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Abstract: The application of green manure is considered a sustainable management approach to
improve soil quality and crop yield in agricultural production. However, few studies have focused
on the effects on soil properties and the microbial community when varied green manure rates are
applied in rice cropping systems. We examined the soil and microbial properties in paddy soil and
evaluated rice productivity and sustainable yield index in response to Chinese milk vetch (MV)
application at various rates (0, 22.5, 30, 45, and 60 Mg ha−1, labeled MV0, MV22.5, MV30, MV45, and
MV60, respectively) in a seven-year (2014–2020) field experiment. For all treatments, MV application
significantly improved rice yield by 22.5–29.7% and sustainable yield index by 10.3–13.0% compared
with no MV application, and the highest average yield across the 7 years of the study was found in
MV60, followed by MV45, MV30, and MV22.5. Compared with MV0, MV45 and MV60 treatments
significantly reduced soil bulk density (BD), increased soil organic carbon (SOC), total nitrogen (TN),
total potassium (TK), and alkali solution nitrogen (AN), particularly in MV45. Moreover, compared
with MV0, a marked decrease in the alpha diversity (Shannon index) of the bacterial community and
a significant increase in the relative abundance of Firmicutes were observed under MV45. The alpha
diversity of the fungal community did not vary across treatments, but MV45 significantly reduced
the relative abundance of Ascomycota and Chytridiomycota compared with MV0. In addition,
redundancy analysis indicated that the fungal community structure was significantly related to
soil BD, and random forest classification analysis demonstrated that SOC and AN were the most
important factors for rice yield in this study. Overall, these results indicated that MV application at
45 Mg ha−1 should be recommended to simultaneously achieve the improvement of rice yield and
soil quality in the South China.

Keywords: Chinese milk vetch (Astragalus sinicus L.); rice yield; soil physicochemical properties;
microbial community

1. Introduction

Rice (Oryza sativa L.) is a staple food crop and feeds over half of the world’s population.
China is one of the largest rice producers in the world, contributing to 28.0% of global
rice production in 18.5% of the global rice growing area [1]. With the growing population,
global rice production will need to increase by an annual yield of 1.2–1.5% over the next
few decades to satisfy expected food demands without rice-growing area expansion [2].
This will increase the consumption of chemical fertilizers [3]. However, the excessive use
of chemical fertilizers has created negative impacts, including low resource utilization
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efficiency, soil quality degradation, and environmental health threats [4]. Therefore, finding
a sustainable and ecofriendly alternative strategy to increase rice production and satisfy
food demands is critical.

Sustainable and renewable farming through the application of animal manure [5],
farmyard manure [6], and compost [7] has experienced rapid growth in recent years.
However, the application of organic manure may have some adverse effects, including the
accumulation of heavy metals and antibiotics in soil and crop grains, and high economic
risks [8,9]. Green manure, a clean organic manure resource, lacks heavy metals, antibiotics,
and other residual hazards, and can effectively reduce these adverse effects [10]. As a
winter-growing legume green manure, Chinese milk vetch (Astragalus sinicus L., MV)
has been widely grown within rice production systems as an alternative to bare fallow
in southern China [11]. Some studies have shown that planting MV can fully exploit
and obtain natural resources (e.g., light, temperature, and water) in the winter fallow
rice fields [12,13], improve the carbon flux into soil, and increase soil organic carbon
sequestration [14]. Additionally, it can fix atmospheric nitrogen in root nodules with
rhizobia and improve phosphorus and potassium availability by regulating soil enzymatic
activities in the soil, resulting in nutrient accumulation in MV and the soil [15,16]. Therefore,
returning MV to the paddy fields not only provides nutrients to meet the growth demand
of succeeding crops (e.g., rice), but also improves soil quality, ultimately improving grain
yield [17,18]. Previous reports have shown that the substitution of chemical fertilizers with
MV can increase the soil organic carbon content and nutrient pool, thus improving rice
yield [12]. However, research on the effects of different MV application rates on rice yield
and soil properties, in particular, soil microbial community properties, is limited.

Soil microorganisms play critical roles in soil nutrient cycling, litter decomposition,
soil fertility maintenance, and crop productivity, which maintain multiple agroecosystem
functions and sustainability [19,20]. Several studies have indicated that soil microorgan-
isms (e.g., Proteobacteria and Acidobacteria) promote the decomposition of green manure
and release vital nutrients into the soil by secreting extracellular enzymes, which could
subsequently be assimilated by crops and affect soil quality [21,22]. A 31-year long-term
rotation of rice-rice-different green manure treatments shaped the rhizosphere microbial
community and improved the relative abundance of beneficial bacteria (e.g., Acinetobac-
ter and Pseudomonas) compared to rice-rice-winter fallow treatment [23]. Compared to
no green manure-returning treatment, the average soil organic carbon (SOC), total nitro-
gen (TN) and available N levels under MV-returning treatment were increased, and the
relative abundances of Acidobacteria and Verrucomicrobia were also increased, which was
conducive to the gain in maize yield [10]. Although previous studies have demonstrated
that adding different kinds of green manure improved soil nutrient concentrations and al-
tered soil microbial communities [10,22], these effects under varied MV-returning rates are
currently unclear.

