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Abstract: Fluctuation in a fuel cell’s output power affects its service life. This paper aims to explore
the relationship between power output fluctuation and energy consumption and the cost of the fuel
cell system. Hence, based on the actual driving information of vehicles, a novel multi-objective energy
management strategy (EMS) for fuel cell buses (FCBs) that quantifies fuel cell life as operating cost is
proposed. The actual driving data of FCBs on bus line 727 in Zhengzhou, China, were collected. Based
on this, considering the degradation factors of the fuel cell and power battery hybrid energy system,
a multi-objective cost framework was established to quantify the life degradation as consumption
cost. Furthermore, the influence of different power change limits on the performance of the EMS was
analysed based on real-world driving data and the typical Chinese city bus driving cycle, respectively.
The simulation results show that the degradation cost of the fuel cell can be effectively reduced when
the power change limit is 1 kW, and the simulation results obtained using real-world driving data
are very different from those obtained using typical city bus driving cycles. This study provides a
reference for the application of a vehicle energy management strategy in real-world scenarios as well
as highlights its significance.

Keywords: fuel cell hybrid buses; energy management strategy; multi-objective optimisation; degradation

1. Introduction

In recent years, social problems such as energy shortage and environmental pollution
caused by fuel combustion have become increasingly severe, which has strongly promoted
the development of new energy vehicles. Fuel cell vehicles have attracted extensive
attention from all sectors of society due to the characteristics of high energy conversion
efficiency and zero emission [1].

However, since fuel cells cannot recover energy and respond slowly when they are
used as a single power source, additional energy sources such as batteries or supercapac-
itors are generally added as an auxiliary power to form fuel cell hybrid electric vehicles
(FCHEVs). Moreover, the complex power system structure leads to the total cost of FCHEV
being too high to meet the needs of the market, especially the operating cost of the onboard
fuel cell and battery system [2]. On the other hand, due to the operational characteristics
of the powertrain energy, the complicated and changeable vehicle driving conditions in
the actual driving environment will bring a huge burden to the system, thereby reducing
the service life and increasing the additional cost [3]. An appropriate energy management
strategy (EMS) is currently a viable approach to manage the distribution of power between
different energy sources so that the different energy sources can compensate for each other’s
power deficits, use hybrid systems efficiently and healthily, and reduce FCB operating
costs [4]. EMSs for hybrid drive systems have been developed into two main categories:
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rule-based EMSs and optimisation-based EMSs. Rule-based EMSs include those based on
deterministic and fuzzy rules, formulated based on engineering experience by defining a
series of rules for the operation of vehicle power systems to determine the working state
of the power drive system. This method is technically inexpensive, the amount of online
calculation is small, and the industrial application is widely used [5]. The EMSs based
on optimisation use the optimisation algorithm to search for the optimal or suboptimal
control strategy of the system control objective function, which is generally manifested
as the problem of finding the minimum value of the objective function in the feasible
domain, which can be divided into global optimal control strategy and real-time optimal
control strategy [6].

In contrast, rule-based EMSs are the most common way to achieve energy manage-
ment in FCHEV industrial applications [7]. Currently, the most common rule-based EMS
for FCEVs mainly includes state machine control methods, power follower control methods,
and fuzzy logic control strategies [8,9]. Banvait, H. et al. developed and established state
machine models to achieve power distribution control by executing predefined control rules
or logical thresholds [10]. Chen, Z. et al. used the rules extracted from the optimisation
results of 12 typical driving cycles, from which a rule-based EMS was proposed, and the
results showed that it can effectively reduce hydrogen consumption [11]. Trovao, JP. et al.
proposed an EMS for assembling rules by combining long-term rules to dynamically limit
the search state space with short-term rules for implementing decisions [12]. Thoun-
thong et al. proposed an EMS based on fuel cell/supercapacitor flatness characteristics to
improve system stability [13]. T. Wang et al. proposed an EMS for air-cooled fuel cell system
based on a state machine, which was verified on the established hybrid test platform [14].
The above studies have conducted extensive and in-depth research on the rulemaking of
energy management; however, they did not consider the operating characteristics of fuel
cell systems and may be ineffective in practical applications.

