.e., the distance and freight storage capacity, with the lowest comprehensive cost
as the optimization goal for site selection. The following hypotheses are proposed:

(1) The vehicle is transported at a uniform speed;
(2) Cargo delivery can be accomplished in a single trip;
(3) The fixed and operating costs of all the logistics centers remain the same;
(4) The transportation rates for the same types of goods are the same.
Above all, the objective function is constructed.

minz =
m

∑
i=1

n

∑
j=1

h(i, j)x(i, j) +
m

∑
i=1

yiFi +
m

∑
i=1

Ci

n

∑
j=1

x(i, j) (1)

Subject:
n

∑
j=1

x(i, j) ≥ Dj, j = 1, 2, 3, . . . , n (2)

n

∑
j=1

x(i, j) ≤ Qyi, i = 1, 2, 3, . . . , m (3)

m

∑
i=1

yi = t (4)

x(i, j) ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n (5)

where:
n is the number of demand points;
m is the number of candidate locations for the logistics center;
t is the number of logistics centers planned to be built;
Dj is the annual demand of the jth demand point;
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x(i, j) is the volume of goods transported from logistics center i to demand point j;
h(i, j) is the rate of transportation from the ith logistics center to the jth demand point;
Fi is the annual fixed cost of the logistics center at the ith candidate location;
Ci is the unit storage cost rate at the ith logistics center;
Q is the volume of goods storage;

yi =

{
1 building logistics center at the candidate location

0 not building logistics center at the candidate location
.

3. Case Analysis

In this work, the research objects—the number of selected logistics centers and demand
points—were set to 7 and 40, respectively. The coordinates of 40 demand points in this
region were obtained from the open platform of the API of AutoNavi Map, as shown in
Table 1, which also includes the demand quantity and fixed cost of each demand point.

Table 1. Two-dimensional coordinates and corresponding demand and fixed costs.

Number Site
(Km)

Demand
(tons)

Fixed Costs
(CNY Million) Number Site

(Km)
Demand

(tons)
Fixed Costs

(CNY Million)

A01 (01, 18) 23 14 A21 (04, 07) 5 18
A02 (24, 20) 23 19 A22 (19, 16) 19 20
A03 (21, 21) 22 20 A23 (19, 21) 23 11
A04 (14, 03) 23 12 A24 (04, 08) 12 11
A05 (16, 23) 19 19 A25 (13, 08) 23 20
A06 (05, 10) 10 12 A26 (24, 12) 3 15
A07 (20, 21) 15 10 A27 (14, 15) 15 11
A08 (20, 05) 16 14 A28 (02, 07) 25 12
A09 (06, 04) 2 13 A29 (05, 01) 4 12
A10 (05, 23) 25 12 A30 (23, 17) 3 14
A11 (11, 22) 14 14 A31 (03, 12) 25 17
A12 (10, 24) 4 10 A32 (03, 18) 24 15
A13 (05, 03) 5 20 A33 (23, 22) 23 17
A14 (10, 03) 15 18 A34 (18, 02) 6 13
A15 (25, 19) 13 14 A35 (06, 21) 24 20
A16 (21, 13) 16 12 A36 (12, 12) 19 13
A17 (22, 15) 3 14 A37 (18, 09) 8 19
A18 (03, 22) 14 18 A38 (03, 23) 15 11
A19 (07, 14) 4 17 A39 (06, 01) 12 20
A20 (03, 19) 8 19 A40 (25, 18) 24 14

It is a widely held view that logistics center site selection is an NP-hard problem. Out
of the heuristic algorithm and exact algorithm, the former is more prominent in solving
the NP-hard problem on a large scale, and the particle swarm algorithm (PSO) is selected
for solving the problem in this study. Considering that the PSO algorithm is prone to
falling into the local optimum, we introduced a penalty function into the original objective
function. That is, the constrained fitness function was converted into an unconstrained
fitness function by the outlier penalty function method so that the optimal fitness value of
the global optimal position distribution decreased rapidly and reduced the influence of the
positive feedback of the next search of the particle swarm. Thus, the algorithm can jump
out of the local optimum; the objective function was converted to the following function:

min f =
40

∑
j=1

7

∑
i=1

x(i, j)h(i, j) +
7

∑
i=1

y(i)F(i) +
7

∑
i=1

C(i)
40

∑
j=1

x(i, j) + σk
∼
f (x, y, D) (6)