We postulated that: (1) varied long-term MV application rates could improve soil
physicochemical properties and the soil microbial community, thus improving rice produc-
tivity in paddy soil; (2) there is a threshold rate of MV application, above which there will
be no further increase on soil properties and rice productivity. Therefore, the objectives of
this study were to verify suitable MV application rates in terms of assessing their ability to
increase rice yield, improve soil physicochemical and microbial properties, and provide
guidance for regional agricultural sustainable production.

2. Materials and Methods
2.1. Study Area and Site Characterization

The study site was located at the Xinyang Academy of Agricultural Sciences Experi-
mental Park (32◦07′ N, 114◦05′ E) in the southern Henan Province, China. This area belongs
to the transition zone from the subtropical to the warm temperate zone. The mean annual
precipitation is 900–1400 mm. The field plot experiment began in 2014, and the tested soil
was yellow–brown gley paddy soil. The basic chemical properties in the top 20-cm soil
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profiles were as follows: 12.9 g kg−1 soil organic carbon (SOC), 1.15 g kg−1 total nitrogen
(TN), 76.8 mg kg−1 alkali solution nitrogen (AN), 5.4 mg kg−1 available phosphorus (AP),
59.1 mg kg−1 available potassium (AK), and pH 6.7.

2.2. Experiment Design and Field Management

The field experiment was conducted for 7 consecutive years (2014–2020), and included
five treatments: (1) MV0, no addition of MV; (2) MV22.5, 22.5 Mg ha−1 MV; (3) MV30,
30 Mg ha−1 MV; (4) MV45, 45 Mg ha−1 MV; and (5) MV60, 60 Mg ha−1 MV. The area of
each plot was 6.67 m2 (3.33 m × 2.0 m), and all treatments were allocated in a randomized
block design with four blocks. The rice cultivar used in this experiment was ‘Yang Liangyou
013’, and the sowing date was late April, with transplant in late May. The transplant density
of rice was at a spacing of 16.7 cm × 20 cm with artificial seeding and 2 seedlings per hole.
The final rice harvest of the experiment occurred in late September. At maturity, rice was
harvested manually from the entire plot and divided into straw and grain by a plot-thresher.
The rice straw was removed, and the grain was weighed after being sun-dried to obtain the
annual yield. Chinese MV (Astragalus sinicus L., cv. ‘Xinzi 1’) was directly sown after the
rice harvest during the winter season, and it was harvested every year at the full-bloom
stage, measured, and applied sequentially to each plot based on the experimental design.
The water content of fresh MV was 90%, and the N, P, and K concentrations of dried MV
were 3.75, 0.34, and 3.5 g kg−1, respectively. Ridges were built between plots and covered
with plastic film to prevent the movement of water and fertilizer. A 0.3-m-wide ditch was
reserved between the blocks to facilitate water supply and drainage. Irrigation and control
of diseases and insect pests were consistent with local agronomic practices.

2.3. Sampling and Laboratory Procedures

Soil samples (0–20 cm soil depth) were collected in September 2020 (after rice harvest).
Five soil cores were collected from each plot, mixed into one composite sample, and
dried naturally. The air-dried soil samples were ground to pass through a 2-mm sieve to
determine the AN, AP, and AK concentrations. Then, the soil samples were ground to pass
through a 0.25-mm sieve to determine the SOC, TN, total P (TP), and TK concentrations.
Another five soil cores in each plot were collected randomly, combined into one sample,
and preserved at −80 ◦C for microbial community analysis.

Soil organic carbon and total N concentrations were determined using a Vario MACRO
elemental analyzer (Elementar, Langenselbold, Germany). The alkali nitrogen solution
was measured by a 1 mol L−1 NaOH alkaline hydrolysis diffusion method [23]. The total
P was determined by H2SO4–HClO4 digestion, followed by molybdenum antimony anti-
colorimetry, and available P was extracted with 0.5 mol L−1 NaHCO3 [24]. The total K was
determined by the NaOH melting method, and available K was extracted with 1 mol L−1

ammonium molybdate and analyzed by flame photometry [25,26]. The BD was determined
by collecting undisturbed soil samples with a cutting ring (50.46 mm inner diameter,
50 mm long) and oven-drying at 105 ◦C to a constant weight for each plot [15].