Some existing EMSs seek to minimise hydrogen consumption and battery equivalent
consumption in fuel cells [15,16]. However, these performance indicators are only partially
representative of the operating costs of the vehicle, as energy degradation can also increase
the operating expenses of the vehicle. Therefore, to comprehensively assess the economics
of FCB, several studies have incorporated energy degradation factors into the decision-
making framework, resulting in a multi-objective EMS [17]. Y. Zhou et al. mitigated the
degradation of fuel cells by limiting their power transients, further reducing operating
costs based on H2 minimisation strategies [18]. Y. Zhou et al. proposed an MPC-based
EMS comprehensively considering fuel cell efficiency and degradation [19]. J. P. Ribau et al.
applied single-objective and multi-objective genetic algorithms to optimise the powertrain
design of fuel cell vehicles to improve system efficiency and extend service life [20]. Aiming
at the fuel economy and system durability of fuel cell hybrid energy systems, Xu et al.
established a dual-cycle energy management framework based on a dynamic programming
algorithm to solve this multi-objective optimisation problem [21]. Although the above
studies have conducted detailed and extensive research on EMSs, most researchers currently
use data sets of typical standard driving cycles, which may influence the performance of
EMSs in practical applications.

In order to comprehensively evaluate the economy of a fuel cell hybrid system, this
paper combines the control strategy based on Charge-Depleting–Charge-Sustaining (CD-
CS) rules with a multi-objective function framework to improve the practicability of the
control strategy and uses real-world driving data for simulation validation. The structure
of the full text is shown in Figure 1.
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Figure 1. The structure of the full text.

The contributions of this article are as follows:

(1) This paper proposes a multi-objective cost function framework that can specifically
quantify energy degradation as operating costs to represent the impact of energy
degradation visually;

(2) The effects of fuel cell power output fluctuation on the life and hydrogen consump-
tion of a fuel cell/battery hybrid system were studied, and it was found that, the
more stable the fuel cell power output, the smaller the life degradation of the fuel
cell/battery hybrid system and the lower the operating cost;

(3) Comparing real-world speed information with typical standard driving cycles, it is
found that, in the real world, the working conditions change more drastically, the
energy consumption is greater, and the smoother the fuel cell power output, the better
the adaptability of the fuel cell system to complex working conditions.

The rest of the paper proceeds as follows. The FCB powertrain model and multi-
objective cost function framework are detailed in Section 2. Section 3 introduces the CD-CS
rules. The control results under the driving cycle are given in Section 4. The conclusion is
summarised in Section 5.

2. System Model

This paper adapts an FCB powertrain for research, and the hybrid system studied
consists of a proton exchange membrane fuel cell (PEMFC) system as the main energy
source and a lithium-ion power battery system as a secondary energy source. The fuel cell
system is connected in parallel with the battery system to the DC bus; moreover, the fuel
cell is connected to the DC bus by an additional DC-DC converter to regulate the output
current. This is shown in Figure 2. The main component parameters of the powertrain are
listed in Table 1.
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Table 1. Main vehicle parameters.

Category Item Value

Vehicle Parameters Vehicle mass 13,500 kg
Vehicle front surface 1.746 m2

Tire radius 0.32 m
Rolling coefficient 0.0135

Gravitational acceleration 9.81 m/s2

PEMFCS System Rated power 50 kW
Maximum efficiency 59.6%

Battery System Nominal energy capacity 15.18 kWh
Others DC/DC converter efficiency 0.90

2.1. Vehicle Dynamics Model

Based on the longitudinal dynamics of the vehicle, the vehicle demand power (Preq)
can be calculated as:

Preq = v
[
crMg cos θ+ 0.5ρair ACDv2 + Ma

]
(1)

where v is the velocity, cr is the rolling resistance coefficient, M is the vehicle weight, g
is the gravitational acceleration, ρair is the air density, A is the windward area, CD is the
coefficient of aerodynamic drag, a is the vehicle acceleration, θ is the road slope (θ = 0).

