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Abstract: As a widely grown oil crop in China, rapeseed accounts for 38.6% of China’s total oil crop
production. In order to ensure the sustainable and healthy development of the rapeseed industry, this
essay uses the input-output panel data of 15 central rapeseed-producing provinces (cities) in China
from 2011 to 2019. The reasons for the change of the index were further studied using three-stage data
envelopment analysis (DEA) and the Malmquist method. The three-stage DEA results show that the
scale efficiency of rapeseed production increases in other provinces, except in Qinghai Province and
Gansu Province, and that scale efficiency can be improved through additional investment. Planting
enterprises can improve their efficiency by improving the efficiency of scientific and technological
progress. On the other hand, government expenditure has a positive impact on rapeseed production
efficiency. The Malmquist index shows that the technical progress efficiency index has the most
significant impact during this period and the rapeseed total factor productivity can be improved
by improving technological progress efficiency. In addition, according to the measured results,
corresponding suggestions are put forward.

Keywords: total factor productivity; rapeseed; data envelopment analysis; efficiency evaluation

1. Introduction

With the development of the economy and people’s living standards, people’s dietary
structures have undergone essential changes: while the oil demand is increasing year by
year [1]. Rapeseed has a long history of planting in China. Its main product, rapeseed oil, is
one of the world’s three most prominent edible oils and also plays a significant role in the
Chinese edible oil market. Meanwhile, rapeseed oil has a large amount of unsaturated fatty
acids and vitamin E, which can prevent antioxidation and reduce the risk of cardiovascular
and cerebrovascular disease. In 2017, the “State Council of China proposed the policy of
focusing on superior varieties and production areas and implementing refined management,
encouraging and guaranteeing the production of crops” [2]. In 2019, the output of edible
vegetable oil in China was 31.34 million tons, ranking second in the world. However, China
canceled the policy of the base purchase of rapeseed in the same year, which reduced
the profits of rapeseed and led to an unbalance economy of planting [3,4]. At the same
time, China’s soybean imports to the world account for 70% of the soybean consumed
by China’s soybean oil, which is seriously affected by international trade. Compared
with soybean, the sown area and output of rapeseed rank first among oilseed crops in
China and the proportion of imported raw materials and finished products is low. On
this premise, improving the efficiency of rapeseed planting and the rapeseed industry will
help ensure the overall safety of the Chinese edible oil supply structure and maintain the
crucial strategic significance of the self-sufficiency of rapeseed oil. However, rapeseed
production depends more on the enthusiasm of the planting enterprises or farmers. After
China canceled the basic purchase policy, the excitement of Chinese rapeseed planting
enterprises has significantly been hit, which is not conducive to the industry’s sustainable
development [5].
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If the rapeseed planting industry continues to develop with low income or high
input and low efficiency, it will bring many problems and have a particular impact on the
industry [6]. On the premise of not reducing income, how to reduce input without reducing
output is the core of this essay. Therefore, this essay starts with rapeseed production
efficiency and total factor productivity in China. Through the evaluation of these two
kinds of efficiency, it finds out the factors that reduce planting efficiency and analyze them.
Through the analysis of the results, suggestions to improve efficiency were put forward
to ensure the sustainable development of rapeseed planting. The remaining structure of
the essay is as follows: Section 2 discusses the research literature of previous scholars.
Section 3 discusses research methods and Section 4 describes indicators and data sources,
including input, output, and environmental variables. Section 5 provides the empirical
results. Section 6 is the discussion and summary.

2. Literature Review

The production efficiency of agricultural products is the focus of the government
and enterprises. Various methods of estimating the efficiency emerge endlessly in the
research on the efficiency of farm products. In the study of bulk crops, the scale efficiency of
agricultural products is the focus of scholars’ research. Wang et al. used the DEA analysis
method to analyze the relationship between the size of rice in six rice-growing counties in
Nanjing and the rent paid by farmers for agricultural machinery to calculate the proportion
of rent borne by farmers for farm machinery and the output-input ratio [7]. Li et al. believed
that the higher the development of economies of scale, the lower the land productivity.
However, the increase in land scale can reduce the agricultural production cost per unit
area. Under the statistical caliber of land output per unit area, the higher the land scale,
the lower the growth rate of land output per unit area [8]. Mei et al. believed there was a
specific relationship between land productivity and the degree of scale. The land with low
scales would lead to low land productivity [9]. When studying the production efficiency
of crops, Luo et al. found that only when large agricultural machinery replaces manual
labor will the yield increase [10]. The authors of [11] studied different business entities and
found that family farms have high comprehensive efficiency and low production costs of
cooperatives. The reason is that the staff of family farms is directly linked to the output
and income of crops, so they are highly motivated to plant.