2.4. DNA Extraction, PCR Amplification, and MiSeq Sequencing of the Soil

Microbial community genomic DNA was extracted from 0.5 g of freeze-dried soil
samples using the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) according
to the manufacturer’s instructions [27]. The DNA extract was checked on a 1% agarose
gel, and DNA concentration and purity were determined with a NanoDrop 2000 UV-vis
spectrophotometer (Thermo Scientific, Wilmington, OH, USA). The hypervariable region
V3–V4 of the bacterial 16S rRNA gene and the ITS1 variable region of the fungal ITS
gene were amplified with primer pairs 338F/806R (5′-ACTCCTACGGGAGGCAGCAG-3′/5′-
GGACTACHVGGGTWTCTAAT-3′ and ITS1F/ITS2R (5′-CTTGGTCATTTAGAGGAAGTAA-
3′/5′-GCTGCGTTCTTCATCGATGC-3′) by an ABI GeneAmp® 9700 PCR thermocycler
(ABI, Los Angeles, CA, USA). PCR amplification was performed as follows: initial de-
naturation at 95 ◦C for 3 min, followed by 27 cycles of denaturing at 95 ◦C for 30 s,
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annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 45 s, a single extension at 72 ◦C
for 10 min, and ending at 4 ◦C. The PCR mixtures contained 4 µL 5 × TransStart FastPfu
buffer, 2 µL 2.5 mM dNTPs, 0.8 µL forward primer (5 µM), 0.8 µL reverse primer (5 µM),
0.4 µL TransStart FastPfu DNA Polymerase, 10 ng template DNA, and enough ddH2O to
reach a volume of 20 µL. PCR reactions were performed in triplicate. The PCR product
was extracted from a 2% agarose gel and purified using the AxyPrep DNA Gel Extrac-
tion Kit (Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s
instructions and quantified using a Quantus™ Fluorometer (Promega, Madison, WI, USA).
Purified amplicons were pooled in equimolar concentrations and paired-end sequenced
on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San Diego,
CA, USA) according to the standard protocols of Majorbio Bio-Pharm Technology Co.
Ltd. (Shanghai, China). The raw files were demultiplexed, quality-filtered using fastp
(https://github.com/OpenGene/fastp, version 0.20.0, accessed on 20 September 2020),
and merged using FLASH (http://www.cbcb.umd.edu/software/flash, version 1.2.7,
accessed on 20 september 2020). Operational taxonomic units with 97% similarity cut-
off were clustered using UPARSE (http://drive5.com/uparse/, version 7.1, accessed on
20 September 2020), and chimeric sequences were identified and removed. The taxon-
omy of each operational taxonomic unit representative sequence was analyzed by the
Ribosomal Database Project Classifier (http://rdp.cme.msu.edu/, version 2.2, accessed on
20 September 2020) against the 16S rRNA database (Silva v138) using a confidence thresh-
old of 70% [28]. The MiSeq sequencing data were deposited in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (the accession
number: PRJNA816666).

2.5. Statistical Analyses

Rice production sustainability was evaluated by the sustainable yield index, and the
calculation formula is as follows:

SYI = (Ymean − σn − 1)/Y max (1)

where SYI is the sustainable yield index, Ymean is the mean yield, σn − 1 is the standard
deviation of yield for specific treatment across years, and Y max is the maximum yield
obtained under that treatment during 2014–2020.

The alpha diversities of the bacterial and fungal communities were estimated through
the Chao richness index and Shannon diversity index, which were generated by Quantita-
tive Insights into Microbial Ecology (QIME version 1.17).

The effects of treatment and year on rice yield were evaluated using a two-way anal-
ysis of variance (ANOVA). The effects of treatment on soil physicochemical properties
(BD, SOC, TN, AN, TP, AP, TK, and AK), alpha diversity (Chao and Shannon indexes),
and the compositions of bacterial and fungal communities were analyzed using a one-way
ANOVA. Multiple comparisons of treatment mean values were separated by Duncan’s
test to identify significant effects (p < 0.05). Statistical analyses of all data were conducted
using SAS software (SAS Institute; Cary, NC, USA). The relationships between microbial
community structure, soil properties, and rice yield were estimated with Spearman cor-
relation coefficients using SPSS software (version 20.0). The importance of certain soil
properties in rice yield among treatments was analyzed by random forest classification
analysis using the “randomforest” package in R (version 4.1.2). Redundancy analysis (RDA)
was conducted to estimate the relationship between soil physicochemical properties and
microbial community structure using Canoco software 5.0.