The fuel cell system and battery system provide output power to the DC bus together,
and the power balance relationship is represented by Equation (2):

Pdc = Preq/(ηd·ηEM) = PBAT + PFC · ηDC/DC (2)

where Pdc is the DC bus demand power, PFC is the fuel cell output power, PBAT is the battery
output power, ηd,ηEM, and ηDC/DC are the efficiency of the driveline, electric machine, and
DC-DC converter, respectively.

2.2. Fuel Cell Model

In this paper, a PEMFC system with a rated power of 50 kW is used for research.
During the outgoing output of the PEMFC, the mass of hydrogen consumed (MH2) can be
expressed as

MH2 =
∫ t

0
PFC(t)/(ηFCS · LHVH2)dt (3)

where ηFCS = PFC/PH2 is the efficiency of the PEMFC system, PH2 is the power output by
hydrogen combustion, and LHVH2 is the calorific value of hydrogen, and its smaller value
(120,000 J/g) is chosen here.
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The working principle of the PEMFC system durability is complex, involving multiple
dimensions and levels, and there is currently no unified PEMFC degradation model. As
reported in [22], the performance of fuel cell catalysts, the membrane electrode assembly
(MEA), and the inherent state of the plates and the working state are the key factors affecting
the output characteristics and durability of fuel cells [23]. However, an important reason for
the degradation of fuel cell performance is the harsh operating conditions. Harsh operating
conditions lead to changes in its active electrochemical area, hydrogen leakage current, and
catalyst layer structure, which will cause the performance of fuel cells to decline. Therefore,
the research on fuel cell performance degradation can be simplified to the study of the
degradation mechanism of four harsh working conditions: shutdown and reactivation of
the fuel cell system, variable loading, high loading, and low loading.

Thus, energy management should limit these operating conditions as much as possible.
The shutdown and reactivation of fuel cells will have a significant negative impact on
life [24]; moreover, because previous studies have been conducted, this article did not
repeat it, and PEMFC is always kept on in this paper. As for other fuel cell degrading
effects, when the output power reaches more than 80% of the rated power: PFC ≥ 0.8 · Pmax

FC ,
it is defined as high loading. Under this working condition, the degradation of the fuel
cell is manifested as voltage degradation, and the voltage drop per hour is αhigh. Similarly,
when the fuel cell output power is less than 20% of the rated power: PFC ≤ 0.2 · Pmax

FC , it is
defined as a low loading, and the voltage drop per hour is αlow, correspondingly. In the
variable load working condition, the fuel cell is affected by the change of output power in a
short period of time, and the voltage drop caused by every 1 kW of load change is αshift.
The specific parameters adopted are listed in Table 2.

Table 2. PEMFCS degradation rate (cell level).

Load Degradation

High load 10.00 µV/h
Low load 8.662 µV/h

Load change 0.04185 µV/kW

The effects of each loading on fuel cell degradation are independent of each other and
do not affect each other, therefore they can be directly summed up as the total degradation
of fuel cells [23].

2.3. Battery Model

In this paper, a lithium-ion battery with a rated power of 100 kW and the nominal
energy capacity of 15.19 kWh is used for research. The equivalent internal resistance model
is used to establish the power battery model, whose configuration is shown in Figure 3.
The bus voltage can be expressed as:

Udc = UOC − IBAT · RBAT (4)

where UOC is the open-circuit voltage, Udc is the DC bus voltage, IBAT is the battery current,
RBAT is the internal resistance.
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The battery state of charge (SoC) can be calculated by:

SoC(t) = SoCini −
∫ t

0
(ηBAT · IBAT/QBAT)dt (5)

where QBAT is the nominal capacity of the battery pack (Ah), SoCini is the initial SoC, ηBAT is
the battery charge–discharge conversion efficiency (when the battery is discharged ηBAT = 1,
ηBAT = 0.95 when charging).