Data Envelopment Analysis (DEA) is also widely used by scholars in many fields,
including agricultural production efficiency analysis. This method is a non-parametric
linear programming technique that can deal with the sample efficiency analysis of multi-
input and multi-output. It does not need to assume the form of a production function or the
relevant parameters in advance. Hong et al. used the three-stage DEA model to evaluate
the efficiency of the local government debt and put forward constructive suggestions [12].
Zhang et al. used the DEA model to evaluate the efficiency of green technology innovation
in industrial enterprises [13]. The BCC model analysis of the three-stage DEA model can
also be used to prove the feasibility of rural credit cooperative reform [14]; Tian et al. used
the super-efficiency DEA model to calculate the efficiency of agricultural modernization
development [15]. The authors of [16] used the DEA-Tobit model to analyze the efficiency
of forestry ecological security and its influencing factors. Wang and Chen used a two-stage
DEA model to evaluate the impact of university scientific and technological innovation
on regional innovation performance and pointed out the factors that affect efficiency [17].
Sun et al. adopted the DEA cross-efficiency model to evaluate the economic benefits of
urban public infrastructure [18]. By analyzing and comparing the cost–benefit efficiency of
rapeseed in China and Canada, Li et al. concluded that the production cost of rapeseed in
Canada is high, the quality deviation is high, and the farmers’ profit from planting rapeseed
is low [19]. Scholars have also used data envelopment analysis models to measure the
agricultural commodities’ total factor productivity (TFP). For example, scholars use the
stochastic frontier production function model to calculate soybean TFP. The Malmquist-
Luenberger study on soybean TFP under carbon emission or the Hicks-Moorsteen method
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was used to analyze the TFP in Western and Northeast China [20,21]. Li et al. studied
the spatiotemporal heterogeneity of TFP in wheat and maize [22]; Chen et al. analyzed
the TFP of oil crops from the perspective of the disaster rate and found that drought was
the main factor affecting the output efficiency of oil crops [23]. Zhu et al. calculated the
impact of agricultural infrastructure on the TFP of major food crops [24]. The authors
of [25] analyzed soybean TFP in the main soybean producing provinces and pointed out the
factors affecting soybean TFP. Li et al. conducted empirical measurements on panel data of
13 major rapeseed-producing areas in China and found that rapeseed production in China
experienced a net outflow of labor [26]. The authors of [27] found the root cause of the
decline in the competitiveness of the soybean industry through the horizontal comparison
between the soybean and its competitive crop corn.

Data Envelopment Analysis (DEA model) is a non-parametric linear programming
technique that can deal with multiple inputs and sample efficiency analysis of input and
output. In the first-stage DEA model, the default management inefficiency leads to the
deviation of the research objective and the efficiency frontier. It ignores the influence of
the external environment and random error of the decision-making unit (DMU) on the
efficiency, which greatly reduces the scientific reliability of the research results. Coelli
introduced the least square linear analysis based on the one-stage DEA model. However,
Coelli’s DEA method did not consider the efficiency value and decreased the influence
of external environmental factors and random interference on the efficiency. Under
this premise, the three-stage DEA proposed by Fried can compensate for this deficiency
well. It can remove the interference of environmental elements and random errors on
the value and introduce stochastic frontier analysis (SFA) for regression analysis. The
efficiency value obtained is the efficiency value excluding the interference of the external
environment and random errors. So, the three-stage DEA based on predecessors com-
pensates for this deficiency, which can peel off the interference of environmental factors
and random errors on the efficiency value, further developing the data envelopment
method. In the first stage, the traditional DEA model is applied to analyze the efficiency
of the initial data. In the second stage, the slacks variables of input factors are used as
dependent variables and the environmental variables are used as independent variables.
The stochastic frontier analysis (SFA) is introduced for regression analysis and the initial
variables are adjusted according to the regression results. In the third stage, the adjusted
value replaces the initial input value. Then, the traditional DEA model is used to cal-
culate the efficiency value, eliminating the influence of the external environment and
random error interference.

This essay mainly measured the production efficiency and total factor productivity of
rapeseed. We aim to find the minimum input without lowering production and maximize
the enterprise’s profits. To measure the actual efficiency, obtain the “real” deficiencies
in production, and more accurately measure the weaknesses of each DMU (rather than
being masked by external factors) and make suggestions. Therefore, this essay initially
uses the three-stage DEA method for analysis to obtain the real efficiency value. After
estimating the comprehensive efficiency of 15 central rapeseed-producing provinces in
China from 2011 to 2019, using the DEA Malmquist model proposed by Fare in 1996, the
original dynamic efficiency evolution value is obtained and the state efficiency evolution
value for eliminating statistical noise are measured. After analysis, this essay concludes
and proposes corresponding countermeasures [28–30].

3. Methods

In this essay, the comprehensive efficiency of the main rapeseed-producing areas in
China is evaluated based on the three-stage DEA method proposed by Fried et al. The
DEA Malmquist model is then used to evaluate the TFP [31]. In the first stage, the BCC
model proposed by Banker, Charnes, and Cooper in the first stage is adopted. This model
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assumes that DMU is in the case of variable returns to scale, which is used to measure pure
technology and scale efficiency. The BCC formula can be expressed as Equation (1):

minθ
s.t.

n
∑

j=1
λjxij ≤ θxik

n
∑

j=1
λjyrj ≥ yrk

n
∑

j=1
λj = 1

λ ≥ 0; i = 1, 2, . . . , m; r = 1, 2, . . . , q; j = 1, 2, . . . , n;

(1)

where xij is the ith quantity input to unit j, yij is the rth quantity output from unit j, and n
is the number of decision-making units (DMUs). m is the number of inputs and q is the
number of outputs. xik and yrk are the ith input and rth output, respectively, of the evaluated
DMUk. λj is the j dimensional weight vector of DMUj. We aim to measure the extent to
which the resource input can be reduced without reducing the planting output. Therefore,
the constraint ∑n

j=1 λj = 1 is added. We can calculate the TE (Technical Efficiency) value
and the PTE (Pure Technical Efficiency) value according to the formula SE = TE/PTE, which
can calculate the scale efficiency (SE).