3. Results
3.1. Rice Yield and Sustainability Yield Index

Rice yield was markedly affected by treatment, year, and interactive effects
(treatment × year; Table S1, p < 0.001). Over the 7 years, the average rice yield under
all treatments exhibited the following order: MV0 < MV22.5 < MV30 < MV45 < MV60. The

https://github.com/OpenGene/fastp
http://www.cbcb.umd.edu/software/flash
http://drive5.com/uparse/
http://rdp.cme.msu.edu/
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yield under the four MV treatments was markedly higher than that of the MV0 treatment
by 22.5–29.7%, and there was a similar trend each year (Figures 1a and S1). In 2014 and
2015, the rice yield under MV30, MV45, and MV60 was markedly higher than that under
MV22.5, and no significant difference was observed between MV45 and MV60. However,
rice yields were not significantly different among the four MV treatments from 2016 to 2019.
In 2020, the rice yield under MV45 was markedly higher than that under MV22.5, and no
significant differences were observed between MV30, MV45, and MV60 (Figure S1). Across
all treatments, the average rice yield in 2019 was 10.5 Mg ha−1, which was significantly
higher than that in other years by 3.23–20.0%, and the lowest yield was observed in 2020.
Compared with the MV0 treatment, the sustainability yield index markedly increased by
10.3–13.0% under the four MV treatments, and there was no significant difference among
them (Figure 1b).
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Figure 1. Rice yield (a) and sustainable yield index (b) under application of varied Chinese milk vetch
(MV) rates from 2014 to 2020. In the box-plots (a), the solid and dashed horizontal lines represent the
median and mean values within each box. The box boundaries indicate the 25th and 75th percentile
values, and whisker caps show the 5th and 95th percentile values, while the dots show outliers.
Values represent data from the 7 years and four replicates (n = 28) under each box. In bar graph (b),
horizontal error bars denote the standard deviation of the means (n = 4). Different letters indicate
significant differences between application of varied MV rates at p < 0.05.

3.2. Soil Physicochemical Properties

Soil properties are important indicators for evaluating soil quality. After 7 years of MV
application, marked effects of treatment on SOC (p < 0.001), TN (p < 0.001), total potassium
(TK) (p < 0.05), alkali solution nitrogen (AN) (p < 0.001), and available potassium (AK)
(p < 0.05) were observed (Table 1). SOC was the highest in the MV45 treatment, followed
by MV30, MV60, and MV22.5, compared with the MV0 treatment, with increases of 23.6%,
22.6%, 21.7%, and 13.2%, respectively. The TN in MV45 and MV60 was significantly
elevated by 22.4% and 28.0%, respectively, compared to MV0, followed by MV30 with an
increase of 10.3%, and did not differ markedly between MV22.5 and MV0. The TK in MV45
and MV60 was significantly higher than that in MV0 by 15.5% and 12.6%, respectively,
and no obvious changes among the other treatments were observed. Compared with
MV0, the AN content in MV45 and MV30 was significantly increased by 93.0% and 87.0%,
respectively, and by 68.9% and 35.9% in MV60 and MV22.5, respectively. For AK content,
MV60 had the highest value, and the AK content was significantly increased by 17.2%
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compared with the MV0 treatment, with no obvious change among the other treatments
(Table 1).

Table 1. Effect of seven years of application of varied Chinese milk vetch (MV) rates on soil properties.

BD (g cm−3) SOC (g kg−1) TN (g kg−1) TP (g kg−1) TK (g kg−1) AN (mg kg−1) AP (mg kg−1) AK (mg kg−1)

MV0 1.24 ± 0.04 a 10.6 ± 0.25 c 1.07 ± 0.06 c 0.21 ± 0.03 a 7.04 ± 0.49 c 46.0 ± 5.13 c 6.23 ± 0.76 a 50.56 ± 2.14 b
MV22.5 1.22 ± 0.03 ab 12.0 ± 0.94 b 1.08 ± 0.08 c 0.23 ± 0.02 a 7.44 ± 0.52 bc 62.5 ± 9.06 b 6.74 ± 0.24 a 53.08 ± 2.99 b
MV30 1.20 ± 0.04 ab 13.0 ± 0.94 ab 1.18 ± 0.05 b 0.23 ± 0.03 a 7.36 ± 0.08 bc 86.0 ± 11.1 a 6.09 ± 0.64 a 50.98 ± 3.13 b
MV45 1.16 ± 0.04 b 13.1 ± 0.20 a 1.31 ± 0.07 a 0.25 ± 0.04 a 8.13 ± 0.59 a 88.8 ± 7.18 a 6.39 ± 0.81 a 52.82 ± 4.82 b
MV60 1.18 ± 0.05 b 12.9 ± 0.57 ab 1.37 ± 0.09 a 0.22 ± 0.04 a 7.93 ± 0.39 ab 77.7 ± 5.59 b 6.61 ± 0.39 a 59.28 ± 4.54 a