With the usage of batteries, degradation is inevitable. The change in the internal
stability of the battery is an important reason for its ageing, and the life decay of the
lithium battery is manifested as an increase in internal resistance, decreasing in charge and
discharge capabilities and causing a decrease in battery capacity [25]. In this paper, a semi-
empirical model proposed by [26] is used to establish an accurate battery life decay model,
which considers the battery life decay of accelerated power such as charge–discharge rate,
SOC, and temperature factors, the expression of which is:

Qloss = B(crate) · exp(−Ea(crate)/RT)Ahz (6)

where Qloss is the percentage loss of battery cell capacity (%), crate is the battery current rate,
B is the pre-exponential coefficient, as listed in Table 3, Ea is the activation energy, R is the
molar gas constant, T is the temperature, Ah is the cumulative charge, and z = 0.55 is the
power–law coefficient. The literature [26] identifies the parameters based on experimental
data, and the expression of Ea is denoted by:

Ea = 31700− 370.3 · crate (7)

Table 3. Pre-exponential factor as a function of the crate.

crate 0.5 2 6 10

B 31,630 21,681 12,934 15,512

Usually, when the battery capacity reaches 80% of the total capacity, it is considered
to be the end of life (EoL) of a power battery [27], and the degree of battery capacity
attenuation during charging and discharging is characterised by the effective charge:

AhEoL(crate) = [20/B(crate) · exp(−Ea(crate)/RT)]
1
z (8)

When the battery reaches the EoL, the number of battery charge and discharge cycles
can be expressed as [28]:

NEoL(crate) = AEoL
h (crate)/Qcell (9)

Hence, the battery state of health (SoH) can be represented by the following equation [28]:

SoH(t) = 1−
(∫ t

0
|icell(t)|dt

)
/2NEoL(crate)Qcell (10)

where the SoH initial setting to 100% and icell is the current from a single cell.

2.4. Multi-Objective Cost Framework

To quantify the life degradation as a consumption cost, a multi-objective cost function
framework is proposed. The total cost of the hybrid energy system can be expressed as follows:

Ctol = CH2 + CFC + CBAT (11)
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where CH2 is the operating cost due to hydrogen consumption during the driving of the
vehicle, which can be calculated from the following equation:

CH2 = PH2 ·MH2/1000 (12)

where PH2 is the price of hydrogen in the international market, MH2 is the mass of hydro-
gen consumed.

The fuel cell degradation cost (CFC) is expressed as follows:

CFC = Ccycle + Chigh + Clow + Cshift (13)

where Ccycle is the operating cost of fuel cell degradation caused by the vehicle start–stop
cycle, which is not considered in this article and is set to 0.

In addition, the cost of fuel cell degradation due to heavy and light loading during
vehicle operation can be expressed as:

Chigh = αhighThigh pstack/UEoL,FC (14)

Clow = αlowTlow pstack/UEoL,FC (15)

where Thigh and Tlow are the cumulative time that the vehicle operates under high loads
and low loads, respectively, and pstack is the price of the fuel cell stack.

The degradation cost of fuel cell degradation due to variable loading can be calculated as:

Cshift = αshift

p=Hp−1

∑
p=0

|∆PFC|∆T
1000NFC

/UEoL,FC (16)

where NFC = 1000 is the number of cells in the stack.
The operating costs due to battery degradation can be calculated by the following equation:

CBAT = (SoH(k)− SoH(k + 1)) · pBAT (17)

where SoH(k + 1) = SoH(k)− |icell|∆T
2NEoL(crate)Qcell

, and pBAT is the price of the battery pack.
The relevant parameters used to calculate the cost of each degradation and the cost of

hydrogen consumption are shown in Table 4.

Table 4. Parameters for calculating the hybrid energy system’s degradation cost.