In the first stage of the three-stage DEA model, from the total slack of the ith input
factor pair j, Sij can be derived from the first stage BCC model. Sij shows the gap between
the theoretical and actual input of the optimal plant production efficiency. In the second
stage, the input slacks variables Sij obtained from the BCC analysis in the first stage are
regressed with the observable environmental variables and error terms through stochastic
frontier analysis (SFA). The regression equation can be expressed as Equation (2):

sij = f (Zj, βi) + uij + vik
εij = uij + vik

(2)

In Equation (3), Zj is a vector representing the t environmental variables of the
jth DMU, Zj = (z1j, z2j,..., ztj). βi is the coefficient vector of environmental variables.
(Zj, βi) = Zj × βi can calculate the environmental value affecting the rapeseed produc-
tion output. εij = uij + vij is the combined error term, uij and vij are unrelated variables, uij

reflects the management inefficiencies of the jth input and the ith input of uij, uij∼N+(0, σui
2)

and vij reflect the statistical noise vi∼N (0, σvi
2) of the jth DMU and the ith input of vij.

The SFA method decomposes the slacks variables into environmental impact, inefficient
management, and statistical noise. The adjustment input of each DMU can be calculated by
Equation (3):

XA
ij = xij +

[
MAX

i

(
Zj × β̂i

)
− Zj × β̂i

]
+

[
MAX

i
(v̂ij)− v̂ij

]
(3)

XA
ij and xij are input values of adjustment and observation, respectively, but are

estimates of βi obtained using SFA analysis, while β̂i is an estimate of βi obtained using SFA

analysis. The
[

MAX
i

(
Zj × β̂i

)
− Zj × β̂i

]
right side of Equation (3) classifies the operating

environment for all DMUs.
[

MAX
i

(
v̂ij
)
− v̂ij

]
classifies all DMUs into something similar

to “luck”. To obtain an estimate of v̂ij for each DMU, an estimate of the statistical noise
residual according to Jondrow et al. is used. See Equation (4):

Ê

[
vij
∣∣uij + vij

i

]
= sij − Zi × βi − Ê

[
uij
∣∣uij + vij

]
(4)
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Then, the adjusted input can be obtained using Equation (5):

XA
ij = xij +

[
MAX

i

(
Zj × β̂i

)
− Zj × β̂i

]
+

[
MAX

i
(Ê(9

∣∣∣uij + vij i

]
)− Ê

uij

∣∣∣uij + vij
i

 (5)

In the third stage of the DEA test, the BCC model is executed again using the adjusted
input data to evaluate the “real” productivity.

The decision-making unit (DMU) includes cross-section data and time series data. In
this case, using traditional DEA models (CCR model, BCC model) to evaluate the panel
data would contradict DEA assumptions. However, the Malmquist exponential model can
measure the dynamic efficiency of the time series data. After completing the first three
stages of testing, the Malmquist index test is conducted on the input and output before and
after the adjustment and the Farrell distance function is quoted. The DEA-Malmquist index,
which uses period t as the base period and is output oriented, can be expressed as (6):

Mt
i =

Dt
i
(
xt+1, yt+1)

Dt
i (xt, yt)

(6)

Similarly, the Malmquist index with t + 1 period as the base period is (7):

M0

(
xt+1yt+1, xt, yt

)
=

[(
Dt

0
(

xt+1, yt+1)
Dt

0(xt, yt)

)(
Dt+1

0
(
xt+1, yt+1)

Dt+1
0 (xt, yt)

)]1/2

(7)

where, Dt
0 (xt, yt) and Dt

0 (xt+1, yt+1) represent the output distance function of time t and
time t + 1 with time t as the reference point. Similarly, Dt+1

0 (xt+1, yt+1) and Dt+1
0 (xt, yt) also

represent the output distance function of time t and time t + 1 with the front technology as
reference at time t + 1.

Most production entities usually have a certain degree of technical inefficiency. There-
fore, the productivity improvement in the Malmquist index results from the change in
comprehensive and technical efficiency. The comprehensive efficiency refers to the maxi-
mum production capacity of a production organization under specified conditions. The
closeness measures efficiency to the production boundary, reflecting the production organi-
zation’s effective use of technology. The technological progress leads to the expansion of
productivity; that is, productivity changes over time. On the premise of constant returns to
scale, Formula (8) can be used to deduce:

M0xt+1, yt+1, xt, yt

=

[(
Dt

0(xt+1,yt+1)
Dt

0(xt , yt)

)
×
(

Dt
0(xt+1,yt+1)

Dt+1
0 (xt+1, yt+1)

× Dt
0(xt ,yt)

Dt+1
0 (xt , yt)

)]1/2 (8)

At this time, the two parts of the comprehensive efficiency and technological progress
efficiency will represent total factor productivity. However, in actual production, the return
on the scale reward is not constant, so equation Formula (9) can be reduced and derived
as follows:

M0xt, yt, xt+1, yt+1

=
St+1

0 (xt+1,yt+1)
St

0(xt , yt)
×

Dt+1
0

(
xt+1, yt+1

VRS

)
Dt

0

(
xt , yt

VSR

) ×
[

Dt
0(xt+1,yt+1)

Dt+1
0 (xt+1, yt+1)

× Dt
0(xt ,yt)

Dt+1
0 (xt , yt)

]1/2 (9)

In the Malmquist index, the comprehensive efficiency can be divided into pure tech-
nical efficiency and scale efficiency. The pure technical efficiency represents the technical
efficiency level of the year after removing the scale efficiency. If the pure technical efficiency
is less than 1, the invested resources have yet to play a role at the current technological
level. The scale efficiency can measure the distance between different production fronts
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under the two conditions of constant scale returns and variable scale returns, supposing
the scale efficiency is less than 1. It indicates that the resources invested in the technical
level of the model can still be increased and the resources in terms of scale can be increased
to improve the scale efficiency.