ANOVA ns *** *** ns * *** ns *

*p < 0.05; *** p < 0.001; Values (mean ± standard deviation) were tested in Analysis of variance (ANOVA) with
four replicates in each treatment. Means followed by different letters within a row are significantly different
(p < 0.05) from each other according to Duncan’s multiple comparison test. Notes: MV, Chinese milk vetch; BD,
bulk density; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, alkali
solution nitrogen; AP, available phosphorus; AK, available potassium.

No marked effects of treatment on bulk density (BD), total phosphorus (TP), or avail-
able phosphorus (AP) were observed (Table 1). Compared with the MV0 treatment, BD
in MV45 and MV60 was significantly reduced by 6.45% and 4.84%, respectively, but no
obvious changes were observed among the other treatments. The TP and AP contents in
the four MV treatments were slightly higher than those in the MV0 treatment, excluding
AP in MV30, but there was no significant difference among treatments (Table 1).

3.3. Soil Microbial Community Structure

Chao richness and Shannon diversity indexes were used to reflect the alpha diversity
of the bacterial and fungal communities. No marked effects of treatment on the Chao
richness index or Shannon diversity index of the bacterial and fungal communities at
the phylum level were observed (Table 2). Compared with the MV0 treatment, the Chao
richness indexes of the bacterial and fungal communities under the four MV treatments
were lower but showed no significant difference among treatments. The Shannon diversity
index of the bacterial community in MV22.5, MV30, MV45, and MV60 was reduced, and the
reduction in MV45 was statistically significant compared with the MV0 treatment (Table 2).

Table 2. Effect of seven years of application of varied Chinese milk vetch (MV) rates on richness and
diversity of bacterial and fungal communities.

Treatment
Bacteria Fungi

Chao Richness Shannon
Diversity Chao Richness Shannon

Diversity

MV0 4518.9 ± 318.3 a 7.02 ± 0.09 a 1257.7 ± 192.8 a 4.53 ± 0.62 a
MV22.5 4329.6 ± 96.8 a 6.93 ± 0.02 ab 1236.6 ± 141.7 a 4.42 ± 0.67 a
MV30 4149.3 ± 316.8 a 6.85 ± 0.13 ab 1236.0 ± 419.1 a 4.54 ± 0.41 a
MV45 4125.7 ± 338.5 a 6.80 ± 0.16 b 1206.3 ± 124.2 a 4.19 ± 0.80 a
MV60 4170.8 ± 361.6 a 6.86 ± 0.09 ab 1030.5 ± 180.8 a 4.13 ± 0.43 a

ANOVA ns ns ns ns
Values (mean ± standard deviation) were tested in Analysis of variance (ANOVA) with four replicates in each
treatment. Means followed by different letters within a row are significant differences (p < 0.05) from each other
according to Duncan’s multiple comparison test. Notes: MV, Chinese milk vetch.

The dominant phyla of bacteria and fungi were identified by high-quality sequencing
in all treatments (Figure 2). Chloroflexi (19.5–21.6%), Proteobacteria (15.8–18.7%), Acidobacte-
riota (11.7–13.5%), Actinobacteriota (10.4–12.0%), and Firmicutes (7.36–11.9%) were the five
most abundant bacterial phyla across all treatments (Figure 2a, Table S2). The relative
abundance of Firmicutes in the four MV treatments increased compared with the MV0
treatment, and the increases in MV22.5 and MV45 were statistically significant. The rela-
tive abundance of Desulfobacterota and Nitrospirotae showed no marked difference among
all treatments.
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Figure 2. Relative abundance of the dominant phyla of bacteria (a) and fungi (b) after seven years of
application of varied Chinese milk vetch (MV) rates. Phyla of bacteria with relative abundance <5%
and phyla of bacteria with relative abundance <1% are collectively called “others”.

Ascomycota (34.0–57.7%) was the most abundant fungal phyla among all treatments
(Figure 2b, Table S3). The relative abundance of Ascomycota in the four MV treatments was
lower than that in MV0, and was markedly reduced in MV45. Compared with the MV0
treatment, the relative abundance of Chytridiomycota in MV22.5, MV30, and MV45 was
significantly lower, but no obvious differences between MV60 and MV0 were observed.