Parameter Value Unit

Single fuel cell EoL voltage drop 6000 µV
Hydrogen price PEMFC stack 4.00 USD/kg

PEMFC stack price 93.00 USD/kW
Battery pack price 178.41 USD/kWh

2.5. Constraints

In the operation of the fuel cell hybrid powertrain, the relevant parameters of the fuel
cell/battery hybrid energy system need to be constrained to ensure the normal operation
of the system. The constraints are shown in the following:

Pmin
FC ≤ PFC ≤ Pmax

FC (18)

SoCmin ≤ SoC ≤ SoCmax (19)

SoHmin ≤ SoH ≤ SoHmax (20)

where Pmin
FC = 3kW, Pmax

FC = 50kW, SoCmin = 0.3, SoCmax = 0.9, SoHmin = 0, SoHmax = 1.
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3. Rule-Based EMS
3.1. Energy Management Strategy Rule Description

A CD-CS strategy is adopted to solve the energy management problem of FCB. On
the basis of meeting the power demand, according to whether the power battery power is
sufficient, the operation process of the fuel cell/battery hybrid system is divided into two
modes: CD and CS. Under CD mode (when SoC ≥ 0.6), the battery has sufficient power,
and the proposed energy management strategy is biased towards battery operation. The
battery is the main power source and undertakes most of the power output tasks. The
fuel cell operates at a smaller output power (as shown in Figure 4), which, in most cases,
is set at 15 kW. On the one hand, it not only ensures that the fuel cell can work at high
work efficiency and alleviate its degradation, on the other hand, the energy consumption
of the power battery is also conducive to energy recovery and to prevent its SoC from
exceeding the limit (SoC ≥ 0.9), reducing the service life. When the battery SoC is depleted
to a predetermined level (when SoC < 0.6), that is, CS mode, the roles of fuel cells and
batteries in terms of power output are interchanged, and fuel cells become the main source
of energy, while their output is kept as much as possible at 15 kW to work as efficiently as
possible. The power battery recovers energy as much as possible to prevent its SoC from
dropping to dangerous levels (SoC ≤ 0.3) and reducing its service life. The detailed control
strategy is shown in Figure 4.
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Figure 4. The CD-CS rule-based EMS, where PFCb is the fuel cell output power at the efficient working
range, PFCb = 15 kW, PFCmin is the fuel cell minimum output power, PFCmin = 3 kW, PFCmax is the fuel cell
maximum output power, PFCmax = 50 kW, PBmax is the battery maximum output power, PBmax = 100 kW.

3.2. Verification of the Effectiveness of Energy Management Strategies

Setting different initial SoC values to simulate the situation of the battery’s sufficient
and insufficient power output, the changes of power battery SoC and fuel cell’s output
power are studied to verify the effectiveness and reasonableness of the proposed EMS.

The real-world data used in this article is derived from some operating conditions
of bus route 727 in Zhengzhou, China, as shown in Figure 5, which is adopted as the test
cycle, and the simulation results are shown in Figure 6.
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Figure 5. (a) The FCB speed of bus route 727 in Zhengzhou, China; (b) the FCB acceleration of bus
route 727 in Zhengzhou, China; (c) the FCB demand power of bus route 727 in Zhengzhou, China.
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It can be seen from Figure 6 that, under different initial SOC values, the battery SOC
change trend is similar, and they quickly enter the CD-CS mode to maintain the long-term
stability of the SOC = 0.6; moreover, the fuel cell output power is maintained at about
15 kW (the highest efficiency working area of the fuel cell) most of the time, which verifies
the effectiveness of the proposed strategy. When t = 225 s and t = 1273 s, the battery SOC
drops sharply, while the PFC rises rapidly, which prevents the battery from reducing its life
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due to low SOC while meeting the power output demand, which verifies the rationality of
the proposed EMS.