4. Data
4.1. Selection of Indicators

In this study, 15 rapeseed production regions (provinces) in China were selected as
the decision-making units of the three-stage DEA model and the Malmquist model. As
the most original and direct production mode, crop input and output indicators are more
straightforward than other manufacturing (industrial) products. So, this essay starts with
the production method, selects the primary input-output data of rapeseed production, and
combines the results of previous scholars to conduct research. This essay’s input, output,
and environmental variables data are from the China Statistical Yearbook, Cost Benefit
Collection of Chinese Agricultural Products, and China Rural Yearbook. Table 1 shows
the indicator system, including input, output, and environmental variables. See Table 1
for details:

Table 1. Input-output indicators.

Input Indicators Output Indicators Environmental Variables

Material and service expenses Output of main products Regional GDP
Discount for domestic labor Education level in rural areas

Employee expenses Government financial expenditure
Rent of circulating land Urbanization level

Discount lease of self-operated land

4.2. Input Indicators

The input in this study is defined as the cost of resources, materials, and services
for rapeseed production. Household labor discounts, employee fees, and land rents are
the most basic and most used inputs in agricultural production. In the production of
farm products, the most important is the cost of seeds and fertilizer. The second one is
agricultural machinery, hydraulic irrigation, and other expenses [32]. In this essay, the
above fees are included in the material and input costs. The labor cost is divided into
household labor discounts and employee costs. At this stage, many farmers include their
labor in the input cost. During the busy farming season, employees are engaged in activities
such as sowing and harvesting, so the cost of employees is also a significant expenditure.
In the cost input of land, we select the land lease expense and self-operated land discount
as the input cost because renting has become the choice of most farmers [33]. Therefore, it
is scientific to choose the above decision-making units as inputs.

4.3. Output Indicator

The selected output indicators are shown in calculating agricultural products in this
essay. The ultimate significance of this essay is the production efficiency of oil crops, so
only the output of the rapeseed is selected as the output indicator.

4.4. Environment Variable

The output and production efficiency of crops will also be affected by external factors,
such as regional GDP, rural education, and the urbanization level of government financial
expenditure. The regional GDP has a particular impact on the production of agricultural
products. The higher the provincial GDP is, the more developed the economy is. The
farmers’ incomes, the inputs during planting, the labor costs during planting, and the
input costs of goods will also increase. At the same time, the value of agricultural prod-
ucts received will also increase. The education level in rural areas will affect the planting
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technology of agricultural producers, the acceptance of modern technologies, and the profi-
ciency of production machinery. It will impact planting technology and strategies [34–37].
Policies and subsidies can positively impact rapeseed production in various ways, so it is
reasonable to include government expenditure in environmental factors. In agricultural
production areas, the improvement of urbanization level will significantly enrich the access
to agricultural materials and promote the spread of planting technology. On the contrary,
the higher the degree of urbanization, the more it will attract rural labor to transfer to cities
and towns, leading to the loss of rural labor to a certain extent, increasing the labor cost and
price cost of crop production. Therefore, it is reasonable to include the level of urbanization
in the environmental variables [38].

5. Results
5.1. The First Stage: DEA Model Results

We can observe from Table 2 that the first stage DEA indicates that the average com-
prehensive efficiency of the 15 central production provinces in 2011–2019 is approximately
0.85 in most years. The highest year is 2018, which is 0.982, and the lowest is 2019, which
is 0.552. The increase and decrease in these two years are significant. The provinces with
positive scale efficiency performance include Inner Mongolia, Anhui, and Jiangxi. The
efficiency has been improved in recent years. The Yunnan Province, Guizhou Province,
Chongqing City, and Hunan Province, the efficiency of these four planting regions is always
low and the comprehensive efficiency has yet to reach the optimal value. According to the
analysis data, we can improve the total efficiency from scale and pure technical efficiency.
However, in most years, Jiangsu, Gansu, and Qinghai are always in a state of diminishing
returns to scale (DRS). It indicates that the input and output are always mismatched. The
input can be appropriately reduced. To achieve the best efficiency value. We can see the
results in Table 2:

Table 2. DEA analysis results of the first stage of Chinese rapeseed output.

Province/Year
2011 2012 2013

CE PTE SE CE PTE SE CE PTE SE

Average 0.803 0.856 0.937 0.722 0.785 0.919 0.78 0.798 0.978
Inner Mongolia 0.332 1 0.332 0.444 1 0.444 0.419 1 0.419

Jiangsu 0.906 1 0.906 0.655 0.689 0.95 0.8 1 0.8
Zhejiang 0.971 1 0.971 1 1 1 0.917 0.931 0.984

Anhui 0.772 0.856 0.902 0.636 0.804 0.791 0.957 1 0.957
Jiangxi 0.823 1 0.823 0.76 0.869 0.875 1 1 1
Henan 0.854 1 0.854 0.758 1 0.758 0.961 1 0.961
Hubei 1 1 1 0.94 0.976 0.963 1 1 1
Hunan 0.939 1 0.939 0.859 0.907 0.948 0.832 0.834 0.998