3.4. Relationships between Soil Properties, Microbial Community, and Rice Yield

The relationships between soil microbial community structure and soil physicochemi-
cal properties were analyzed by redundancy analysis (RDA) (Figure 3). The soil physic-
ochemical property indexes explained 76.1% and 96.6% of the variation in the bacterial
and fungal communities, respectively, with the first two RDA axes. BD was markedly
(p < 0.05) correlated with the soil fungal community composition, but there was no
marked correlation between soil physicochemical property indexes and soil bacterial
community composition.

The relationships between soil properties and rice yield were analyzed by Spearman
correlation analysis (Table 3). Rice yield was positively correlated with SOC (p < 0.01), TN
(p < 0.01), TK (p < 0.01), AN (p < 0.01), and AK (p < 0.05), whereas it was negatively corre-
lated with BD and the Shannon diversity index of the bacterial community (p < 0.05). The
importance of these indexes was analyzed by random forest classification analysis (Figure 4).
SOC and AN were the most important indexes of rice yield according to the mean percent-
age decrease in accuracy, followed by TN, BD, Shannon diversity index of bacterial commu-
nity, AK, and TK. In addition, SOC had a positive correlation with AN (p < 0.01) and a nega-
tive correlation with BD (p < 0.01). TN was positively correlated with TK (p < 0.01) and AN
(p < 0.05), whereas it was negatively correlated with the Shannon diversity index of the bac-
terial community (p < 0.05). Chao richness and Shannon diversity indexes of the bacterial
community had a positive correlation with BD (p < 0.05) and a negative correlation with
TK (p < 0.05 and p < 0.01, respectively).
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Table 3. Spearman correlation coefficients for relationships among grain yield and soil properties
(n = 20).

Yield SOC TN TP TK AN AP AK BD Chao
(B)

Shannon
(B)

Chao
(F)

SOC 0.69 **
TN 0.75 ** 0.39
TP 0.29 0.16 0.12
TK 0.57 ** 0.32 0.62 ** 0.04
AN 0.71 ** 0.62 ** 0.51 * 0.23 0.39
AP −0.02 0.20 0.21 0.02 0.22 −0.02
AK 0.47 * 0.10 0.30 −0.07 0.08 0.18 −0.25
BD −0.47 * −0.61 ** −0.44 −0.08 −0.34 −0.31 −0.18 −0.02

Chao (B) −0.32 −0.33 −0.44 0.15 −0.51 * −0.28 −0.04 0.19 0.46 *
Shannon (B) −0.50 * −0.44 −0.48 * 0.03 −0.58 ** −0.41 −0.01 0.14 0.52 * 0.87 **

Chao (F) −0.17 −0.04 −0.37 0.20 −0.27 0.10 −0.25 −0.02 0.12 0.35 0.29
Shannon (F) −0.30 −0.31 −0.43 0.18 −0.16 −0.03 −0.31 −0.11 0.10 0.15 0.08 0.56 *

* p < 0.05; ** p < 0.01; Chao, Chao richness index; Shannon, Shannon diversity index; SOC, soil organic carbon; TN,
total nitrogen; TP, total phosphorus; TK, total potassium; AN, alkali solution nitrogen; AP, available phosphorus
(Olsen-P); AK, available potassium; BD, bulk density; (B), (bacteria); (F), (fungi).
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bulk density; SDI, Shannon diversity index of bacterial community; AK, available potassium; TK,
total potassium.
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4. Discussion

The application of MV from 2014 to 2020 significantly improved rice yield by
22.5–29.7% and sustainability yield index by 10.3–13.0%, relative to no addition of MV
(Figure 1). These gains were substantial compared to the results of Chen et al. [29] and
Li et al. [18]. Both high rice yield and sustainability with the application of different MV
rates in paddy soil may be attributed to (i) the improvement of soil physicochemical prop-
erties due to the decomposition of MV and release of nutrients, especially the improvement
of SOC and AN concentrations, which are important influencing factors on rice yield; and
(ii) the changes in the soil microbial community structure, especially the specific functional
microbial community, which are conducive to improving the soil microenvironment and
crop production.