4. Simulation and Results

In this section, the multi-objective cost function framework proposed in Section 2 and
the EMS based on the CD-CS rule and real-world driving data proposed in Section 3 are
used to study the impact of fuel cell energy output fluctuations on fuel cell/battery hybrid
systems. Specifically, this is achieved by setting different fuel cell output power control
step limits (∆Pfc), and six cases of ∆Pfc = 0.5kw, ∆Pfc = 1kw, ∆Pfc = 2kw, ∆Pfc = 3kw,
∆Pfc = 4kw, and ∆Pfc = 5kw are considered.

Considering the impact of load changes on fuel cell life, the influence of the fuel cell
power control step limit on the total cost of the hybrid power system was investigated. The
optimised cost outcome is shown in Figure 7.

From Figure 7a, the simulation results show that the hydrogen cost under different
control step limits increases steadily with the vehicle running; however, it is affected very
little by the different power control limits. When ∆Pfc = 0.5kw, CH2 reaches the minimum
value, 0.6476 USD. In the whole driving cycle, CH2 is always the lowest under ∆Pfc = 0.5kw,
compared to other control step limits.

From Figure 7b, the simulation results show that, with the gradual increase in ∆Pfc,
CFC presents an upward trend and is significantly affected by different power control
limits. When ∆Pfc = 0.5kw, CFC reaches the minimum value, 0.0535 USD; moreover,
when ∆Pfc = 5kw, CFC reaches the maximum value, 0.7241 USD, jumping from 8% to
49% of the total cost, greatly affecting the total cost. This may be due to the slow working
characteristics of the fuel cell dynamic response. The smaller the control step limit size, the
better the energy management effect, and the fuel cell works stably.

From Figure 7c, the simulation results show that with ∆Pfc increasing gradually, CBAT
increases steadily, and it is also affected very little by the different power control limits.
The overall value is around 0.0620 USD. This shows that fuel cell power fluctuations have
little impact on the battery system.

Specific numerical results are shown in Table 5. From Table 5, the hydrogen cost
contributes the most, accounting for about 45–83% of the total costs; the fuel cell degradation
cost constitutes the second largest expense, accounting for about 8–49% of the total costs;
the battery degradation cost is the smallest, accounting for about 4–8% of the total costs. The
reason for the large fluctuation is that the cost of fuel cell degradation is significantly affected
by the change of different power control step limits. Moreover, fuel cell degradation has a
significant impact on the total cost, far greater than the single-factor hydrogen consumption
considered by the traditional EMS. Therefore, the study of fuel cell/battery lifetime is
necessary, and it provides a feasible idea for future research.

Table 5. Cost under different fuel cell power control step limits.

Cost (USD) ∆Pfc = 0.5 kW ∆Pfc = 1 kW ∆Pfc = 2 kW ∆Pfc = 3 kW ∆Pfc = 4 kW ∆Pfc = 5 kW

CH2 0.6476 0.6509 0.6459 0.6491 0.6552 0.6673
CFC 0.0535 0.0639 0.1901 0.3639 0.3565 0.7241

CBAT 0.0617 0.0621 0.0621 0.0620 0.0619 0.0619
Ctol 0.7628 0.7769 0.9017 1.075 1.0736 1.4533

From the above results, it can be seen that the fuel cell power control limit significantly
impacts fuel cell degradation, and a smaller fuel cell power control limit will help improve
the service life of the fuel cell and reduce the cost of use.
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This paper also conducts a comparative study based on the standard China city cycle
to find the difference between real-world data and typical driving cycles. The standard
China city cycle is shown in Figure 8.
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The CH2, CFC, and CBAT under different power control limits are shown in Figure 9,
and the specific values are shown in Table 6.
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Table 6. Cost under different fuel cell power control step limits.