∼
f (x, y, D) = max

 7

∑
i=1

[
0,

(
D(j)−

40

∑
j=1

x(i, j)

)]2

+

(
7

∑
i=1

y(i)− 7

)2
 (7)
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σk is the penalty factor of the external penalty function, which is generally taken as a
fixed value. Figure 2 shows a flow chart of the outlier penalty function. The specific steps
are as follows:
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Step 1: Given the initial point X(0) and the initial penalty factor σ1 = 1, the control
error ε = 1 × 10−4, and the amplification factor of the penalty factor c = 10;

Step 2: Find the unconstrained extremum problem of the objective function as the
initial point;

Step 3: If σk
∼
f (x, y, D) < ε, take fk as the approximate optimal solution and stop.

Otherwise, let σk+1 = cσk, k = k + 1; turn to Step 2.

4. Result Analysis

In this study, we solved this problem using MATLAB 2017b and set the size of the
particle swarm to 100, the inertia weight to 0.729, the social part acceleration coefficient
to 2, the cognitive part acceleration coefficient to 2, and the penalty coefficient to 10,000.
The final fitness value of 135,102.3553 million was obtained by 1000 iterations in 81 s, and
the optimum distribution positions were obtained as A32 (3, 19), A36 (12, 12), A34 (18, 2),
A06 (5, 10), A16 (21, 13), A09 (6, 4), and A03 (21, 21). Figures 3 and 4 represent the
convergence of the specific optimal location distribution algorithm.

The immunogenetic algorithm was chosen to perform a scenario comparison to show
the superiority of the particle swarm algorithm. The immune algorithm has many advan-
tages, such as adaptivity, stochasticity, parallelism, global convergence, and population
diversity. The total population was set at 50 in the immunogenetic algorithm, the memory
bank capacity was 10, the crossover factor was set to 0.5, and the diversity evaluation factor
was 0.95. The same iterations were evaluated 1000 times, and the results for optimal site
selection were calculated as A36(12, 12), A39(3, 19), A14(10, 3), A06(5, 10), A17(22, 15),
A08 (20, 5), and A07 (20, 21). The optimal fitness value was CNY 137, 307.1613 million, and
the run time was 185 s. The optimal distribution location and convergence of the algorithm
are shown in Figures 5 and 6, respectively.
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A detailed list of the warehouse freight distribution derived from the two algorithms
is presented in Table 2, where each column represents one layout scheme. In the com-
parison of the optimal location distributions derived by the two algorithms, A06 (5, 10),
A20 (3, 19), and A36 (12, 12) were chosen as logistics center points, and each point covered
the same subset. Among them, A06 (5, 10) corresponds to five demand points, A19, A21,
A24, A28, and A31; A20 (3, 19) corresponds to eight demand points, A01, A10, A11, A12,
A18, A32, A35, and A38; and A36 (12, 12) corresponds to two demand points, A25 and A27.
The allocation of freight for these three points is 18, 151, and 57 tons, respectively. That is,
these points yield the same freight allocation in the two different algorithms.

Table 2. Distribution of warehousing freight volume.

Users
Optimum Points by IGA

Users
Optimum Points by PSO

A06 A07 A08 A14 A17 A20 A36 A06 A03 A20 A09 A36 A34 A16

A01 23 A01 23
A02 23 A02 23
A03 22 A04 23
A04 23 A05 19
A05 19 A07 15
A09 2 A08 16
A10 25 A10 25
A11 14 A11 14
A12 4 A12 4
A13 5 A13 5
A15 13 A14 15
A16 16 A15 13
A18 14 A17 3
A19 4 A18 14
A21 5 A19 4
A22 19 A21 5
A23 23 A22 19
A24 12 A23 23
A25 23 A24 12
A26 3 A25 23
A27 15 A26 3
A28 25 A27 15
A29 4 A28 25
A30 3 A29 4
A31 25 A30 3
A32 24 A31 25
A33 23 A32 24
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Table 2. Cont.