4.1. Effect of Varied MV Rates on Soil Physicochemical Properties

MV application improved soil physicochemical properties by reducing soil BD and
increasing SOC, TN, AN, TK, and AK concentrations (Table 1). Previous studies have
shown that a high BD might disturb the transport of water and nutrients, thereby affecting
root growth and grain yield [30,31]. We found that adding MV improved the soil structure
by reducing soil BD, particularly in the MV45 and MV60 treatments (Table 1), similar to
the reports of Zhou et al. [13] and Adekiya et al. [32]. These effects might be attributable to
an increase in soil total porosity due to occupying a large space by continuously adding
MV into the soil, and the improvement of the proportion of macro-aggregates and SOC
content caused by the mineralization and decomposition of crop residues [33,34]. In our
study, SOC concentrations increased significantly after MV application, particularly at an
MV rate of 45 Mg ha−1. Many studies have also demonstrated that the input of exogenous
organic material is an important factor for the improvement of soil organic carbon [35,36].
MV itself contained rich N resources due to the nitrogen-fixation effect of leguminous green
manure [15]. We also found marked increases in TN and AN with 30–60 Mg ha−1 MV,
which was attributed to the high organic N-input rates resulting from MV decomposed
in soil [12]. This was similar to the results of Bedadaa et al. [37] and Yang et al. [38],
who reported that adding organic materials (e.g., green manure) could increase total N
inputs and improve soil N nutrient supply capacity and N availability. However, soil
AN under MV60 treatment was markedly lower than that in the MV45 treatment, which
was likely because excessive N-input rates increased stay-green, delayed crop senescence,
and improved N uptake during the later stages of crop growth, thus resulting in the
reduction of soil AN [39,40]. In addition, leguminous green manure might increase soil K
availability and improve K uptake and accumulation due to the extensive root system by
secreting organic acids [16]; thereby, green manure residues returned to soil improved soil K
pools [10]. Our results also showed that different MV rates increased soil TK concentration,
especially MV45 treatment. In summary, our results confirmed that the application of
MV was beneficial to the improvement of soil physicochemical properties in paddy fields,
particularly when applied at 45 Mg ha−1.

4.2. Effect of Varied MV Rates on Soil Microbial Community Structure

Soil microbial community can be a pivotal indicator for estimating soil quality [27].
Some studies have reported that different fertilization management practices could af-
fect the richness or diversity of soil microbial communities [41,42]. The application of
MV decreased bacterial alpha diversity (Shannon index), particularly when applied at
45 Mg ha−1 (Table 2), which was similar to the results of Tao et al. [10], who contended that
the application of different green manures reduced bacterial diversity parameters. This
might be attributed to improvements in soil properties (e.g., BD, TN, and TK), which were
vital factors influencing microbial community diversity [43,44]. These effects were also con-
firmed in the present study, in which we found that the bacterial Shannon diversity index
was significantly correlated with BD, TN, and TK (Table 3). However, the alpha diversity
(Chao richness index and Shannon diversity index) of soil fungal microbial communities
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had no significant effect among the varied MV rates (Table 3), which is consistent with the
results of Ai et al. [45], who found that the input of organic manure changed the bacterial
alpha diversity but not the fungal alpha diversity. This might have occurred because the
bacterial community was more sensitive to the input of organic material and alteration of
nutrient availability than the fungal community [46,47].

Compared with MV0 treatment, the application of MV improved the relative abun-
dance of Firmicutes (Figure 2a and Table S2), which was analogous to the reports of
Caban et al. [48] and Gao et al. [49]. Firmicutes play important roles in maintaining the
stability of agroecosystems and in withstanding extreme environmental conditions through
producing spores [22,50]. Additionally, Firmicutes could effectively promote soil carbon
and nitrogen cycling by secreting enzymes to degrade organic materials and plant-derived
polysaccharides, and participating in various nitrogen metabolism functions [51,52], which
might be conducive to improving soil quality. Among fungi, the dominant phylum as-
sociated with MV addition was Ascomycota in our study (Figure 2b and Table S3), which
was similar to the results of previous studies on maize fields and an apple orchard in the
Loess Plateau of China [47,53]. These results indicate that Ascomycota is a ubiquitous fungal
phylum with important roles in agroecosystems [46]. Our results showed that the relative
abundance of Ascomycota first reduced, and then increased, with increased MV rates. The
results might be attributed to increases in soil nutrient levels from MV0 to MV45 and the
reduction of soil nutrient levels in MV60. Kong et al. [52] also indicated that the preferred
conditions for Ascomycota to grow successfully might be low nutrient levels; thus, the
relatively high nutrient levels might decrease the relative abundance of Ascomycota [54,55].
However, excessive input of MV decreased soil nutrient levels, particularly soil AN content,
and then slightly increased the relative abundance of Ascomycota. The application of MV
reduced the relative abundance of Chytridiomycota (Figure 2b and Table S3), which might
be due to changes in some soil physicochemical properties (e.g., SOC and TN). This was
in accordance with the reports of Liang et al. [46] and Wang et al. [56], who confirmed
that the relative abundance of Chytridiomycota was negatively correlated with most soil
characteristics, including SOC and TN.