Cost (USD) ∆Pfc = 0.5 kW ∆Pfc = 1 kW ∆Pfc = 2 kW ∆Pfc = 3 kW ∆Pfc = 4 kW ∆Pfc = 5 kW

CH2 0.6276 0.6058 0.5965 0.5932 0.5912 0.5879
CFC 0.2525 0.2675 0.3047 0.3455 0.3224 0.4068

CBAT 0.0252 0.0253 0.0257 0.0259 0.0260 0.0262
Ctol 0.9053 0.8986 0.9269 0.9649 0.9396 1.0209

From Figure 9a, the hydrogen cost under the different control step limits’ trends is
roughly the same as shown in Figure 7a; however, the value is reduced by about 7%, and,
when ∆Pfc = 5kw, CH2 reaches the minimum value, 0.5879 USD.

From Figures 7b and 9b, the simulation results show that, with a gradual increase in
∆Pfc, CFC presents a similar trend; however, the final values vary wildly. The difference
between the minimum and maximum values of CFC in Table 6 is about 1.6 times, while, in
Table 5, the gap widens to 11.33 times. The reason may be that real-world vehicle speeds
change more frequently, and fuel cell hybrid systems are more burdensome, leading to
greater energy degradation. More granular energy output can effectively alleviate this
situation, as can be seen from the fact that the minimum value of CFC in Table 5 is nearly
76% smaller than the minimum value of CFC in Table 6. It also shows that, with an increase
in ∆Pfc, the adaptability of fuel cell hybrid systems to more complex traffic environments
decreases significantly. This shows that more detailed control of fuel cell output power can
not only reduce the degradation of fuel cells but can also improve the adaptability of fuel
cells to complex working conditions.

From Figures 7c and 9c, the overall trend of CBAT is similar; however, CBAT in Table 5
has increased by about three times compared to CBAT in Table 6, indicating that frequent
load changes also have a significant impact on the life of the battery system.
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From Table 6, the hydrogen cost contributes the most, accounting for about 57.6–67.4%
of the total costs. The PEMFCS degradation cost constitutes the second most considerable
expense, accounting for about 29.8–39.8% of the total costs, and the battery degradation cost
is the smallest, accounting for about 2.57–2.8% of the total costs. Compared with Table 5,
the cost of each part in Table 6 is more negligible, and the change in the proportion of the
total cost is relatively more stable, especially in the cost of fuel cell degradation, showing a
vast difference.

5. Conclusions

In this study, the influence of fuel cell system output power fluctuation on the fuel
cell/battery hybrid system is analysed from the perspective of fuel cell/battery hybrid
system life and hydrogen consumption, and a multi-objective cost function framework that
can specifically quantify degradation life as a consumption cost is proposed. The findings
of this study are summarised below.

5.1. Main Finding

(1) By setting different fuel cell output power limits, the influence of the fuel cell system
output power fluctuations on hybrid systems is studied. The results show that the smaller
the power control limit of the fuel cell system, that is, the more stable the fluctuation of the
output power of the fuel cell system, the stronger the adaptability of the fuel cell system to
complex working conditions, the more conducive it is to reduce the degradation of the
fuel cell and extend the service life, thereby reducing the total operating cost;

(2) Using the driving vehicle data collected from the 727 fuel cell bus in Zhengzhou,
China, this was compared with the standard China city cycle. The results show that
the fuel cell/battery hybrid system exhibits more operating characteristics than a
typical standard driving cycle in real-world driving data, which shows the practical
significance of using real-world data.

5.2. Future Work

First, this paper ignores the energy consumption of auxiliary equipment in fuel cell
systems, such as hydrogen circuits, air circuits, water circuits, and coolant circuits, which
may affect the accuracy of the conclusions of this paper. Therefore, it will be further studied
in the future. Second, the energy management strategy adopted in this paper has poor
optimality, which will affect the accuracy of the conclusion. Thus, a more optimised energy
management method will be adopted based on the multi-objective cost function framework
proposed in this paper. Third, this paper considers the impact of the fuel cell output power
fluctuations on hydrogen consumption and the life of hybrid systems. In the future, we will
conduct more extensive research on factors such as battery thermal effects and the energy
consumption of onboard equipment. Finally, if conditions permit, vehicle experiments will
carry out strategy verification.
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