Chongqing 0.566 0.661 0.856 0.576 0.642 0.898 0.562 0.608 0.924
Sichuan 0.88 0.883 0.996 0.73 1 0.73 0.789 0.809 0.975
Guizhou 0.626 0.846 0.74 0.542 0.667 0.813 0.838 0.923 0.907
Yunnan 0.473 0.604 0.784 0.655 1 0.655 0.466 0.565 0.825
Shaanxi 0.615 0.662 0.928 0.487 0.519 0.938 1 1 1
Gansu 0.795 0.817 0.973 0.64 0.678 0.944 0.567 0.646 0.877

Qinghai 1 1 1 0.675 0.813 0.83 0.931 1 0.931

Province/Year
2014 2015 2016

CE PTE SE CE PTE SE CE PTE SE

Average 0.838 0.839 0.998 0.84 0.854 0.984 0.865 0.873 0.99
Inner Mongolia 0.401 1 0.401 0.483 1 0.483 0.591 1 0.591

Jiangsu 0.889 1 0.889 0.921 1 0.921 0.885 1 0.885
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Table 2. Cont.

Zhejiang 0.978 0.98 0.998 0.882 0.895 0.985 0.791 0.791 1
Anhui 1 1 1 1 1 1 0.977 1 0.977
Jiangxi 1 1 1 1 1 1 0.959 1 0.959
Henan 0.962 1 0.962 0.967 1 0.967 1 1 1
Hubei 0.986 0.991 0.995 0.919 0.933 0.985 1 1 1
Hunan 0.793 0.891 0.89 0.777 0.811 0.958 0.716 0.816 0.877

Chongqing 0.625 0.72 0.869 0.615 0.647 0.949 0.723 0.747 0.968
Sichuan 0.968 1 0.968 0.975 1 0.975 1 1 1
Guizhou 0.717 0.756 0.948 0.801 0.803 0.997 0.797 0.841 0.947
Yunnan 0.646 0.65 0.995 0.714 0.75 0.952 0.808 0.874 0.924
Shaanxi 0.979 0.997 0.982 1 1 1 1 1 1
Gansu 0.795 0.823 0.965 0.784 0.829 0.946 0.825 0.856 0.964

Qinghai 0.945 1 0.945 0.835 0.916 0.911 0.983 0.99 0.993

Province/Year
2017 2018 2019

CE PTE SE CE PTE SE CE PTE SE

Average 0.851 0.853 0.998 0.982 0.995 0.987 0.522 0.546 0.956
Inner Mongolia 0.691 1 0.691 1 1 1 1 1 1

Jiangsu 0.951 1 0.951 0.896 1 0.896 1 1 1
Zhejiang 0.92 0.93 0.989 0.93 1 0.93 0.44 0.477 0.922

Anhui 0.984 1 0.984 1 1 1 1 1 1
Jiangxi 1 1 1 1 1 1 0.557 0.575 0.969
Henan 1 1 1 0.79 0.825 0.957 0.585 0.666 0.877
Hubei 1 1 1 0.971 1 0.971 1 1 1
Hunan 0.732 0.805 0.91 0.907 0.939 0.966 0.847 1 0.847

Chongqing 0.662 0.676 0.98 0.713 0.775 0.919 0.649 0.799 0.812
Sichuan 0.944 1 0.944 1 1 1 0.414 0.454 0.911
Guizhou 0.717 0.763 0.94 0.834 0.93 0.897 0.686 0.924 0.742
Yunnan 0.779 0.84 0.927 0.689 0.765 0.901 0.557 0.579 0.962
Shaanxi 1 1 1 1 1 1 1 1 1
Gansu 0.776 0.784 0.989 0.668 0.713 0.938 0.714 0.769 0.929

Qinghai 0.878 0.925 0.949 0.953 0.972 0.98 1 1 1

CE is comprehensive efficiency, PTE is pure technical efficiency, SE is scale efficiency.

5.2. Second Stage: SFA Analysis

In the second stage, the SFA regresses the four environmental variables of the province’s
GDP, rural education level, government expenditure and urbanization level. We can tell
from the data that the likelihood ratio test values of most of the four input SFA regressions
are significant at a confidence level below 5%, which proves the accuracy of the one-sided
error test term and the rationality of the random frontier specification. The four SFA
regressions are material and service costs, household labor discounts, land transfer rents,
and self-operated land discounts γ. The values are close to 1, indicating that the investment
slacks are mainly due to low management efficiency rather than statistical noise. The value
of the employee expense cost is 0.38, with a significant difference from 1, indicating that it
is affected by statistical noise.

The regression coefficient of regional GDP is negative on input slacks and the confi-
dence is significant at 1%. It shows that the main impact of regional GDP on the rapeseed
production industry is labor cost. Additionally, the higher the regional GDP is, the more
adverse to rapeseed production it is. The regression coefficient of the rural education level
is nearly positive regarding material and service costs, while the rest is harmful, which is
inconsistent with the expectations. When the regression coefficient is positive, the value
is low and can be almost ignored and may be affected by statistical noise. The regression
coefficients of government expenditure are all positive. However, the confidence level
could be higher. However, it also shows that government subsidies to agriculture will
improve rapeseed output efficiency. The value indicates that the slack variable of the urban
population has a promoting effect.
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These results proved that the selected environmental factors significantly impacted on
rapeseed production efficiency. Therefore, to eliminate the effects of environmental and
statistical errors on efficiency values, we must adjust variables and re-evaluate them. We
can see the SFA results in Table 3:

Table 3. SFA regression results of the second stage.