4.3. Relationships among Soil Properties, Microbial Community, and Rice Yield

The application of varied MV rates altered soil properties, such as soil BD, macronu-
trients, and microbial community characteristics, thereby increasing rice yield, similar
to the results of previous studies on paddy soil in southern China [18,57]. We observed
significantly positive relationships between soil chemical properties (e.g., SOC, TN, AN,
TK, and AK) and rice yield (Table 3). These effects indicated that the increase in rice yield
might be due to the improvement of soil fertility and nutrient supplies, which promoted
nutrient uptake and crop growth, thereby achieving the gain in rice yield and sustainable
yield index [38]. Furthermore, SOC and AN were the main soil environmental factors af-
fecting rice yield (Figure 4), in accordance with previous results [15]. In addition, markedly
negative relationships among soil BD, bacterial Shannon diversity index, and rice yield
were found in our study; previous studies also had similar reports [44,58].

The changes in soil environmental factors caused by organic material can influence
the soil microbial community structure [59,60]. In our study, the RDA results showed that
only soil BD was profoundly associated with the fungal community (Figure 3b), which
indicated that soil BD was the main environmental factor influencing the fungal community
structure. Previous studies also consistently reported that soil BD significantly governs the
dissimilarities in fungal community structure [61], which could occur because the reduction
of soil BD affects soil porosity, promotes crop root growth, and increases the release
of root exudates, thereby regulating fungal community structure [62,63]. Furthermore,
soil BD was significantly positively correlated with the relative abundance of Ascomycota
(Table S4), which was consistent with the results of Wan et al. [20]. However, previous
studies indicated that the relative abundance of Chytridiomycota showed negative correlation
trends with most soil chemical properties [55,56], which was confirmed in our study
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(Table S4). These outcomes resulted in a notably negative correlation between the relative
abundance of Chytridiomycota and rice yield (Table S4).

4.4. Management of MV in Rice Production

In the rice cropping system, the application of green manure (e.g., MV) is a promising
method to improve crop productivity by providing nutrient resources and improving soil
quality in South China [49,64]. In this study, the increase in rice yield was remarkable when
30–60 Mg ha−1 MV was applied. This might be explained by the reduction of soil BD,
the improvement of soil nutrient levels, and the alteration of the soil microbial commu-
nity structure in the current study, which was analogous to previous research [13,16,23].
However, the excessive application of MV might cause a potential risk of soil nutrient
loss, thus reducing soil nutrient levels. For example, compared with MV45 treatment,
we found slight decreases in SOC and TK concentrations and an obvious decrease in AN
concentration when 60 Mg ha−1 of MV was applied. Therefore, a synergistic improvement
of rice yield and soil quality can be achieved by returning a relatively high amount of MV
to the soil; in this study, the recommended amount of MV was 45 Mg ha−1.

MV, a leguminous green manure, plays a crucial role in sustainable agroecosystems
due to its ability to develop natural resources and improve soil quality [10,29]. In the
future, optimizing the application of green manure (e.g., mechanization and introducing
soil conditioner) will be vital to improve the convenience of technical operation, to fully
exploit the functional potential of green manure, and to further improve rice yield and soil
quality. Furthermore, we encourage farmers to adopt this technology with government
support (e.g., technical adoption subsidies). We also believe the gains in crop yield and soil
quality through the application of this technology can be achieved in many crop types and
regions to better boost sustainable agricultural green production.

5. Conclusions

In this study, MV application significantly increased rice yield by 22.5–29.7% and
sustainable yield index by 10.3–13.0%, particularly when applied at 45 Mg ha−1 MV. These
gains were explained partly by decreased soil BD, increased SOC, AN, TN, and TK, and
improved soil microbial community. Moreover, when 45 Mg ha−1 MV was applied, the
relative abundance of Firmicutes was significantly increased, and the relative abundance
of Chytridiomycota was significantly reduced, relative to no addition of MV. Therefore,
45 Mg ha−1 MV is strongly recommended in the rice cropping system of South China.
These results can guide farmers and policymakers in achieving higher crop production and
better soil quality, thereby promoting regional sustainable agricultural green development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142316065/s1, Figure S1: Rice yield under application of
varied Chinese milk vetch (MV) rates from 2014 to 2020.; Table S1: Rice yield as affected by the
treatments, year and interaction between treatments and year. ANOVA for all data comes from Figure
S1 in the supplemental material.; Table S2: Relative abundance of the dominant phyla of bacteria after
seven years of application of varied Chinese milk vetch (MV) rates; Table S3: Relative abundance of
the dominant phyla of fungi after seven years of application of varied Chinese milk vetch (MV) rates;
Table S4: Spearman correlation coefficients for relationships among bacteria phyla, soil properties
and grain yield (n = 20).
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