Users
Optimum Points by IGA

Users
Optimum Points by PSO

A06 A07 A08 A14 A17 A20 A36 A06 A03 A20 A09 A36 A34 A16

A34 6 A33 23
A35 24 A35 24
A37 8 A37 8
A38 15 A38 15
A39 12 A39 12
A40 24 A40 24

Total 81 125 30 61 81 151 57 Total 81 162 151 38 57 45 52

Unit: ton.

However, some similar points were selected by both algorithms with different demand
points covered. The immune genetic algorithm A07 (20, 21) covered five demand points,
A02, A03, A05, A23, and A33, while A17 covered six demand points, A15, A16, A22,
A26, A30, and A40, and the sums of their demands were 125 and 81 tons, respectively.
The logistics center point A03 derived with the particle swarm algorithm covered six
demand points, A02, A05, A07, A15, A33, and A40, while A16 (21, 13) covered four demand
points, A17, A22, A26, and A30, which correspond to the sums of their demand of 162 and
52 tons, respectively.

By contrast, the logistics center points A07 (20, 21) and A17 (22, 15) selected with
the immune genetic algorithm were not the same as the A03 (21, 21) and A16 (21, 13)
selected with the particle swarm algorithm. In detail, with the immune genetic algorithm,
A07 (20, 21) covered five demand points, A02, A03, A05, A23, and A33, with the sum of the
corresponding demands being 125 tons, and A17 covered six demand points, A15, A16,
A22, A26, A30, and A40, with the total of the corresponding demands being 81 tons. The
logistics center point A03, derived from the particle swarm algorithm, covered six demand
points, A02, A05, A07, A15, A33, and A40, and the sum of the corresponding demand was
162 tons, while A16 (21, 13) covered four demand points, A17, A22, A26, and A30, and the
sum of the corresponding demand was 52 tons.

In summary, the fitness values obtained by the particle swarm algorithm are lower
than those obtained by the immune genetic algorithm, and the solution is reached more
quickly. Both algorithms produce largely similar distributions of logistics centers. However,
it is found that the optimal distribution of logistics center sites and the coverage of freight
capacity demand derived from the particle swarm algorithm are more balanced than those
derived from the other algorithm. Based on real factors such as sustainable development
planning, the natural conditions, and relevant laws and regulations, we believe that the
site selection scheme for logistics centers derived from the particle swarm algorithm is
more reasonable. Therefore, it can be concluded that the algorithm and model proposed
in this paper can effectively optimize the location of regional logistics center, reduce the
transportation cost of enterprises, and expand the income of enterprises. This plays a vital
role in the sustainable development of express delivery enterprises.

5. Conclusions

Location selection is a systematic project constrained by multiple geographic, social,
and economic factors, and site selection for regional logistics centers is even more com-
plicated. The key step in site selection is to reduce the uncertainty and inaccuracy of
evaluation models. To address this problem, the paper proposes a multi-factor constrained
P-median model for optimizing the layout of logistics centers based on the improvement of
the existing one-dimensional objective constrained site selection model, and the optimal
siting location was determined by using the particle swarm algorithm and immune genetic
algorithm to derive a more optimal location layout. The main conclusions are as follows:
(1) based on the mutual constraint relationship among the factors, we controlled the storage
capacity of each logistics center to match the sum of the most suitable demand point freight
volume while ensuring the shortest economic distance, which effectively overcomes the
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problem of the uneven distribution of storage material resource capacity in the traditional
location-allocation model. (2) According to the analysis of the case, the optimal location and
layout allocation according to the particle swarm algorithm are better than those according
to the immune genetic algorithm, which indicates that the particle swarm algorithm for
the P-median site selection model under the multi-factor constraint has a certain reference
value for multi-logistics center site-selection planning.

Results show that the particle swarm optimization algorithm has a fast convergence
speed and high precision in the selection of logistic system node. It has a good performance
when solving multivariable feasibility solution. Meanwhile, it could effectively improve
the solution efficiency of node location in large-scale underground complex environments.
The above research outcomes can provide reference for relevant managers to optimize the
logistics system.
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