Variable
Material and

Service Expenses
Discount for

Domestic Labor
Employee
Expenses

Rent of
Circulating Land

Discount Lease of
Self-Operated

Land

Constant term 10.656671 (9.14) * 1.91 (18.93) * 2.70 (6.61) * −1.85 (0.89) ** 4.48 (1.19) ***
Regional GDP −0.00266 (0.47) * −0.0124 (0.0017) *** −0.3 (0.021) *** 0.06 (0.01) *** −0.2 (0.03) ***

Education level in
rural areas 0.0007 (0.023) * −0.00187 (0.05) * −0.006 (0.01) * −0.003 (0.04) ** −0.019 (0.01) *

Government
expenditure 0.16795 (2.68) * 0.11 (0.06) ** 0.3 (0.02) *** 0.03 (0.01) *** 0.04 (0.02) **

Urbanization level −0.05234 (0.01) *** 0.007 (0.02) * 0.001 (0.007) * 0.1 (0.02) *** −0.03 (0.009) *
σ2 2186.9709 (1809.28) * 1658.08 (2868.43) * 148.65 (209.03) * 99.44 (105.76) * 2301.85 (1100.72) **
γ 0.8424 (0.15) *** 0.732 (0.303) ** 0.38 (0.93) * 0.85 (0.19) *** 0.91 (0.08) ***

Log −260.88 304.93 222.91 167.3 245.95
LR test of the

one-sided error 0.66 0.79 0.36 0.44 1.41

Note: *, ** additionally, and *** are significant at 10%, 5%, and 1% levels, respectively.

5.3. Third Stage: DEA Model Results after Adjusting Input

In the third stage, the input redundancy data adjusted by the second-order SFA
segment are used and then the BCC model is used to evaluate the rapeseed production
efficiency. We consider the impact of environmental factors and statistical noise and the
test puts all the provinces into a fair competition environment. See Table 4 for details of
the results:

Table 4. Results of the third phase of DEA analysis.

Province/Year
2011 2012 2013

CE PTE SE CE PTE SE CE PTE SE

Average 0.685 0.776 0.884 0.782 0.812 0.963 0.781 0.829 0.942
Inner Mongolia 1 1 1 1 1 1 0.611 1 0.611

Jiangsu 0.813 1 0.813 0.95 1 0.95 0.966 1 0.966
Zhejiang 0.869 1 0.869 0.952 0.967 0.984 0.914 0.945 0.967

Anhui 1 1 1 0.969 0.971 0.998 1 1 1
Jiangxi 0.659 0.897 0.735 0.665 0.747 0.891 0.729 0.82 0.889
Henan 0.868 0.874 0.993 0.908 0.948 0.958 1 1 1
Hubei 0.977 1 0.977 1 1 1 0.958 0.977 0.981
Hunan 1 1 1 0.732 0.808 0.906 0.656 0.826 0.794

Chongqing 0.382 0.382 0.999 0.492 0.546 0.902 0.494 0.563 0.879
Sichuan 0.849 0.861 0.986 0.719 0.723 0.994 0.741 0.745 0.994
Guizhou 0.47 0.471 0.998 0.586 0.64 0.916 0.575 0.682 0.843
Yunnan 0.638 0.64 0.997 0.734 0.749 0.979 0.753 0.764 0.985
Shaanxi 0.484 0.491 0.985 0.557 0.56 0.994 0.565 0.566 1
Gansu 0.687 0.689 0.997 0.62 0.684 0.907 0.721 0.761 0.947

Qinghai 1 1 1 0.734 0.74 0.993 0.704 0.712 0.988

Province/Year
2014 2015 2016

CE PTE SE CE PTE SE CE PTE SE

Average 0.776 0.801 0.969 0.737 0.808 0.913 0.807 0.851 0.948
Inner Mongolia 0.562 1 0.562 0.409 1 0.409 0.343 0.854 0.402

Jiangsu 0.92 1 0.92 0.901 1 0.901 0.949 1 0.949
Zhejiang 0.873 0.985 0.887 0.933 0.969 0.964 0.995 0.995 1

Anhui 1 1 1 1 1 1 1 1 1
Jiangxi 0.687 0.828 0.83 0.686 0.814 0.842 0.788 0.864 0.912
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Table 4. Cont.

Henan 1 1 1 1 1 1 1 1 1
Hubei 1 1 1 0.816 0.897 0.91 0.943 0.968 0.974
Hunan 0.595 0.768 0.775 0.654 0.813 0.804 0.666 0.775 0.859

Chongqing 0.521 0.549 0.95 0.448 0.559 0.801 0.464 0.547 0.848
Sichuan 0.762 0.789 0.966 0.708 0.709 0.998 0.787 0.809 0.973
Guizhou 0.622 0.673 0.925 0.594 0.68 0.873 0.668 0.753 0.888
Yunnan 0.769 0.801 0.961 0.652 0.671 0.972 0.71 0.728 0.975
Shaanxi 0.618 0.629 0.983 0.479 0.517 0.925 0.579 0.591 0.98
Gansu 0.796 0.803 0.992 0.765 0.777 0.985 0.823 0.842 0.977

Qinghai 0.769 0.788 0.976 0.673 0.695 0.967 0.852 0.884 0.963

Province/Year
2017 2018 2019

CE PTE SE CE PTE SE CE PTE SE

Average 0.747 0.829 0.901 0.776 0.852 0.91 0.801 0.906 0.885
Inner Mongolia 0.355 0.954 0.372 0.688 1 0.688 0.308 0.972 0.317

Jiangsu 0.86 1 0.86 0.75 0.794 0.944 0.941 1 0.941
Zhejiang 0.885 0.955 0.927 1 1 1 0.874 0.972 0.899

Anhui 0.961 0.991 0.97 0.706 0.914 0.772 0.84 0.97 0.866
Jiangxi 0.729 0.869 0.839 0.745 0.865 0.862 0.619 0.917 0.675
Henan 0.916 1 0.916 0.896 1 0.896 0.796 1 0.796
Hubei 1 1 1 0.936 0.977 0.959 1 1 1
Hunan 0.652 0.773 0.843 0.785 0.834 0.942 0.739 0.876 0.844

Chongqing 0.474 0.586 0.808 0.564 0.635 0.887 0.558 0.682 0.819
Sichuan 0.65 0.722 0.901 0.777 1 0.777 0.827 0.842 0.981
Guizhou 0.553 0.72 0.769 0.565 0.711 0.795 0.548 0.826 0.663
Yunnan 0.488 0.665 0.734 0.68 1 0.68 0.558 0.782 0.714
Shaanxi 0.58 0.605 0.959 0.58 0.623 0.931 0.666 0.772 0.863
Gansu 0.646 0.74 0.874 0.731 0.779 0.938 0.892 0.909 0.981

Qinghai 0.689 0.71 0.97 0.769 0.891 0.863 0.874 0.925 0.945

After adjustment, the average of pure technical efficiency and combined efficiency of
each province fell, which means that the influence of environmental factors and statistical
noise led to the overestimation of the “true efficiency.” The average value of the pure
technical efficiency in the recent nine years fell to 0.8 and the annual average value of
comprehensive efficiency is also around 0.75. This result proves that the environment
factors the efficiency and reflects the accuracy of the second stage test. We know from the
“true efficiency” that rapeseed planting efficiency in western provinces was generally lower
than in eastern provinces. It depends on the local economy, the degree of income, and the
natural conditions. In the southwest-producing areas, Yunnan, Guizhou, Sichuan, and
Chongqing are also relatively low in efficiency. The lowest comprehensive efficiency is even
as low as 0.48 and there is a severe discrepancy between the input and output. According
to the data analysis in the table, the comprehensive efficiency of each province is generally
affected by the scale efficiency. We can improve the comprehensive efficiency by increasing
the scale investment.

5.4. Analysis of Malmquist

In this Malmquist index measurement, the initial data in the first stage and the revised
data in the second stage are used. The time t is introduced to measure the dynamic values
of various efficiencies in the past nine years. The average value is taken for observation.
See Tables 5 and 6 for details:

The above data reflect the analysis results of total factor productivity of major rapeseed-
producing provinces in China from 2011 to 2019 and the data of various change values.
The growth index reflects the efficiency of the past nine years. From the whole table, the
rapeseed’s average total factor productivity is 0.928. There is a 7.2% difference from the
best efficiency of the total factor productivity, which is not DEA effective. Therefore, the
input-output ratio has yet to reach the optimal level and there is still room for improvement.
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Among them, the provinces with an average value greater than 1 are Inner Mongolia,
Zhejiang, Henan, and Guizhou. The total factor productivity of other areas is less than 1.
It can be seen from the above table that the most critical factor affecting the total factor
productivity is the change in technical progress efficiency. All the provinces can improve
the TFP by improving the efficiency of technological progress.

Table 5. Decomposition average of total factor productivity of major rapeseed producing provinces
in China.

Province effch techch pech sech tfpch

Average 0.982 0.944 0.984 0.998 0.928
Inner Mongolia 0.982 1.033 1 0.982 1.015

Jiangsu 1 0.922 1 1 0.922
Zhejiang 1.033 0.977 1.033 1 1.009

Anhui 0.979 0.883 0.99 0.989 0.865
Jiangxi 0.983 0.941 1 0.983 0.925
Henan 1.019 1.172 1.017 1.002 1.194
Hubei 1 0.94 1 1 0.94
Hunan 1 0.847 1 1 0.847

Chongqing 1 0.768 1 1 0.768
Sichuan 1.015 0.92 1.006 1.009 0.934
Guizhou 0.969 1.124 0.997 0.972 1.089
Yunnan 0.931 0.962 0.96 0.97 0.896
Shaanxi 0.962 0.712 1 0.962 0.685
Gansu 1 0.777 1 1 0.777

Qinghai 1 0.983 1 1 0.983
effch is technical progress index, techch is technical efficiency change index, pech is change index of pure technical
efficiency, sech is scale efficiency change index, tpfch is total factor productivity change index.

Table 6. Average value of Malmquist index of each province after eliminating external influence.

Province effch techch pech sech tfpch

Average 0.982 0.944 0.984 0.998 0.928
Inner Mongolia 0.903 0.818 1 0.903 0.738

Jiangsu 1 0.92 1 1 0.92
Zhejiang 1.035 0.972 1.036 1 1.006

Anhui 0.979 0.883 0.99 0.989 0.865
Jiangxi 0.983 0.92 1 0.983 0.904
Henan 1.019 0.861 1.017 1.003 0.878
Hubei 1 0.937 1 1 0.937
Hunan 1 0.838 1 1 0.838

Chongqing 1 0.797 1 1 0.797
Sichuan 1.024 0.905 1.015 1.009 0.927
Guizhou 0.969 1.131 0.997 0.972 1.096
Yunnan 0.931 0.922 0.962 0.968 0.859
Shaanxi 0.593 1.599 0.688 0.862 0.947
Gansu 1.015 0.631 0.966 1.05 0.64

Qinghai 0.901 0.951 0.995 0.905 0.857

It can be seen from Table 6 above that the input redundancy data adjusted by the
second-order SFA segment have eliminated environmental noise and statistical errors. Only
the Zhejiang and Guizhou provinces have a TFP greater than 1, showing an upward trend.
The total factor productivity of other provinces has declined. It shows that in the natural
environment, the total factor productivity of each province is far from reaching the expected
value of 1 and there is much room for improvement. Among them, the most significant
decline and change is still the change in the efficiency of technological progress. From the
analysis, the efficiency of technological progress still drives the reduction in total factor
productivity. Among the 15 provinces, only Guizhou and Shaanxi have technical progress
efficiency more significant than 1 and the areas with low technological progress efficiency
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can learn from these two provinces. From the perspective of changes in scale efficiency,
the average value of changes in scale efficiency of each section did not reach 1, showing
a downward trend. The most significant decline was in the Shaanxi Province, which was
13.8%. The average change efficiency of Sichuan and Henan Province reached the optimal
level from 2011–2019 and the trend was stable. The scale efficiency investment has been
relatively perfect in recent years. The current production and development of rapeseed
need to change the management, which means improving the ratio of intensive industrial
production, strengthening the power of controlling the land transfer, and constantly im-
proving the construction of the advantage of the leading industry—thus forming a scale
of planting.

6. Discussion

We can learn from the results that the measured values of the three-stage DEA and
the Malmquist reflect that the production efficiency in each main production area has yet
to reach the effective value. Especially in the western production areas of China, the arid
northwest and the southwest with more mountains and hills, the pure technical efficiency
and scale efficiency are always low. In this circumstance, in the Gansu Province in the
northwest, the pure technical efficiency and scale efficiency values hover around 0.75, not
reaching the DEA effective value, and there is still about 25% space of the effective value.
The average growth rate of all the factors is 0.64, which is the lowest in all major production
areas. There is still 36% room for the growth to be effective. It shows a declining trend year
after year. Although the pure technical efficiency value and scale efficiency value of the
Qinghai Province is high, its comprehensive efficiency value is always low, hovering around
0.70, with 30% growth space. Its Malmquist index value is also low in the national ranking.
The distance from the practical value is 14.3%. The Yunnan Province, Chongqing City, and
Guizhou Province in southwest China have very low comprehensive efficiencies and there
is even a 40% gap in the DEA effectiveness. Although the Malmquist index shows that the
growth rate of these three provinces is good, the low efficiency has seriously affected the
growth. In this regard, we can change the production mode on the land that is not suitable
for large-scale mechanized production, produce from a green and non-polluted direction,
and improve the extra benefit value of products. If the economic conditions permit it,
UAVs can fertilize and spread pesticides [39–41] to improve the production efficiency. For
land suitable for large-scale planting, improve its scale efficiency and reduce the invalid
investment. The survey found that the production efficiency in China’s western areas is
significantly lower than in other areas. The production areas with the highest production
efficiency are all located in the southern and coastal areas of China.

Therefore, to fundamentally improve the planting efficiency of rapeseed, we should
start from the direction of input and output and the direction of financial subsidies, in-
frastructure construction and even irrigation [42]. On the one hand, we know from the
input that the fertilizers and pesticides consumed in rapeseed production and the exhaust
emissions from agricultural machinery will cause environmental pollution. After analyzing
the overall efficiency, we can appropriately reduce the input of production resources and in-
crease the investment of foundations in other directions for low-efficiency areas to improve
the efficiency and decline the pollution emissions simultaneously to achieve sustainable
environmental development. On the other hand, by reducing production pollution and soil
hardening, production can be carried out on the premise of not destroying land productivity
to achieve sustainable social development. At the same time, we are pursuing product
quality and efficiency to improve economic earnings while not reducing the future income
to achieve sustainable development at the economic level.

7. Conclusions

This essay first uses a three-stage DEA model to evaluate the operating performance
of major rapeseed-producing provinces in China. It then uses the Malmquist model to
analyze the dynamic total factor productivity of 15 major producing regions. In this study,
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we selected five items as inputs: material and service costs, discounts for household labor,
employee costs, rent of circulating land, and values for self-operated land; the rapeseed
output was selected as the output. This esay cites four environmental variables: regional
GDP, rural education level, government financial expenditure, and urbanization. The
calculated results reflect the input redundancy efficiency in rapeseed production based on
the results and also show that the most significant environmental factor affecting efficiency
is government financial expenditure. At the national level, one way to improve efficiency
is to increase subsidies. In terms of the importance of production, this study is aimed
at local large-scale planting agricultural enterprises, which can reduce costs according to
the measured results and provide some suggestions for the lower enterprises with lower
benefits. As a result, they have a lot of potential for efficiency gains that can be achieved by
using existing resources more efficiently rather than adding to them.

This study also has some limitations: Initially, it is difficult to obtain data and only
macro data can be used for measurement. Secondly, it is impossible to produce specific
statistics on the waste of chemical fertilizers, pesticides, and agricultural machinery in
production. We can only put forward suggestions on increasing or reducing investment
(unable to achieve point-to-point exemplary management) at a macro level to maintain
the sustainability of production. Thirdly, only four environmental variables are cited in
the calculation, which could be more comprehensive. For future research, the unexpected
output can be introduced to measure the surprising output efficiency of pollutants CO2,
SO2, and NO2. In terms of methods, the DEA model is combined with more inspection
methods to conduct more comprehensive tests and increase the stability of the results.
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